Matemáticas:

Matemáticas: 3-14

Enseñanza Universitaria

(C)Escuela Regional de Matemáticas Universidad del Valle - Colombia

An iterative method for a second order problem with nonlinear two-point boundary conditions

Pablo Amster
Universidad de Buenos Aires and CONICET
Pedro Pablo Cárdenas Alzate
Universidad Tecnológica de Pereira

Recibido Dec. 21, $2010 \quad$ Aceptado Apr. 11, 2011

Abstract

A semi-linear second order ODE under a nonlinear two-point boundary condition is considered. Under appropriate conditions on the nonlinear term of the equation, we define a two-dimensional shooting argument which allows to obtain solutions for some specific situations by the use of Poincaré-Miranda's theorem. Finally, we apply this result combined with the method of upper and lower solutions and develop an iterative sequence that converges to a solution of the problem.

Keywords: Nonlinear two-point boundary conditions; upper and lower solutions; iterative methods.

MSC(2000): 34B15

1 Introduction

We study the semi-linear second order ODE

$$
\begin{equation*}
u^{\prime \prime}(t)+g\left(t, u(t), u^{\prime}(t)\right)=0, \quad 0<t<T \tag{1}
\end{equation*}
$$

under a nonlinear two-point boundary condition.
Problem (1) under various boundary conditions has been studied by many authors. In the pioneering work of Picard [18], the existence of a solution for the Dirichlet problem was proved by the well-known method of successive approximations, assuming that g is Lipschitz and T is small. These conditions have been improved by Hamel [9], for the special case of a forced pendulum equation (see also [13], [14]). For general $g=g(\cdot, u)$, the variational approach has been employed already in 1915 by Lichtenstein [12]. However, when g depends on u^{\prime} the problem has non-variational structure, and different techniques are required. As a historical antecedent of the topological methods, we may mention the shooting method introduced in 1905 by Severini [20]; later on, more abstract topological tools have been applied, such as the Leray-Schauder degree theory. For an overview of the use of topological methods to this kind of problems, we refer the reader to [15].

The above-mentioned two-point boundary conditions, as well as some other standard ones, such as the Neumann or the Sturm-Liouville conditions, are linear;
it is worthy to mention, however, that the general nonlinear case

$$
\begin{equation*}
\phi\left(u(0), u(T), u^{\prime}(0), u^{\prime}(T)\right)=0 \tag{2}
\end{equation*}
$$

where $\phi: \mathbb{R}^{4} \rightarrow \mathbb{R}$ is continuous is very important in applications and, in recent years, a considerable number of works have been developed in this direction.

We shall study the existence of solutions of (1) under a particular case of condition (2): namely, nonlinear boundary conditions of the type

$$
\begin{equation*}
u^{\prime}(0)=f_{0}(u(0)), \quad u^{\prime}(T)=f_{T}(u(T)) \tag{3}
\end{equation*}
$$

where $f_{0}, f_{T}: \mathbb{R} \rightarrow \mathbb{R}$ are given continuous functions. The special case $f_{i}(x)=$ $a_{i} x+b_{i}$ for $i=0, T$ corresponds to the Sturm-Liouville conditions, and Neumann conditions when $a_{0}=a_{T}=0$. Our interest in (3) relies on some models in nonlinear beam theory, usually leading to fourth order problems [7], but that admit second order analogues (see e.g. [19]). The results in the present paper complement and extend those in [1].

The paper is organized as follows. In the second section, we impose a growth condition on g, which allows to prove the unique solvability of the associated Dirichlet problem. Furthermore, we prove that the trace mapping $\operatorname{Tr}: \mathcal{S} \rightarrow \mathbb{R}^{2}$ given by $\operatorname{Tr}(u)=(u(0), u(T))$, where

$$
\begin{equation*}
\mathcal{S}:=\left\{u \in H^{2}(0, T): u^{\prime \prime}(t)+g\left(t, u(t), u^{\prime}(t)\right)=0\right\} \tag{4}
\end{equation*}
$$

is a homeomorphism for the H^{2}-norm.
Then, we define a two-dimensional shooting argument, which proves to be successful with the aid of the Poincaré-Miranda theorem (see e.g. [11]) in some particular situations, which include the Sturm-Liouville boundary conditions. This generalizes some of the results in [2], and constitutes the main tool for our iterative method for problem (1)-(3), developed in the third section.

Our method, based on the existence of an ordered couple (α, β) of a lower and an upper solution, has been successfully applied to different boundary value problems when g does not depend on u^{\prime}. For general g, existence results can still be obtained if one assumes a Nagumo-Bernstein type condition (see [3], [16])). However, these results are usually proved by fixed point or degree arguments and, in consequence, they are non-constructive.

