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on signal decomposition and modi$ed group delay
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Abstract

An autoregressive modeling of the Wigner–Ville distribution (WVD), based on signal decomposition (SD) by a perfect
reconstruction $lter bank (PRFB) and the modi$ed magnitude group delay function (MMGD), has been proposed. The SD
and MMGD, respectively, reduce the existence of crossterms (without any time smoothing) and the Gibb’s ripple e7ect (due
to truncation of the WVD kernel, without applying any window), signi$cantly. In view of this, the modeling is not a7ected
by either the crossterms or the Gibb’s ripple and the window that would have been used. The proposed method represents
actual time–frequency information parsimoniously and compared to the existing WVD modeling methods, its performance is
signi$cantly better in terms of both time and frequency resolution (as there is no time and frequency smoothing) and noise
immunity/variance and is computationally e:cient.
? 2003 Elsevier B.V. All rights reserved.

Keywords: Wigner–Ville distribution; Group delay functions; Signal decomposition by perfect reconstruction $lter bank and
autoregressive modeling

1. Introduction

The Wigner–Ville distribution (WVD) was intro-
duced as a time frequency representation (TFR) for
processing the nonstationary signals and to alleviate
the tradeo7 between time localization and frequency
resolution, found in the short-time Fourier trans-
form. The WVD, at any time instant, is the Fourier
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transform (FT) of the instantaneous autocorrelation
(IACR) sequence (WVD kernel) of in$nite lag length
and hence theoretically, it has in$nite resolution both,
in time and frequency [1]. However, practically, it is
the pseudo WVD (PWVD) that is computed which
considers IACR only for a $nite number of lags. In
the PWVD, to overcome the abrupt truncation ef-
fect, the IACR is weighted by a window function
and for a given lag length, this deteriorates the
frequency resolution. The WVD being quadratic in
nature, introduces crossterms for a multi-component
signal. The crossterm makes the interpretation of the
WVD di:cult and the crossterms can be reduced by
time smoothing, only at the cost of time resolution.
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In the last two decades, e7orts have been made to:
suppress crossterms e7ectively, improve the frequency
resolution and to maintain the desired TFR properties
[3]. In Choi–William’s distribution, there is a trade-
o7 between crossterm suppression and the frequency
resolution. In the cone–kernel [18], the crossterm sup-
pression and the frequency resolution are achieved
without much importance for the TFR properties. The
reduced interference kernel [3] is an improved version
of Choi–Williams distribution.
In the PWVD, the frequency resolution is deter-

mined by the lag length considered and the type of
the window applied and the time resolution by the
degree of time smoothing used, in suppressing the
crossterms. Further, TFR by itself involves large
amount of data/storage. Hence, it is very much es-
sential: to improve the frequency and time resolu-
tion and make the TFR representation e:cient. The
parametric modeling of the WVD provides, even
for few autocorrelation lags, signi$cantly improved
frequency resolution and e:cient representation. In
the parametric modeling of the WVD so far con-
sidered [11,15,16], at each time instant, the IACR
is autoregressively modeled. The WVD is supposed
to represent the power spectrum of the data at each
sample instant, however, as the starting point is the
WVD kernel, there are attempts to model the kernel
than the data and due to the product operation on the
signal, the model order required is twice that for the
data. Modeling the WVD information was attempted
by considering a real WVD kernel [11] obtained by
using an input signal sampled at twice the Nyquist
sampling rate and for modeling, the kernel is treated
as the data. As a symmetrical sequence cannot be
generated by an AR process and the WVD kernel
being symmetric, modeling WVD information is a
problem. This problem has been solved by either
modeling the spectrally equivalent nonsymmetrical
kernel (SEFKM) [15] or modeling the half kernel
(HKM) [16]. In the former, the time smoothed WVD
kernel is converted to a spectrally equivalent non-
symmetrical real kernel by associating a phase to the
magnitude spectrum and the phase is derived from
WVD using the real Hilbert transform. To overcome
the phase errors due to the Gibb’s ripple associated
with the WVD, the windowing has been used [15].
Further, for modeling purpose, this real kernel is con-
verted to an analytic one as the order gets halved,

for complex signals. In the HKM approach [16], for
modeling, the smoothed autocorrelation kernel only
for positive lags is treated as an AR process and the
negative half is considered as redundant. Since the
half kernel is complex, the model order required is
also half of that of the real one. However, the use
of half kernel, models the analytic spectrum of the
desired spectrum [2]. In these modeling methods, the
residual crossterms after smoothing may a7ect the
model order and the modeled spectrum.
The use of unsmoothed WVD information for mod-

eling, introduces strong spectral peaks corresponding
to crossterms and necessitates the use of good degree
of time smoothing which however, deteriorates the
time resolution of the TFR. Also, as pointed out, win-
dowing the IACR is essential to overcome the phase
errors, in deriving the unsymmetrical kernel of equiv-
alent spectral magnitude [15] prior to modeling and
this windowing will certainly a7ect the frequency res-
olution of the modeled spectrum.
Recently, WVD which uses signal decomposition

