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In parallel computing, scalability h an important issue and 
getting linear speed-ups is diflicult for most codes. Super- 
linear speed-up has been achieved on an eight-proressor 
Flosolver system for a multigrid Navier-Stokes code. 
The physical problem solved, the parallelization method, 
the speed-ups obtained and possible explanations for this 
result are discussed here. 

PARALLEL computers are used nowadays for all non-trivial 
Computational Fluid Dynamics (CFD) calculations. The need 
for large computations makes parallel computers necessary. 
Also, since a majority of CFD codes use finite difference or 
finite volume methods, the domain decomposition technique 
can be used for parallelization, which results in good parallel 
efficiencies. Other codes that use spectral techniques where 
global communication is required m !mown to have moderate 
to poor scalability. The multigrid technique which is used 
to accelerate the convergence of Poisson solvers is generally 
considered to hamper parallel efficiency due to its global 
dependencies". The most commonly used metric to m a w  
scalability is the speed-up, which is defined as the ratio of 
the time taken by the sequential code to that of the parallel 
code. Speed-up is a function of the number of processors 
used. Parallel efficiency is defined as speed-up divided by 
the number of processors and in general, falls off as the num- 
her of processors increases. 

At the Flosolver laboratory, we have achieved a super- 
linear speed-up of 1 I on an eight-processor system using the 
FloSwitch3 for communication on a multigrid laminar Navier- 
Stokes code written at the Jawaharlal Nehru Centre for 
Advanced Scientific Research, Bangalore. Recently, Dresden' 
reported a speed-up of nearly 140 with a 120-processor 
system on a finite element Navia-Stokes code. Here we 
document briefly the Flosolver experience. 

not vary downstream. The aim of the code DIVPIPElS is 
to obtain flow profiles for spatially developing separated 
flows, where analytical solutions are not possible. The 
emphasis is on obtaining accurately the regions of separa- 
tion, and the flow within and beyond such regions. The 
Navier-Stokes equations in the vorticity and streamfimc- 
tion formulation have been solved using the full-multigrid 
algorithm (FMG) by the finite difference technique. It is 
found that the convergence in the FMG is about a hundred 
times faster than with a single grid, when using 128 x 128 
grid points. 

The geomehy (shown in Figure I)  consists of a pipe 
which i s  parallel at the entry, followed by a divergent sec- 
tion, which in turn is followed by a much longer straight 
exit section. In the present case, the divergent section starts 
at x = 9.375 and ends at x = 16 with a 5" angle of divergence. 
The length of the pipe L = 120. All lengths are scaled by 
the radius R at the inlet. A long parallel exit section is 
necessary, because we prescribe the Neumann boundary 
condition (a/& = 0) at the exit, which is found to he valid 
only far downstream. For the present case, at a Reynolds 
number of Re = 400 based on the inlet velocity and length 
scale, the Neumann condition is found to he valid only 
beyond x - 98. For this reason, even a laminar flow com- 
putation is extremely time-consuming, and a full multi- 
grid algorithm is necessary. A sample steady-state result 
of an axisymmetric separated flow with reattachment for 
a divergent pipe is presented here. 

The governing equations are 

a m  1 
J t  Re 
- +(u.q)w = - V b ,  

w. (2) 0 = -v2 

These are non-dimensional equations with Re = URIv, where 
U is the centreline velocity at the inlet, v is the kinematic 

w is the streamfunction, w is the vorticity vec- 
tor, and u is the velocity vector. The solution is facilitated 

Description of the Problem and comPutational 
algorithm 

by a transformation of coordinates given by 
The instability of spatially developing laminar flows, such 
as those through convergingidiverging channels and pipes, 
is often fundamentally different from that of flows which do 

Y = 7 =- 
f (x) ' 

*For correspondence. (e-mail: t"v@flosolver.nal.res.in) wherefix) is a function describing the boundary. 
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Figure 1. Schematic diagram of axisymmetnc divergent pipe. ( a )  Physical domain and (b)  computational domain. 

Solution method 

The boundary conditions at the centreline are v= 0; m= 0; 
v = 0 and u is a maximum; the last condition implying that 
Iy is linear at the centreline. No-slip and impermeable bound- 
ary conditions have been used at the wall. The functional 
forms of the streamfunction at the centreline and the VOT- 

ticity at the wall are prescribed by employing fictitious points 
outside the domain. At the inlet, a parabolic velocity profile is 
prescribed, while at the outlet the Neumann boundary 
condition (av/aC= O p 6  is used, as mentioned earlier. 