We shall assume instead a Lipschitz condition on u^{\prime}, which is more restrictive, but allows the construction of a non-increasing (resp. non-decreasing) sequence of upper (lower) solutions that converges to a solution of the problem. Our method is slightly different from the monotone techniques known in the literature for linear boundary conditions, see e.g. [4], [17] among others (for upper and lower solutions in the reversed order, see [10]).

2 A continuum of solutions of (1)

For simplicity, let us assume that g is continuous, and write it as

$$
g\left(t, u(t), u^{\prime}(t)\right)=r(t) u^{\prime}(t)+h\left(t, u(t), u^{\prime}(t)\right)
$$

with $r \in W^{1, \infty}(0, T)$. We shall assume that h satisfies a global Lipschitz condition on u^{\prime}, namely

$$
\begin{equation*}
\left|\frac{h(t, u, A)-h(t, u, B)}{A-B}\right| \leq k<\frac{\pi}{T} \quad \text { for } \quad A \neq B \tag{5}
\end{equation*}
$$

Furthermore, in this section we shall assume the following one-side growth condition on u :

$$
\begin{equation*}
\frac{h(t, u, A)-h(t, v, A)}{u-v} \leq c \tag{6}
\end{equation*}
$$

for $u \neq v$, where the constant $c \in \mathbb{R}$ satisfies

$$
\begin{equation*}
c+\frac{k \pi}{T}<\left(\frac{\pi}{T}\right)^{2}+\frac{1}{2} \inf _{0 \leq t \leq T} r^{\prime}(t) \tag{7}
\end{equation*}
$$

Under these assumptions, the set \mathcal{S} of solutions of (1) defined by (4) is homeomorphic to \mathbb{R}^{2}. More precisely,

Theorem 1. Assume that (5) and (6) hold and let $x, y \in \mathbb{R}$. Then there exists a unique solution $u_{x, y}$ of (1) satisfying the non-homogeneous Dirichlet condition

$$
u_{x, y}(0)=x, \quad u_{x, y}(T)=y
$$

Furthermore, the mapping $\operatorname{Tr}:\left(\mathcal{S},\|\cdot\|_{H^{2}}\right) \rightarrow \mathbb{R}^{2}$ given by $\operatorname{Tr}(u)=(u(0), u(T))$ is a homeomorphism.

Proof. For fixed $v \in H^{1}(0, T)$, let $u:=\mathcal{T} v$ be defined as the unique solution of the linear problem

$$
\begin{gathered}
u^{\prime \prime}=-\left[r v^{\prime}+h\left(\cdot, v, v^{\prime}\right)\right] \\
u(0)=x, \quad u(T)=y
\end{gathered}
$$

It is immediate that $\mathcal{T}: H^{1}(0, T) \rightarrow H^{1}(0, T)$ is compact. Moreover, if $S_{\sigma}:$ $H^{2}(0, T) \rightarrow L^{2}(0, T)$ is the semilinear operator defined by $S_{\sigma} u:=u^{\prime \prime}+\sigma\left[r u^{\prime}+\right.$ $\left.h\left(\cdot, u, u^{\prime}\right)\right]$, with $\sigma \in[0,1]$, then using (6) and (7) it is seen that the following a priori bound holds for any $u, v \in H^{2}(0, T)$ with $u-v \in H_{0}^{1}(0, T)$:

$$
\begin{equation*}
\left\|u^{\prime}-v^{\prime}\right\|_{L^{2}} \leq \mu\left\|S_{\sigma} u-S_{\sigma} v\right\|_{L^{2}} \tag{8}
\end{equation*}
$$

for some constant μ independent of σ.
Hence, if $u=\sigma \mathcal{T} u$ for some $\sigma \in[0,1]$, then setting $l_{x, y}(t)=\frac{y-x}{T} t+x$ we obtain:

$$
\left\|u^{\prime}-\sigma l_{x, y}^{\prime}\right\|_{L^{2}} \leq \mu\left\|S_{\sigma}\left(\sigma l_{x, y}\right)\right\|_{L^{2}} \leq C
$$

for some constant C depending only on x and y. Existence of solutions follows from the Leray-Schauder Theorem. Uniqueness is an immediate consequence of (8) for $\sigma=1$.