(SD) realized by a perfect reconstruction $lter bank
(PRFB) to reduce the existence of cross terms [13], the
modi$ed magnitude group delay (MMGD) [8,17] to
remove: the ringing e7ect of the instantaneous power
spectrum [5] and the Gibb’s ripple for the WVD [7],
without using any window function; have been pro-
posed. In the SD, the IACR of the component sig-
nals are computed separately and then added to get
the IACR of the original signal and this will avoid the
interaction between the components. The truncation
e7ect/ringing manifests as zeros close to the unit cir-
cle and the MMGD [17] removes these zeros without
disturbing the signal poles and hence overcomes the
Gibb’s ripple/ringing, preserving the frequency reso-
lution of the rectangular window. Also they provide
additional noise immunity as the SD removes possi-
ble interaction terms between noise components and
the MMGD removes the zeros due to noise which are
close to unit circle, in addition to removing the zeros
due to truncation. Also WVD which uses both, SD to
remove crossterm and MMGD to remove Gibb’s rip-
ple, has been explored [6,9].
In this paper, an autoregressive modeling of the

WVD spectral information which is signi$cantly free
from: crossterms without time smoothing due to use
of signal decomposition by perfect reconstruction
$lterbank and Gibb’s ripple without any windowing
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due to use of the modi$ed magnitude group delay,
has been proposed. The modeling is not a7ected by
either the crossterms or the Gibb’s ripple and the
window that would have been used. The proposed
method, represents actual time–frequency information
parsimoniously and compared to the existing WVD
modeling methods, its performance is signi$cantly
better in terms of: both time and frequency resolution
and noise immunity/variance and is computationally
e:cient.

2. Wigner–Ville distribution (WVD) [1]

For a signal x(t), the WVD is de$ned as

Wx(t; !) =
∫ ∞

−∞
x(t + �=2)x∗(t − �=2)e−j!� d�; (1)

where r(�) = [x(t + �=2)x∗(t − �=2)] is the instan-
taneous autocorrelation function and ∗ indicates
conjugate operation. For computational purposes, it
is necessary to weigh the signal by a window before
evaluating the WVD and this window slides along the
time axis with time instant t, where the WVD has to
be evaluated. For a window function, h(t); h(t) = 0
for |t|¿T=2, the WVD of the windowed signal is

PWx(t; !) =
1
2�

∫ ∞

−∞
Wx(t; )Wh(t; !− ) d; (2)

where Wh(t; !) is the WVD of the window function.
This WVD of the windowed signal is called pseudo
Wigner–Ville distribution (PWVD), PWx(t; !). The
e7ect of the window is to smear the WVD along the
frequency axis. For a real symmetrical window,

PWx(t; !) =
∫ ∞

−∞
[x(t + �=2)x∗(t − �=2)]

×h2(�=2)e−j!� d�: (3)

E7ectively, the PWVD is the FT of the windowed
function [x(t + �=2)x∗(t − �=2)], the window being
h2(�=2). The window eats away the correlation func-
tion at higher lags, which results in poor spectral
resolution.
The quadratic operation on the signal, causes the

WVD to be a bilinear transformation. For a composite
signal with two components, x(t) = x1(t) + x2(t) and

for x1(t) = e j(!1t+�1) and x2(t) = e j(!2t+�2),

Wx(t; !) = 2�
[
�(!− !1) + �(!− !2)

+ 2�
(
!− !1 + !2

2

)
cos{(!1 − !2)t

+(�1 − �2)}
]
:

The third term is the crossterm due to interference
between the two components. The crossterm appears
midway between two components of the signal. Its
amplitude is proportional to product of the two com-
ponents’ amplitudes and it oscillates in time, at a
frequency equal to the frequency separation between
them. The presence of the crossterm poses a major
problem in the interpretation of the WVD of a multi-
component signal. As the crossterm oscillates in time,
smoothing the WVD in time, attenuates the crossterms
and enables a meaningful representation of the signal
components, but only at the cost of time resolution.

