
RESEARCH ARTICLES ___

Super-linear speed-up of a parallel multigrid
Navier-Stokes solver on Flosolver

T. N. Venkatesh"*, V. R. Sarasamma', Rajalakshmyl S., Kirti Chandra Sahu'
and Rama Govindarajan'
'Flosolver Unit, National Aerospace Laboratories, PB 1779, Bangalore 560 017, India
'Engineering Mechanics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, J&hr , Bangalore 560 064, India

-~ ~

In parallel computing, scalability h an important issue and
getting linear speed-ups is diflicult for most codes. Super-
linear speed-up has been achieved on an eight-proressor
Flosolver system for a multigrid Navier-Stokes code.
The physical problem solved, the parallelization method,
the speed-ups obtained and possible explanations for this
result are discussed here.

PARALLEL computers are used nowadays for all non-trivial
Computational Fluid Dynamics (CFD) calculations. The need
for large computations makes parallel computers necessary.
Also, since a majority of CFD codes use finite difference or
finite volume methods, the domain decomposition technique
can be used for parallelization, which results in good parallel
efficiencies. Other codes that use spectral techniques where
global communication is required m !mown to have moderate
to poor scalability. The multigrid technique which is used
to accelerate the convergence of Poisson solvers is generally
considered to hamper parallel efficiency due to its global
dependencies". The most commonly used metric to m a w
scalability is the speed-up, which is defined as the ratio of
the time taken by the sequential code to that of the parallel
code. Speed-up is a function of the number of processors
used. Parallel efficiency is defined as speed-up divided by
the number of processors and in general, falls off as the num-
her of processors increases.

At the Flosolver laboratory, we have achieved a super-
linear speed-up of 1 I on an eight-processor system using the
FloSwitch3 for communication on a multigrid laminar Navier-
Stokes code written at the Jawaharlal Nehru Centre for
Advanced Scientific Research, Bangalore. Recently, Dresden'
reported a speed-up of nearly 140 with a 120-processor
system on a finite element Navia-Stokes code. Here we
document briefly the Flosolver experience.

not vary downstream. The aim of the code DIVPIPElS is
to obtain flow profiles for spatially developing separated
flows, where analytical solutions are not possible. The
emphasis is on obtaining accurately the regions of separa-
tion, and the flow within and beyond such regions. The
Navier-Stokes equations in the vorticity and streamfimc-
tion formulation have been solved using the full-multigrid
algorithm (FMG) by the finite difference technique. It is
found that the convergence in the FMG is about a hundred
times faster than with a single grid, when using 128 x 128
grid points.

The geomehy (shown in Figure I) consists of a pipe
which i s parallel at the entry, followed by a divergent sec-
tion, which in turn is followed by a much longer straight
exit section. In the present case, the divergent section starts
at x = 9.375 and ends at x = 16 with a 5" angle of divergence.
The length of the pipe L = 120. All lengths are scaled by
the radius R at the inlet. A long parallel exit section is
necessary, because we prescribe the Neumann boundary
condition (a/& = 0) at the exit, which is found to he valid
only far downstream. For the present case, at a Reynolds
number of Re = 400 based on the inlet velocity and length
scale, the Neumann condition is found to he valid only
beyond x - 98. For this reason, even a laminar flow com-
putation is extremely time-consuming, and a full multi-
grid algorithm is necessary. A sample steady-state result
of an axisymmetric separated flow with reattachment for
a divergent pipe is presented here.

The governing equations are

a m 1
J t Re
- +(u.q)w = - V b ,

w. (2) 0 = -v2

These are non-dimensional equations with Re = URIv, where
U is the centreline velocity at the inlet, v is the kinematic

w is the streamfunction, w is the vorticity vec-
tor, and u is the velocity vector. The solution is facilitated

Description of the Problem and comPutational
algorithm

by a transformation of coordinates given by
The instability of spatially developing laminar flows, such
as those through convergingidiverging channels and pipes,
is often fundamentally different from that of flows which do

Y = 7 =-
f (x) '

*For correspondence. (e-mail: t"v@flosolver.nal.res.in) wherefix) is a function describing the boundary.