Thus, Tr is bijective, and its continuity is clear. On the other hand, if $(x, y) \rightarrow$ (x_{0}, y_{0}), then applying (8) to $u=u_{x, y}-l_{x, y}$ and $v=u_{x_{0}, y_{0}}-l_{x_{0}, y_{0}}$ it is easy to see that $u_{x, y} \rightarrow u_{x_{0}, y_{0}}$ for the H^{1}-norm. As $u_{x, y}$ and $u_{x_{0}, y_{0}}$ satisfy (1), we conclude from (5) that also $u_{x, y}^{\prime \prime} \rightarrow u_{x_{0}, y_{0}}^{\prime \prime}$ for the L^{2}-norm and so completes the proof.

It is worth noticing that the previous result allows to define a two-dimensional shooting argument as follows: let $\Theta: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by

$$
\Theta(x, y)=\left(u_{x, y}^{\prime}(0)-f_{0}(x), u_{x, y}^{\prime}(T)-f_{T}(y)\right)
$$

From the previous theorem, we deduce that Θ is continuous, and it is clear that, if $\Theta(x, y)=(0,0)$, then $u_{x, y}$ is a solution of the problem.

Example 1. Assume that (5) and (6) hold, and that

$$
\begin{align*}
h(t, u, 0) \operatorname{sgn}(u)<0 \quad \text { for }|u| & \geq M \tag{9}\\
f_{0}\left(M^{+}\right) \geq 0 \geq f_{0}\left(M^{-}\right), \quad f_{T}\left(M^{+}\right) & \leq 0 \leq f_{T}\left(M^{-}\right) \tag{10}
\end{align*}
$$

for some constants $M^{-} \leq-M<M \leq M^{+}$. Then (1)-(3) admits at least one solution.

In particular, the result holds for the Sturm-Liouville conditions

$$
\begin{equation*}
u^{\prime}(0)=a_{0} u(0)+b_{0}, \quad u^{\prime}(T)=a_{T} u(T)+b_{T}, \quad a_{0}>0>a_{T} \tag{11}
\end{equation*}
$$

Furthermore, in this case the solution is unique, provided that $c<0$ in (6).
Indeed, it follows from (9) that $u_{x, y}$ cannot attain in $(0, T)$ neither a maximum value larger than M, nor a minimum value smaller than $-M$. Moreover, for $M^{-} \leq y \leq M^{+}$we obtain:

$$
u_{M^{+}, y}(0)=M^{+} \geq y=u_{M^{+}, y}(T), \quad u_{M^{-}, y}(0)=M^{-} \leq y=u_{M^{-}, y}(T)
$$

Thus, $u_{M^{+}, y}^{\prime}(0) \leq 0 \leq u_{M^{-}, y}^{\prime}(0)$, and hence $\Theta_{1}\left(M^{+}, y\right) \leq 0 \leq \Theta_{1}\left(M^{-}, y\right)$. In the same way, it follows that $\Theta_{2}\left(x, M^{+}\right) \geq 0 \geq \Theta_{2}\left(x, M^{-}\right)$for $M^{-} \leq x \leq M^{+}$. By the Poincaré-Miranda's generalized intermediate value theorem, we conclude that Θ has at least one zero $(x, y) \in\left[M^{-}, M^{+}\right] \times\left[M^{-}, M^{+}\right]$.

On the other hand, if u and v are solutions of (1)-(11), then

$$
(u-v)^{\prime \prime}+(r+\psi)(u-v)^{\prime}+h\left(\cdot, u, v^{\prime}\right)-h\left(\cdot, v, v^{\prime}\right)=0
$$

where

$$
\psi=\frac{h\left(\cdot, u, u^{\prime}\right)-h\left(\cdot, u, v^{\prime}\right)}{u^{\prime}-v^{\prime}} \in L^{\infty}(0, T) .
$$

Next, take $p(t)=e^{\int_{0}^{t}(r(s)+\psi(s)) d s}$, multiply the previous equality by $(u-v) p$ and integrate. We obtain:

$$
\begin{aligned}
0 & =\left.p\left(u^{\prime}-v^{\prime}\right)(u-v)\right|_{0} ^{T}-\int_{0}^{T} p\left(u^{\prime}-v^{\prime}\right)^{2}+\int_{0}^{T} p\left[h\left(\cdot, u, v^{\prime}\right)-h\left(\cdot, v, v^{\prime}\right)\right](u-v) \\
& \leq p(T) a_{T}(u-v)^{2}(T)-a_{0}(u-v)^{2}(0)-\int_{0}^{T} p\left(u^{\prime}-v^{\prime}\right)^{2}+c \int_{0}^{T} p(u-v)^{2} .
\end{aligned}
$$

Hence, for $c<0$ it is seen that $u=v$.

3 Iterative sequences of upper and lower solutions

In this section we shall construct solutions of (1) under the two-point boundary condition (3) by an iterative method, based upon the existence of upper and lower solutions.