3. Autoregressive modeling of the WVD [11,15,16]

In the PWVD, the frequency resolution is limited by
the lag length considered and the type of the window
applied and the TFR by itself involves large amount
of data/storage, hence it may be required to improve
the frequency resolution beyond the limit provided by
the rectangular window and also make the TFR e:-
cient. The parametric modeling of the WVD provides
signi$cantly improved frequency resolution even
for the autocorrelation with few lags and e:cient
representation.

3.1. Autoregressive modeling

A model o7ers insight into the structure of the pro-
cess, such as the number of resonances, and produces
a high-resolution spectral estimate in a compact form
by a few parameters. A signal x(n) can be represented
by a linear predictive AR model as

x(n) = e(n)−
p∑
i=1

api x(n− i); (4)

where p is the order of the model, api are the AR
coe:cients and e(n) is error and is supposed to be
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white if the order is su:cient. The power spectral
density Sx(!) of the signal x(n) is given by

Sx(!) =
�p

|1 +∑p
i=1 a

p
i e−ji!|2 ; (5)

where �p = Se(!), the power spectral density of the
error e(n).
Various methods for extracting the model param-

eters which are in practice with their relative merits
are [4]: autocorrelation or Yule–Walker method, Burg
method, covariance method and modi$ed covariance
method.

3.2. Spectrally equivalent full kernel modeling of
WVD (SEFKM) [15]

The WVD is real due to the complex symmetry of
its kernel. Therefore, the WVD can be interpreted as
the magnitude of a spectrum, whose phase is unknown.
By associating a phase to this magnitude,

NWx(n; !) =Wx(n; !)e j arg[ NWx(n;!)] (6)

a nonsymmetrical kernel can be obtained by inverse
Fourier transformation of NWx(n; !), and modeled as
an AR process. The phase to be associated can be
obtained from

arg[ NWx(n; !)] = HT[log(Wx(n; !))]; (7)

where HT stands for Hilbert transform.
In [15], the phase to be associated has been obtained

from HT for real signals. However, the WVD does
not have the symmetry of a real signal as it is the FT
of a conjugate symmetric sequence. In view of this, at
each instant of time, a symmetric magnitude spectrum
valid for a real signal is derived from the WVD and
the phase to be associated is found using the HT for
real signals as below,

arg[ NWx(n; !)] = HT[log(Wx(n; !))]:

By associating a phase to this magnitude as

NWx(n; !) =Wx(n; !)e j arg[ NWx(n;!)];

the spectrally equivalent nonsymmetrical kernel is ob-
tained by the inverse transformation of NWx(n; !). For
logarithmic operation, Wx(n; !) should be positive.
However, due to crossterms and truncation e7ects,
Wx(n; !) may be negative and these are replaced by
small positive values and may result in higher model

order. Smoothing the WVD in time results in atten-
uation of crossterms and meaningful modeling. Win-
dowing the IACR improves the accuracy of the phase
reconstruction by reducing Gibb’s e7ect due to large
sidelobes of the inevitable rectangular window [15].
The nonsymmetric kernel obtained using the real

HT is real. Since the modeling a complex nonsym-
metric kernel results in a reduction in the model or-
der by a factor of two, the real kernel is converted to
a complex analytic signal. The kernel modeling has
been done by modi$ed covariance method.
In this method, the windowing of the WVD kernel

for Gibb’s ripple reduction to get accurate phase, time
smoothing to overcome crossterm e7ect result in the
deterioration in frequency and time resolution, respec-
tively. Furthermore, the use of real HT three times
(getting the analytic signal for WVD, to get the real
nonsymmetric kernel in getting the phase and convert-
ing the real nonsymmetric kernel to a complex one)
increases the computational load.

3.3. Half kernel modeling of WVD (HKM) [16]

In overcoming the drawbacks of the SEFKM and
speci$cally, to take advantage of modeling the com-
plex kernel which reduces model order by a factor of
two, the half kernel was introduced. As a symmetric
kernel cannot be modeled, this approach avoids po-
tential symmetry problems by considering only half
of the complex WVD kernel, i.e., for positive lags and
neglecting the other half for negative lags, as redun-
dant [16].
Modeling only half of the complex WVD kernel is

given by

r(n; k) = e(k)−
p∑
i=1

air(n; k − i); (8)

where k varies between 0 and L, instead of−L to L; p
is the order of the AR model, ai’s are the coe:cients
of the AR model, and e(k) is the error.
As compared to SEFKM, since the half kernel

which is complex is directly modeled, it is computa-
tionally e:cient and as the kernel windowing is not
involved, its frequency resolution is better.
Here also, to avoid crossterm e7ects time smooth-

ing WVD kernel is required and this reduces the time
resolution.
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The spectrum obtained by modeling the half kernel
sequence is the analytic spectrum [2] of the full kernel
sequence. That is,

[E(n; !)]2 =
∣∣ 1
2 (Wx(n; !) + j NWx(n; !))