CURRENT SCIENCE, VOL. 88, NO. 4,25 FEBRUARY 2005 589

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by National Aerospace Laboratories Institutional Repository

https://core.ac.uk/display/11873884?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

RESEARCH ARTICLES

b

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

I t l l l t l l l l l I l l I I
. ._ _. _ _. ._ -. . . .- r

Figure 1. Schematic diagram of axisymmetnc divergent pipe. (a) Physical domain and (b) computational domain.

Solution method

The boundary conditions at the centreline are v= 0; m= 0;
v = 0 and u is a maximum; the last condition implying that
Iy is linear at the centreline. No-slip and impermeable bound-
ary conditions have been used at the wall. The functional
forms of the streamfunction at the centreline and the VOT-

ticity at the wall are prescribed by employing fictitious points
outside the domain. At the inlet, a parabolic velocity profile is
prescribed, while at the outlet the Neumann boundary
condition (av/aC= O p 6 is used, as mentioned earlier.

After setting up the initial and boundary conditions for the
flow parameters, the vorticity at the new time step is calcu-
lated from eq. (1). Any standard time marching method may
be used for this purpose. Then, using the vorticity at the new
time step, stream-functions are computed from the Poisson
(eq. (2)). This is the most time-consuming part in the pro-
gram. If this kind of spatially developing flow is to be solved
within realistic time-frames (a few days for each case), a
convergence acceleration technique is essential. The multigrid
technique (see later in the article) increases convergence
rates by a large factor', and has been used here. In our case
we find the speed-up to be a factor of hundred. Finally,
the velocity components are calculated from the computed
streamfunction. For a steady-state problem, these steps are
repeated till the vorticity residual (%=ZIX;~/+ 0;; 1)
reduces to a value below a prescribed limit (= lo-'' in our
case).

The multigrid method' provides algorithms which can he
used to accelerate the rate of convergence of iterative meth-
ods, such as Jacobi or Gauss-Seidel, for solving elliptic
partial differential equations. Iterative methods start with
an approximate guess for the solution to the differential equa-
tion. The difference between the approximate solution and
the exact solution is made smaller at every iteration. Algo-
rithms like Jacohi or GaussSeidel are local because the new
value for the solution at any lattice site depends only on the
value of the previous iterate at neighbouring points. Such
local algorithms are generally only efficient in reducing short-

590

wavelength error components. In general, the error will be
made up of components of many different wavelengths. The
basic idea behind multigrid methods is to reduce long-
wavelength error components by updating blocks of grid
points. A six-level multigrid technique with simple V-cycle
algorithm was used in the present case.

Sample result

The variation of streamwise velocity profiles for the pipe at
different locations in the downstream is given in Figure
2a . It can he seen that the flow separates at x = 15.9 and
reattaches at x - 18.3, giving x independent parabolic profiles
after x = 98.4. The corresponding normal velocity profiles
are shown in Figure 2 b. These calculations were performed
sequentially on a PC with Pentium N processor at 2 GHz.
The total runtime for convergence up to 1 x lo-'' was
around 26 h.

Eight-processor Flosolver system

The eight-processor Flosolver system (Figure 3) consists of
four Intel STL2 hoards linked by the NAL FloSwitch. Each
board has two Intel Pentium I11 processors with a clock speed
of 1 GHz and 2 GB of shared RAM. The operating system on
the nodes is Linux. The communication libraries include
CCX', a small hut efficient message-passing library and an in-
house implementation of a subset of the MPI library.

Parallelization

The fmt step involved time-profiling of the sequential code.
The time breakup is shown in Table 1. As can he seen
from Table 1 , a major portion of the computation time is
taken by the Poisson solver. Break-up of computational
time among the various subroutines in the Poisson solver
is shown in Table 2. Here, the relaxation routines take around
75% of the time.

CURRENT SCIENCE, VOL. 88, NO. 4,25 FEBRUARY 2005

RESEARCH ARTICLES

0.8

Figure 2.
profiles at different downstream locations.