Let us recall that (α, β) is an ordered couple of a lower and an upper solution for (1) if $\alpha \leq \beta$ and

$$
\alpha^{\prime \prime}+g\left(\cdot, \alpha, \alpha^{\prime}\right) \geq 0 \geq \beta^{\prime \prime}+g\left(\cdot, \beta, \beta^{\prime}\right) .
$$

Existence results under various boundary conditions in presence of an ordered couple of a lower and an upper solution are known (see e. g. [6]). In our particular case, we shall assume the boundary constraints:

$$
\begin{aligned}
\alpha^{\prime}(0)-f_{0}(\alpha(0)) & \geq 0 \geq \beta^{\prime}(0)-f_{0}(\beta(0)) \\
\alpha^{\prime}(T)-f_{T}(\alpha(T)) & \leq 0 \leq \beta^{\prime}(T)-f_{T}(\beta(T))
\end{aligned}
$$

and a Nagumo type condition adapted from [5]:

$$
\begin{equation*}
|g(t, u, v)| \leq \psi(|v|), \quad \text { for } \alpha(t) \leq u \leq \beta(t), m \leq|v| \leq M \tag{12}
\end{equation*}
$$

where $\psi:[0,+\infty) \rightarrow(0,+\infty)$ is continuous and satisfies:

$$
\int_{m}^{M} \frac{1}{\psi(t)} d t>T
$$

and

$$
\begin{gathered}
m=\min \left\{\frac{|\alpha(0)-\beta(T)|}{T}, \frac{|\alpha(T)-\beta(0)|}{T}, \max _{\alpha(0) \leq s \leq \beta(0)}\left|f_{0}(s)\right|, \max _{\alpha(T) \leq s \leq \beta(T)}\left|f_{T}(s)\right|\right\} \\
M>\max \left\{\left\|\alpha^{\prime}\right\|_{\infty},\left\|\beta^{\prime}\right\|_{\infty}, m\right\} .
\end{gathered}
$$

Then, the following existence result can be obtained as in [1]:
Theorem 2. Assume there exists an ordered couple (α, β) of a lower and an upper solution as before, and that (12) holds. Then the boundary value problem (1)-(3) admits at least one solution u, with $\alpha \leq u \leq \beta$.

Sketch of the proof. The proof follows the outline of the standard results on the subject. Let $P(t, u)=\max \{\alpha(t), \min \{u, \beta(t)\}\}$ and $Q(v)=\operatorname{sgn}(v) \min \{|v|, M\}$, and apply Schauder's Theorem in order to obtain a solution of the problem

$$
\begin{gathered}
u^{\prime \prime}(t)-\lambda u(t)=-g\left(t, P(t, u(t)), Q\left(u^{\prime}(t)\right)\right)-\lambda P(t, u(t)), \\
u^{\prime}(0)=f_{0}\left(P(0, u(0)), \quad u^{\prime}(T)=f_{T}(P(T, u(T))\right.
\end{gathered}
$$

for some fixed $\lambda>0$. It is easy to see that $\alpha \leq u \leq \beta$, and hence $P(t, u(t))=u(t)$ for every t. Furthermore, if we suppose that for example $u^{\prime}\left(t_{1}\right)=M$, then there exists t_{0} such that $u^{\prime}\left(t_{0}\right)=m$ and $m<u^{\prime}(t)<M$ for t between t_{0} and t_{1}. Hence

$$
T<\int_{m}^{M} \frac{1}{\psi(s)} d s=\int_{t_{0}}^{t_{1}} \frac{u^{\prime \prime}(t)}{\psi\left(u^{\prime}(t)\right)} d t \leq\left|t_{1}-t_{0}\right|,
$$

a contradiction. The same conclusion holds if we suppose $u^{\prime}\left(t_{1}\right)=-M$; thus, $\left|u^{\prime}(t)\right|<M$ and the proof is complete.

Example 2. The previous result applies when (9) and (10) hold: indeed, in this case it is clear $\left(M^{-}, M^{+}\right)$is an ordered couple of a lower and an upper solution. Thus, conditions (5) and (6) in example 1 can be dropped.

Also, we may consider the forced pendulum equation with friction

$$
u^{\prime \prime}+r u^{\prime}+\sin u=\theta,
$$

and assume that the forcing term θ is a measurable function satisfying:

$$
-1 \leq \theta(t) \leq 1 \quad \forall t \in[0, T] .
$$

Then $\alpha \equiv \frac{\pi}{2}$ and $\beta \equiv \frac{3}{2} \pi$ are respectively a lower and an upper solution. Hence, (1)-(3) has a solution for any continuous f_{0} and f_{T} such that

$$
f_{0}\left(\frac{\pi}{2}\right) \leq 0 \leq f_{0}\left(\frac{3 \pi}{2}\right)
$$

and

$$
f_{T}\left(\frac{\pi}{2}\right) \geq 0 \geq f_{T}\left(\frac{3 \pi}{2}\right)
$$

Our last result is concerned with the construction of solutions by iteration, provided that h and f satisfy some stronger assumptions.