∣∣2 ;
where NWx(n; !) is the Hilbert transform of Wx(n; !)
and Wx(n; !) is the smoothed Wigner–Ville distribu-
tion. Thus, the half kernel does not model the desired
time varying WVD spectrum.
Due to the large dynamic range of the spectra,

the envelope E(n; !) strongly enhances the highest
power frequency bands with respect to Wx(n; !).
Consequently, the noise components lying outside the
enhanced frequency bands are largely attenuated in
E(n; !) with respect to Wx(n; !), and thus, E(n; !) is
more robust to broadband noise than Wx(n; !).

4. The improved WVD (IWVD)

The multicomponent signal is decomposed into its
components by perfect reconstruction $lter bank and
the IACR of the individual components are computed
and added to get the IACR of the original signal. Fur-
ther, this IACR signi$cantly free from crossterms, is
subjected to MMGD for removing the Gibb’s ripple,
without applying any window function.

4.1. Signal decomposition by perfect reconstruction
=lter bank [13]

The impulse response of the sub$lters of a uniform
$lter bank are obtained by complex modulation of a
low-pass $lter and is given by

hi(n) = h(n)e j!in; (9)

where

h(n) =
1
M

sin(n�=M)
n�=M

and

!i = 2�(i − 1)=M; i = 1; �;M;

h(n) is the impulse response of a prototype low-pass
$lter and M is the number of sub$lters. Thus, the
transfer function of the sub$lters is

Hi(!) = H (!− !i); i = 1; �;M:

The output from the ith sub$lter is

zi(n) = x(n)⊗ hi(n); ⊗: convolution:

The complex signal zi(n) becomes analytic, pro-
vided the Fourier transform of zi(n), Zi(!) = 0 for
!¡ 0. This will occur for all sub$lters if H (!) = 0
for |!|¿�=M . To achieve this, the real input x(n) to
the $lter bank is band-limited to the frequency inter-
val {�=M; �−�=M} [13]. Thus, the spectrum of x(n)
is covered by the sub$lters indexed i = 2; �;M=2.
For a perfect reconstruction, h(n) should satisfy,

h(0) = 1=M;

h(mM) = 0; ∀m 	= 0; (10)

which, in the frequency domain, corresponds to
M∑
i=1

|H (!− !i)|= 1; 06!6 2�: (11)

To reduce the occurrence of crossterms due to the
quadratic nature of theWVD, the multicomponent sig-
nal is decomposed into its components using the PRFB
discussed, and the individual IACRs of these compo-
nents are computed and then added to get the complete
IACR of the original signal [13]. The IACR of the
original signal r(n; k) at nth instant and for lag k is,

r(n; k) =
M=2∑
i=2

ri(n; k) (12)

ri(n; k) is the IACR of the ith component of the signal.
In the PRFB, if the signal is con$ned to the fre-

quency interval {�=M; � − �=M}, the $lter bank di-
rectly generates the required analytic signal for the
WVD and the computation of the Hilbert transform of
the signal is avoided. Since the $lterbank is a perfect
reconstruction one, the signal decomposition prior to
computation of the WVD kernel does not introduce
any errors in the performance of the WVD.

4.2. Modi=ed magnitude group delay (MMGD)
and the WVD [5–7,17]

If x(n) is a minimum phase complex signal,

ln |X (!)|=
∞∑
n=0

[cR(n) cos!n+ cI(n) sin!n]; (13)

$(!) =
∞∑
n=0

[− cR(n) sin!n+ cI(n) cos!n]; (14)

$(!) is the unwrapped phase and c(n)=cR(n)+jcI(n)
are cepstral coe:cients. R and I refer to the real and
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imaginary parts. For a minimum phase signal, the
log-magnitude spectrum and the phase are related by
a single set of cepstral coe:cients. The GD �m(!) is
given by

�m(!) =
−@$(!)
@!