Flow in an axisymmetric divergent pipe, Re = 400 and angle of divergence = 5'. (I, Streamwise velocity profiles. b, Normal velocity

Table 1. B d p ofcomputational time among
various subroutines of the code

Subroutine Percentaxe time

Vorticity (w) update 0.42
Poisson solver 99.35
Velocity calculation 0.06
Iteration loop 99.83
Miscellaneous 0.17
Total 100.00

Table 2. Break-up of computational time of
various subroutines in the Poisson solver

Subroutine Percentage time

Relax (downleg) 38.37
Relax (upleg) 36.93
Residue calculation 10.37
Restriction 11.23
Prolongation 2.35
Miscellaneous 0.75
Poisson solver 100.00

Table 3. Soeed-uo obtained on Flosolver for DIVPIPEIP

Number of PEs Boards PEs per board Speed-up

I
2

I I 1.00
2 I 2.12
1 2 1.61
4 1 4.24

4 2 2 3.59
8 4 2 11.05

For parallelization, the domain decomposition technique
was used. In the first stage, the subroutines of the Poisson
solver were parallelized. Here the communication of stream-
function values at the boundaries of the subdomains is re-

CURRENT SCIENCE, VOL. 88, NO. 4 ,25 FEBRUARY 2005

quired. In the next stage, the velocity calculation and the
vorticity update calculations were also parallelized. Even
though these routines constitute a small fraction of the compu-
tation, their parallelization is important, since the communica-
tion of the streamfunction values is reduced and also the
overall scalability improves.

There are issues to he addressed while parallelizing multi-
grid computations. Initially, we followed the full multigrid
approximation, i.e. boundary information was communicated
among the processors at all grid levels, so that the
computation at each iteration step was identical to that of
a sequential run. This is, however, not essential as there
is a convergence criterion enforced at each level. In the
next approach, the coarser grid calculations were done
without passing the boundaq data and communication was
restricted to the finest grid. This has much lower message
passing overhead, but could take a higher number of
iterations to converge, as experienced by Alonso ef al.'.
In the present computations, there was no increase and in
some cases (for eight processors) the number of iterations
decreased. Consequently, the overall speed-up was much
better than in the first approach.

Results

The parallel code DIVPIPEIP was run on up to eight proc-
essors on the Flosolver Mk 6 system. The speed-up obtained
for the various cases is given in Table 3. Since the STL2 board
has two processors, there is some flexibility in the number of
actual processors chosen for a parallel run. For example, for a
four-processor run, one could choose (i) one processor from
each of the four boards or (ii) two processors each from two
boards. There are differences in the run times and conse-
quently the speed-up between the two combinations. For
case (i), each individual process has the complete re-
sources of the board and the communication is through the

591

RESEARCH ARTICLES

FloSwitch. For case (ii), the communication between proc-
essors on the same board is fast as shared memory on the
same board is used, but there are other overheads since
common resources are used.

Figure 3. Eight-processor Flosolver system.

u"ew

9 -

7 -

5 -

Nunber of pmcessors

Figure 4. Speed-up of multigrid code on Flosolver.

592

The graph of speed-up versus the number of processors
(Figure 4) clearly shows that there is significant superlinear
speed-up beyond four processors. On eight processors, we get
a speed-up of 11, i.e. a superlinear speed-up of 37.5%. For
comparison with superlinear speed-ups reported on similar
problems in the literame, Stiller ef a!.' obtained a speed-up
of 140 on 120 processors (15% superlinearity). It should he
noted though that the problem size also determines when
the maximum speed-up is obtained. A general trend is that
the number of processors at which the maximum speed-up
is obtained increases with the problem size.

Possible explanation of superlinear speed-up

There are many possible reasons for the superlinear speed-
up achieved. Both the hardware architecture and the parallel
algorithm are likely to play a role. A preliminary study
suggests that due to the manner of parallelization, the number
of iterations needed for convergence in the suh-domains
decreases on increasing the number of processors. The aver-
age number of iterations for the different grids is shown
in Table 4. The average was taken over the number of proces-
sors and the total number of time steps. One can see that the
average number of iterations comes down on increasing
the number of processors which would result in a decrease
in the total amount of work done when more processors
are used, and this contributes to the enhanced speed-up. The
gain from this is around 1.297 for eight processors. It is
generally argued that in principle, appropriate changes
can he made to the sequential algorithm to realize a similar
gain and this should he the base for calculating speed-up.
However, it should be noted that the manner of parallelization
is important in this case. In practice, making the necessary
changes in the -sequential algorithm is not easy or even
obvious for complex CFD codes.