After setting up the initial and boundary conditions for the 
flow parameters, the vorticity at the new time step is calcu- 
lated from eq. (1). Any standard time marching method may 
be used for this purpose. Then, using the vorticity at the new 
time step, stream-functions are computed from the Poisson 
(eq. (2)). This is the most time-consuming part in the pro- 
gram. If this kind of spatially developing flow is to be solved 
within realistic time-frames (a few days for each case), a 
convergence acceleration technique is essential. The multigrid 
technique (see later in the article) increases convergence 
rates by a large factor', and has been used here. In our case 
we find the speed-up to be a factor of hundred. Finally, 
the velocity components are calculated from the computed 
streamfunction. For a steady-state problem, these steps are 
repeated till the vorticity residual (%=ZIX;~/+  0;; 1) 
reduces to a value below a prescribed limit (= lo-'' in our 
case). 

The multigrid method' provides algorithms which can he 
used to accelerate the rate of convergence of iterative meth- 
ods, such as Jacobi or Gauss-Seidel, for solving elliptic 
partial differential equations. Iterative methods start with 
an approximate guess for the solution to the differential equa- 
tion. The difference between the approximate solution and 
the exact solution is made smaller at every iteration. Algo- 
rithms like Jacohi or GaussSeidel are local because the new 
value for the solution at any lattice site depends only on the 
value of the previous iterate at neighbouring points. Such 
local algorithms are generally only efficient in reducing short- 

590 

wavelength error components. In general, the error will be 
made up of components of many different wavelengths. The 
basic idea behind multigrid methods is to reduce long- 
wavelength error components by updating blocks of grid 
points. A six-level multigrid technique with simple V-cycle 
algorithm was used in the present case. 

Sample result 

The variation of streamwise velocity profiles for the pipe at 
different locations in the downstream is given in Figure 
2a .  It can he seen that the flow separates at x = 15.9 and 
reattaches at x - 18.3, giving x independent parabolic profiles 
after x = 98.4. The corresponding normal velocity profiles 
are shown in Figure 2 b. These calculations were performed 
sequentially on a PC with Pentium N processor at 2 GHz. 
The total runtime for convergence up to 1 x lo-'' was 
around 26 h. 

Eight-processor Flosolver system 

The eight-processor Flosolver system (Figure 3) consists of 
four Intel STL2 hoards linked by the NAL FloSwitch. Each 
board has two Intel Pentium I11 processors with a clock speed 
of 1 GHz and 2 GB of shared RAM. The operating system on 
the nodes is Linux. The communication libraries include 
CCX', a small hut efficient message-passing library and an in- 
house implementation of a subset of the MPI library. 

Parallelization 

The fmt  step involved time-profiling of the sequential code. 
The time breakup is shown in Table 1. As can he seen 
from Table 1 ,  a major portion of the computation time is 
taken by the Poisson solver. Break-up of computational 
time among the various subroutines in the Poisson solver 
is shown in Table 2. Here, the relaxation routines take around 
75% of the time. 
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Figure 2. 
profiles at different downstream locations. 

Flow in an axisymmetric divergent pipe, Re = 400 and angle of divergence = 5'. (I, Streamwise velocity profiles. b,  Normal velocity 

Table 1. B d p  ofcomputational time among 
various subroutines of the code 

Subroutine Percentaxe time 

Vorticity (w)  update 0.42 
Poisson solver 99.35 
Velocity calculation 0.06 
Iteration loop 99.83 
Miscellaneous 0.17 
Total 100.00 

Table 2. Break-up of computational time of 
various subroutines in the Poisson solver 

Subroutine Percentage time 

Relax (downleg) 38.37 
Relax (upleg) 36.93 
Residue calculation 10.37 
Restriction 11.23 
Prolongation 2.35 
Miscellaneous 0.75 
Poisson solver 100.00 

Table 3. Soeed-uo obtained on Flosolver for DIVPIPEIP 

Number of PEs Boards PEs per board Speed-up 

I 
2 

I I 1.00 
2 I 2.12 
1 2 1.61 
4 1 4.24 

4 2 2 3.59 
8 4 2 11.05 

For parallelization, the domain decomposition technique 
was used. In the first stage, the subroutines of the Poisson 
solver were parallelized. Here the communication of stream- 
function values at the boundaries of the subdomains is re- 
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quired. In the next stage, the velocity calculation and the 
vorticity update calculations were also parallelized. Even 
though these routines constitute a small fraction of the compu- 
tation, their parallelization is important, since the communica- 
tion of the streamfunction values is reduced and also the 
overall scalability improves. 