=
∞∑
n=0

ncR(n) cos!n+ ncI(n) sin!n

= (12)FT[nc(n)− nc∗(−n)]: (15)

If nc(n) is conjugate symmetric, �m(!) is the
Fourier transform of nc(n). Since c(n) sequence is
derived from the magnitude, �m(!) is called as the
magnitude GD for a complex signal (MGD).
In spectral estimation, the goal of achieving a lower

variance and a high resolution is to capture a consistent
spectral envelope and discard the $ne structure with-
out a7ecting the former. The $ne structure/variance
is due to: signal truncation e7ect or associated white
noise or due to input white noise that drives a system
in generating the signal or any of these combinations.
These introduce zeros close to the unit circle and it is
these zeros which manifest as spikes, in the GD, con-
tribute signi$cantly to the $ne structure of the spec-
trum and their e7ect cannot be removed by normal
smoothing without the loss of frequency resolution.
The periodogram has good frequency resolution, low
bias and good signal detectability even at high noise
levels, but its variance is large. For a given length of
data, averaging of the periodogram or windowed peri-
odogram, or smoothed GD, results in a reduced vari-
ance but only at the expense of frequency resolution.
The modi$cation suggested in [17] removes these ze-
ros close to the unit circle and hence the spikes e7ec-
tively, without disturbing the signal/system poles, i.e.,
without sacri$cing the frequency resolution.
The modi$cation basically considers the signal to be

characterized by, a transfer function having only the
denominator polynomial, generally known as an all
pole model and in such a case, the input driving noise
to the transfer function or the associated noise with
the signal or the truncation e7ect (zeros) on the signal,
corresponds to the numerator. The undesired e7ect of
the numerator, viz., large variance, is removed by di-
viding the transfer function by the numerator estimate,
without signi$cantly disturbing the denominator. The

GD domain provides a platform to do this operation,
without any singularity problems, as it involves only
multiplication and no division. Whereas, the conven-
tional approach of averaging of the periodogram of
variance reduction, involves data segmentation and or
windowing, not only reduces the variance/e7ect of the
numerator, but also the frequency resolution of the
spectral peaks as it pulls the signal poles towards the
origin in addition to the zeros (which are close to the
unit circle).
If x(n) is a complex signal: generated by an

all-pole system, driven by a white noise or has si-
nusoids with white noise and further, if its spectrum
X (!) = N (!)=D(!), D(!) corresponds to the sys-
tem or sinusoids and N (!) to the excitation or the
associated noise. For this case, the MGD is

�m(!) = �mN (!)− �mD(!)

�mN (!) and �mD(!) are the MGDs for N (!) and
D(!), respectively. Also, �m(!) is given by

�m(!) =
XmR(!)YmR(!) + XmI (!)YmI (!)

|X (!)|2 (16)

Xm(!)=FT[xm(n)], Ym(!)=FT[ym(n)] and ym(n)=
nxm(n); xm(n) is the minimum phase equivalent of
x(n).
Also,

�m(!) =
,N (!)
|N (!)|2 − ,D(!)

|D(!)|2 : (17)

,N (!) and ,D(!) are the numerator of the above Eq.
(16) for �mN (!) and �mD(!), respectively.
The �mN (!) will have large amplitude spikes due

to very small values of |N (!)|2 near the zeros which
are close to unit circle and this is not so with the
�mD(!), as the roots of D(!) are well within the unit
circle. Hence, in �m(!), the e7ect of excitation or
the associated noise masks the system or the signal
component which is assumed to be an all-pole one. The
e7ect of these zeros could be reduced by multiplying
�m(!) by |N (!)|2. Also, as the envelope of |N (!)|2 is
nearly Dat, the signi$cant features of �mD(!) continue
to exist, with the |N (!)|2 Ductuations superimposed
on it. Hence, the modi$ed MGD (MMGD) �mo(!), is

�mo(!) = �m(!)|N (!)|2: (18)
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The estimate of |N (!)|2,
|Ñ (!)|2 = |X (!)|2=| NX (!)|2;
| NX (!)|2 is the smoothed power spectrum obtained by
the truncated cepstral sequence.
To remove the Gibb’s ripple of the WVD due to

abrupt truncation of the IACR, without using any
window function, the IACR r(n; k) that is signif-
icantly free from crossterms, will be subjected to
MMGD for a complex signal, since the IACR of a
WVD is complex.
In the MMGD, the numerator estimate is

Ñ (!) =
X (!)
NX (!)

=
[
1 +

P(!)
NX (!)