The hardware contribution to the superlinearity is likely to
be because of both the efficiency of communication and cache
effects. The cache effects come into play when the size of
the suh-domain becomes small and the variables accessed
frequently fit into the cache. The speed-up on eight proces-
sors which can he attributed to cache effects is around 8.481

Table 4. Average number of iterations for conver-
gence of the Poisson solver for different grids as a
function of the number of processors. The average is
t&en over all time steps and all processors. Fractional
values are obtained for some parallel runs because the

number of iterations differs on different processors

Grid Sequential 2 PEs 4PEs 8 PEs
~~

1 7 7.000 7.000 6.000
2 5 4500 2750 1.876
3 4 3.500 2.250 1.625
4 3 2.500 1.750 1.375
5 3 3.000 1.500 1.125

CURRENT SCIENCE, VOL. 88, NO. 4,25 FEBRUARY 2005

RESEARCH ARTICLES

(1 U1.297). This is also greater than the number of proces-
sors. A more detailed analysis into the role of various effects
is required. Investigations are currently being done and
the results will be reported later.

Conclusion

Scalability is an important issue in parallel computing
and for most problems, enormous effort goes into making a
code come close to achieving linear speed-ups; a superlinear
speed-up is extremely rare. Improvements in the machine
architecture and use of better parallel algorithms have con-
tributed to superlinear speed-ups on the multigrid problem,
which was previously considered difficult to parallelize
efficiently. The amount of parallel superlinear speed-up
achieved (37.5%) is also, we believe, higher than what has
been achieved elsewhere for this class of problems.

1. Alonso, 1. J., Mitly, T. I., Martinelli, L. and lameson, A,, Porollel
Compulolionol Fluid Dynamics: New Algorithms ond Applicollons
(eds Satofuka, N., Periaux, 1. and Ecer, A.), Proceedings of Parallel
CFD ‘94, Kyoto, May 1994, Elsevier, 1995.

2. Tai,C.H. andZhao,Y.,J Compul. Phys.,2003, 192,277-311.
3. Venkatesh, T. N., Nanjundiah, R. S. and Sinha, U. N., Developmen18

in Terrocomputing, Proceedings of the Ninth ECMWF Workshop OD
the Use of High Performance Computing in Meteorology, Reading,
England November 2000, World Scientific, 2001.

4. Stiller, I., Frana, K., Grundmann, R., Fladrich, U. and Nagel, W. E.,
SFB-Preprint SFB609-05-2004.

5 . Fletcher, C. A. I., Computotionnl Techniques for Fluid Dynomirr,
Springer, Heidelherg, 1991, vol. 1,Zndedn.

6 . Fletcher, C. A. I., Compulolionnl Techniques for Fluid Dynamics,
Springer, Heidelberg, 1991, YO]. 11, 2nd edn.

7. Sahu, K. C., Numerical computations of spatially developing flow
by full multigrid technique, MS thesis, JNCASR, Bangalore, 2003.

8. Sinha, U. N., Deshpande, M. D. and Sarasamma, V. R., Supercomputer,
1989, 6,4.

ACKNOWLEDGEMENTS. This work was undertaken with funding
from the Defence R&D Organization, Government of India. We thank
Dr V. Siddattha for encouragement and Dr U. N. Sinha, NAL, Bangalore
for support Prof. R. Narasimha’s comments during the eoum of the pro-
ject proved helpful. Thanks are due to Pmf. S. P. Vanka for advice on mul-
tigrid techniques.

Received 9 July 2004; revised accepted 26 November 2004

CURRENT SCIENCE. VOL. 88, NO. 4,25 FEBRUARY 2005 593