There are issues to he addressed while parallelizing multi- 
grid computations. Initially, we followed the full multigrid 
approximation, i.e. boundary information was communicated 
among the processors at all grid levels, so that the 
computation at each iteration step was identical to that of 
a sequential run. This is, however, not essential as there 
is a convergence criterion enforced at each level. In the 
next approach, the coarser grid calculations were done 
without passing the boundaq data and communication was 
restricted to the finest grid. This has much lower message 
passing overhead, but could take a higher number of 
iterations to converge, as experienced by Alonso ef al.'. 
In the present computations, there was no increase and in 
some cases (for eight processors) the number of iterations 
decreased. Consequently, the overall speed-up was much 
better than in the first approach. 

Results 

The parallel code DIVPIPEIP was run on up to eight proc- 
essors on the Flosolver Mk 6 system. The speed-up obtained 
for the various cases is given in Table 3. Since the STL2 board 
has two processors, there is some flexibility in the number of 
actual processors chosen for a parallel run. For example, for a 
four-processor run, one could choose (i) one processor from 
each of the four boards or (ii) two processors each from two 
boards. There are differences in the run times and conse- 
quently the speed-up between the two combinations. For 
case (i), each individual process has the complete re- 
sources of the board and the communication is through the 
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FloSwitch. For case (ii), the communication between proc- 
essors on the same board is fast as shared memory on the 
same board is used, but there are other overheads since 
common resources are used. 

Figure 3. Eight-processor Flosolver system. 
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Figure 4. Speed-up of multigrid code on Flosolver. 
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The graph of speed-up versus the number of processors 
(Figure 4) clearly shows that there is significant superlinear 
speed-up beyond four processors. On eight processors, we get 
a speed-up of 11, i.e. a superlinear speed-up of 37.5%. For 
comparison with superlinear speed-ups reported on similar 
problems in the literame, Stiller ef a!.' obtained a speed-up 
of 140 on 120 processors (15% superlinearity). It should he 
noted though that the problem size also determines when 
the maximum speed-up is obtained. A general trend is that 
the number of processors at which the maximum speed-up 
is obtained increases with the problem size. 

Possible explanation of superlinear speed-up 

There are many possible reasons for the superlinear speed- 
up achieved. Both the hardware architecture and the parallel 
algorithm are likely to play a role. A preliminary study 
suggests that due to the manner of parallelization, the number 
of iterations needed for convergence in the suh-domains 
decreases on increasing the number of processors. The aver- 
age number of iterations for the different grids is shown 
in Table 4. The average was taken over the number of proces- 
sors and the total number of time steps. One can see that the 
average number of iterations comes down on increasing 
the number of processors which would result in a decrease 
in the total amount of work done when more processors 
are used, and this contributes to the enhanced speed-up. The 
gain from this is around 1.297 for eight processors. It is 
generally argued that in principle, appropriate changes 
can he made to the sequential algorithm to realize a similar 
gain and this should he the base for calculating speed-up. 
However, it should be noted that the manner of parallelization 
is important in this case. In practice, making the necessary 
changes in the -sequential algorithm is not easy or even 
obvious for complex CFD codes. 

The hardware contribution to the superlinearity is likely to 
be because of both the efficiency of communication and cache 
effects. The cache effects come into play when the size of 
the suh-domain becomes small and the variables accessed 
frequently fit into the cache. The speed-up on eight proces- 
sors which can he attributed to cache effects is around 8.481 

Table 4. Average number of iterations for conver- 
gence of the Poisson solver for different grids as a 
function of the number of processors. The average is 
t&en over all time steps and all processors. Fractional 
values are obtained for some parallel runs because the 

number of iterations differs on different processors 

Grid Sequential 2 PEs 4PEs  8 PEs 
~~ 

1 7 7.000 7.000 6.000 
2 5 4500 2750 1.876 
3 4 3.500 2.250 1.625 
4 3 2.500 1.750 1.375 
5 3 3.000 1.500 1.125 
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(1 U1.297). This is also greater than the number of proces- 
sors. A more detailed analysis into the role of various effects 
is required. Investigations are currently being done and 
the results will be reported later. 

Conclusion 

Scalability is an important issue in parallel computing 
and for most problems, enormous effort goes into making a 
code come close to achieving linear speed-ups; a superlinear 
speed-up is extremely rare. Improvements in the machine 
architecture and use of better parallel algorithms have con- 
tributed to superlinear speed-ups on the multigrid problem, 
which was previously considered difficult to parallelize 
efficiently. The amount of parallel superlinear speed-up 
achieved (37.5%) is also, we believe, higher than what has 
been achieved elsewhere for this class of problems. 
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