]
:

Here, P(!) represents the Ductuating part of X (!).
For a signal having a >at spectral characteristic, in
the GD �m(!), the contribution is only due to P(!).
A �mo(!), free from Ductuations, is given by [5,7]

�mo(!) = �m(!)|P(!)|2: (19)

Presently, for the WVD, it is required to remove the
ripple on the Door, which is equivalent to a Dat spec-
tral characteristic. �m(!) is derived from the FT of
the cross term free IACR (using Eqs. (13) and (15)).
Though the FT of IACR represents the instantaneous
power spectral density (PSD), which is supposed to be
a positive quantity at each frequency bin, it may not
be so due to the fact that the PSD gets convolved with
the FT of the rectangular window (whose presence is
inevitable). Since computation of �m(!) involves log-
arithmic operation, it is necessary to ensure that FT of
IACR is positive and this is achieved by raising the
Door level by scaling up the IACR at the zeroth lag
[14], su:ciently and the equivalent magnitude spec-
trum is obtained from positivity ensured PSD. Further,
the linearly weighted cepstral coe:cient sequence is
made conjugate symmetric [8].
At each time instant, the spectrum that is free from

the crossterm, ripple e7ect, and that has a better fre-
quency and time resolution, is obtained from �mo(!)
(Eq. (19)) by retracing the MMGD computation pro-
cedure in the reverse order. Here, the cepstral coe:-
cient sequence derived from �mo(!), has to be made
conjugate symmetric. For each TFR slice obtained by
the MMGD, the original Door level is restored by sub-
tracting the mean value and adding the scaled mean
value.

Since the signal decomposition not only reduces
the interaction between signal components but also
for the noisy components, it avoids crossterms due to
noise and hence has a better noise immunity. Further,
MMGD, not only removes the zeros due to ripple ef-
fect but also those due to noise and hence provides
additional immunity to noise. Hence, the WVD which
is based on signal decomposition and MMGD [6], is
expected to have improved noise immunity.

4.3. Derivation of the kernel from improved WVD
slice for AR modeling

The crossterm and Gibb’s ripple free WVD spec-
trum obtained by the SD and MMGD, respectively,
will be modeled. For modeling purpose, from this
improved WVD spectrum, a nonsymmetric kernel
will be directly derived, using complex Hilbert
transform [12].
Hilbert transform relates the real and imaginary

parts of the FT X (!) of a causal sequence x(n). For
complex sequence x(n),

XR(!) = DFT[sgn(n) IDFT[jXI(!)]] + xR(0) (20)

and

XI(!) =−j DFT[sgn(n) IDFT[XR(!)]] + xI(0): (21)

For length N ,

sgn(n) =




0; n= 0; N=2;

1; 0¡n¡N=2;

−1; N=2¡n¡N:

For a minimum phase sequence x(n), it also relates
the log-magnitude and phase of X (!), i.e., ln |X (!)|
and j$(!) can be related as

ln |X (!)|=DFT[sgn(n) IDFT[j$(!)]] + cR(0) (22)

and

j$(!) = DFT[sgn(n) IDFT[ln |X (!)|]] + cI(0); (23)

where, c(n)= cR(n)+ jcI(n) are the complex cepstral
coe:cients. That is, given a discrete sequence x(n),
the magnitude and phase of its FT X (!) can be ob-
tained from each other. Also, a mixed phase complex
signal can be converted to a minimum phase equiva-
lent complex signal having the same magnitude func-
tion as that of the mixed phase signal, using Eq. (23).
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Similar to the existing methods, by associating a
phase (Eq. (7)) to Wx(n; !) (Eq. (6)), a nonsymmet-
rical spectrally equivalent kernel can be obtained by
taking the inverse FT of NWx(n; !) and can be modeled
as an AR process/signal. However, due to the product
operation on the signal, the order of the model required
is twice that of the actual input data and this can be
avoided by considering the square root of Wx(n; !).
That is,

NWx(n; !) = [Wx(n; !)]1=2e j arg[ NWx(n;!)]: (24)

This results in a nonsymmetrical kernel having spec-
tral magnitude that of the signal and the phase to be
associated can be obtained from

arg[ NWx(n; !)] = HT[log([Wx(n; !)]1=2)]; (25)

where HT is the Hilbert transform for a complex sig-
nal.
Unlike the existing methods [15,16], the proposed

method is not a7ected by crossterms as they will not
exist due to SD realized by PRFB. Since no time
smoothing is required, its time resolution will be
signi$cantly better. The SD not only overcomes the
crossterms due to signal components but also those
due to noise components and hence it improves the
noise immunity of the new WVD. Further, unlike
the SEFKM, in the new method as the Gibb’s rip-
ple is removed by the MMGD without applying any
window, its frequency resolution is better. This is
because, the window aAects the basic WVD auto-
correlation kernel itself and a modeling based on it
cannot provide correct WVD spectral information.
The MMGD provides additional noise immunity as it
removes the zeros close to the unit circle not only due
to Gibb’s ripple but also those due to noise. Further,
the use of HT for a complex signal, in computing the
phase, minimizes the computation. Though the HKM
does not compute the phase and considers only the
WVD kernel for positive lags, it models only the an-
alytic power spectrum rather than the desired power
spectrum of the signal. However, this is not so with
the proposed one. For the existing methods, the order
of the model required may be more than that of the
proposed method, as they model the product signal
rather than the signal itself.

5. Simulation results

The performance of the proposed WVD (IWVD)
for two sets of frequencies is illustrated for sinusoidal
signal with two components, in the presence of noise.
Also, the performance of the proposed method is com-
pared with those of: HKM and SEFKM. In all the
examples, number of lags considered is 33. Further,
discrete Fourier transform of length 128, is used, in all
the cases. The smoothed WVD kernel is achieved by
using a boxcar smoothing of 11-points. In this study,
modi$ed covariance technique [4] which gives sta-
tistically stable spectrum estimates with high resolu-
tion is used and the model order used is four. For the
SEFKM, no window function is used, in the present
study.
For signal decomposition, PRFB consisting of six

sub$lters are used. The prototype low-pass $lter is
designed by window method using Kaiser function
with a smoothing factor of eight and the $lter im-
pulse response being 128. All the other $lters of the
uniform PRFB are derived by complex modulation of
the prototype $lter about the center frequency and are
marginally (or non) overlapping =lters.
In the methods where $lterbank is not employed,

for the WVD, the analytic signal is derived using the
Hilbert transform realised by time domain convolu-
tion. But for the proposed method, analytic signals are
derived by considering outputs of sub$lters indexed
from 2 to M=2, i.e., 2 and 3 only.
For MMGD, $rst 16-cepstral coe:cients are used

in computing the smoothed PSD for the estimation of
|P(!)|2. To avoid the negative spectral values in the
PSD, WVD kernel at zeroth lag has been lifted by a
factor of 100.
The time frequency distribution plot, contour plot

and the frequency histogram are used to bring out the
comparative performance. Further, the performance is
quanti$ed by the total frequency estimation error [16],
given by log10(et).

et =
1
Q

Q∑
j=1

1
K

K∑
n=0

(f̂ nj − fj)2;

where Q is the number of signal components, K is
the number of trials, fj is the actual jth component,
and f̂ nj is the estimated jth component, in the nth
trial.
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For the two sinusoids at frequencies 1000 and
2500 Hz with white Gaussian noise at signal-to-noise
ratio (SNR) of −5 dB, the results are shown in
Fig. 1. (The spectral peaks occur at twice the actual
frequencies due to WVD being implemented by fast
Fourier transform.) Also the SNR in dB is de$ned
as

(SNR)dB = 10 log 10[12s =1
2
3 ]; 12s =

L−1∑
n=0

S2(n);

123 =
L−1∑
n=0

32(n)

s(n) and 3(n) are desired signal and noise components
of the signal x(n) considered.
For HKM (Fig. 1(a)) the TFR appears to be very

noisy as the peaks are pulled over a wider region
and are of di7erent magnitudes. Also, some ridge
type e7ect is also seen. Hence the two peaks are
not well separated or resolved. In case of SEFKM
(Fig. 1(b)) the TFR is less noisy and the spectral
peaks are relatively separated and aligned and are
of similar magnitude. For the proposed method, the
TFR (Fig. 1(c)) is least noisy as the spectral peaks
are signi$cantly concentrated, aligned and hence are
well resolved and are of almost same magnitude.
The resolvability of the spectral peaks and the vari-
ance of the peak location brought out by the contour
(Figs. 1(d)–(f)) and histogram (Figs. 1(g)–(i))
plots.
At SNR =−3 and 0 dB, the three methods have a

similar performance and the proposed method appears
to be better in terms of variance of the spectral peak
location.
Fig. 2 illustrates the performance comparison of

the three methods for sum of two closely spaced
sinusoidal components with frequencies 1750 and
2250 Hz, in the presence of Gaussian white noise,
SNR = 0 dB. As seen from the TFR, contour and
histogram plots, HKM (Figs. 2(a), (d) and (g)),
SEFKM (Figs. 2(b), (e) and (h)) are very poor in
resolving the two peaks as they appear to be merged.
But the proposed method (Figs. 2(c), (f) and (i))
resolves the peaks as they are well separated. Also,
the proposed method exhibits comparatively less
spread.

The spectral frequency estimation error listed in
Table 1 supports the above results and particularly, for
the two closely spaced sinusoids at 0 dB, compared
to the other two methods, this error is relatively small
for the proposed method.
A sinusoidal signal whose frequency is varied as a

sinusoidal function of time is considered to bring out
the performance of the proposed method for a nonsta-
tionary signal with nonlinear frequency variation and
such a study may $nd application in situations like
analysis of nonstationary cardiovascular time series
[10]. This has been studied both for a signal with high
(20 dB) and low (5 dB) SNRs. It has been found that
at high SNR, the proposed method is very e7ective
(Fig. 3) in suppressing the Gibbs ripple, crossterms
and providing data compression by modeling. The
modeling helps in removing the discontinuities in
the contour plots Figs. 3(g) and (h) compared to the
Figs. 3(e) and (f). In Figs. 3(h), the width of the
contour is narrower than in Figs. 3(e)–(g) and hence
the proposed method (SD with MMGD and model-
ing) gives a better frequency resolution than that of
SD ($lter bank), SD with MMGD and only SD with
modeling. But at low SNRs, (Fig. 4) though the Gibbs
ripple and crossterms are suppressed by the MMGD
and SD using perfect reconstruction $lter bank, the
AR modeling gets a7ected by the residual-noise and
hence spectral peak gets broadened (Fig. 4(h)) re-
sulting in a frequency resolution which is poorer than
that of without modeling (Fig. 4(f)). Even here, the
proposed method has a better frequency resolution
than that of SD by $lter bank and modeling (Fig.
4(g)). Similar results have been observed even with
crossing linear chirp signals.
With the proposed IWVD method, the crossterms,

not only due to the signal but also due to the noise,
are not allowed to exist signi$cantly, due to signal de-
composition prior to computing the WVD kernel. This
provides a higher noise immunity and preserves time
resolution of WVD. The modeling is not a7ected by
residual crossterms and may not require higher order.
Further, the MMGD provides the phase accuracy, as
it removes the Gibb’s ripple due to abrupt truncation
without the use of any window function and hence
preserves the frequency resolution of the rectangular
window, which further enhances the frequency reso-
lution for modeling. As the MMGD not only removes
the zeros due to Gibb’s ripple but also those due to
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Fig. 1. (a)–(c) TFR for two sinusoids at 1000 and 2500 Hz (SNR =−5 dB) by (a) HKM, (b) SEFKM, and (c) IWVD, (d)–(f) contour
plots for (a)–(c), (g)–(i) histogram plots of (a)–(c).
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Fig. 2. (a)–(c) TFR for two sinusoids at 1750 and 2250 Hz (SNR = 0 dB) by (a) HKM, (b) SEFKM, and (c) IWVD, (d)–(f) contour
plots for (a)–(c), (g)–(i) histogram plots of (a)–(c).
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Table 1
Spectral frequency estimation error

Example (Hz) SNR (dB) HKM SEFKM IWVD

1000 & 2500 0 0.0057 0.0058 0.0127
−3 0.0269 0.0240 0.0288
−5 0.0580 0.0558 0.0445

1750 & 2250 0 0.0140 0.0156 0.0123

Fig. 3. TFR for a nonstationary signal, SNR = 20 dB by (a) $lter bank (FB), (b) FB and MGD, (c) FB and modeling and (d) FB, MGD
and modeling, (e)–(h) contour plots for (a)–(d), respectively.

noise, it further enhances the noise immunity. In view
of these, the proposed method, provides better time
and frequency resolutions and noise immunity and
presents the TFR information, in a e:cient way when
the SNR is su:ciently high. The use of complex HT
reduces the number of computations, which otherwise
would have been higher.
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Fig. 4. TFR for a nonstationary signal (SNR = 5 dB) by (a) $lter bank (FB), (b) FB and MGD, (c) FB and modeling and (d) FB, MGD
and modeling, (e)–(h) contour plots for (a)–(d), respectively.

6. Conclusions

An autoregressive modeling of the Wigner–Ville
distribution (WVD), based on signal decomposition
(SD) by a perfect reconstruction $lter bank (PRFB)
and the modi$ed magnitude group delay function
(MMGD), was proposed. The SD and MMGD,

respectively, signi$cantly reduce the existence of
crossterms and the Gibb’s ripple e7ect due to trunca-
tion of the WVD kernel, without applying any win-
dow. Either the crossterms or the Gibb’s ripple and
the window that would have been used, do not a7ect
the modeling. The proposed method, represents ac-
tual time–frequency information parsimoniously and
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compared to HKM and SEFKM methods, its per-
formance was found to be signi$cantly better in
terms of: both time and frequency resolution (as
there is no time and frequency smoothing) and
noise immunity/variance and is also computationally
e:cient.
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