Let us firstly establish the following auxiliary lemmas:
Lemma 1. Assume that (5) holds and let λ be a positive constant satisfying $\lambda \geq k \frac{\pi}{T}-\left(\frac{\pi}{T}\right)^{2}-\frac{1}{2} \mathrm{inf} r^{\prime}$. Then for any $z, \theta \in C([0, T])$ the equation

$$
u^{\prime \prime}+r u^{\prime}+h\left(\cdot, z, u^{\prime}\right)-\lambda u=\theta
$$

is uniquely solvable under the Sturm-Liouville conditions (11). Furthermore, the mapping $\mathcal{K}: C([0, T])^{2} \rightarrow C([0, T])$ given by $\mathcal{K}(z, \theta)=u$ is compact.

Proof. Existence and uniqueness follow as a particular case of example 1, with $\bar{g}\left(\cdot, u, u^{\prime}\right)=r u^{\prime}+\bar{h}\left(\cdot, u, u^{\prime}\right)$, where

$$
\bar{h}\left(\cdot, u, u^{\prime}\right)=h\left(\cdot, z, u^{\prime}\right)-\lambda u-\theta
$$

Indeed, it is clear that \bar{h} satisfies (5) and (6) with $c=-\lambda$. Moreover,

$$
\bar{h}(t, u, 0) \operatorname{sgn}(u)=(h(t, z(t), 0)-\theta(t)) \operatorname{sgn}(u)-\lambda|u|<0
$$

when $|u|>\|h(\cdot, z, 0)-\theta\|_{\infty}$. Thus, (9) is also satisfied.
Let (z, θ) tend to $\left(z_{0}, \theta_{0}\right)$, and set $u=\mathcal{K}(z, \theta), u_{0}=\mathcal{K}\left(z_{0}, \theta_{0}\right)$. Then

$$
\left(u-u_{0}\right)^{\prime \prime}+(r+\psi)\left(u-u_{0}\right)^{\prime}-\lambda\left(u-u_{0}\right)=h\left(\cdot, z, u_{0}^{\prime}\right)-h\left(\cdot, z_{0}, u_{0}^{\prime}\right)+\theta-\theta_{0}
$$

where $\psi=\frac{h\left(\cdot, z, u^{\prime}\right)-h\left(\cdot, z, u_{0}^{\prime}\right)}{u^{\prime}-u_{0}^{\prime}}$. Hence, continuity of \mathcal{K} is a consequence of the following estimate, which is valid for any w satisfying (11) with $b_{0}=b_{T}=0$ and some constant c depending only on k :

$$
\|w\|_{H^{1}} \leq c\left\|w^{\prime \prime}+(r+\psi) w^{\prime}-\lambda w\right\|_{L^{2}}
$$

Indeed, this is easily deduced by applying the Cauchy-Schwartz inequality to the integral $\int_{0}^{T} p L w \cdot w$, where $L w=w^{\prime \prime}+(r+\psi) w^{\prime}-\lambda w$ and $p(t)=e^{\int_{0}^{t}(r(s)+\psi(s)) d s}$, and the fact that $0<m \leq p \leq M$ for some m and M depending only on k. Finally, compactness of \mathcal{K} follows from the imbedding $H^{1}(0, T) \hookrightarrow C([0, T])$.

Remark 1. In the previous proof, an analogous estimate can be also obtained for the H^{2}-norm of w. This implies the compactness of \mathcal{K}, but now regarded as an operator from $C([0, T])^{2}$ to $C^{1}([0, T])$. More generally, one might consider also a_{i} and b_{i} as variables for $i=0, T$: in this case, \mathcal{K} could be seen as a compact operator from $\mathbb{R}^{4} \times C([0, T])^{2}$ to $C^{1}([0, T])$.

Lemma 2. Let $\phi \in L^{\infty}(0, T)$ and assume that $w^{\prime \prime}+\phi w^{\prime}-\lambda w \geq 0$ (in the weak sense) for some $\lambda \geq 0$, and

$$
w^{\prime}(0)-a_{0} w(0) \geq 0 \geq w^{\prime}(T)-a_{T} w(T)
$$

with $a_{0}>0>a_{T}$. Then $w \leq 0$.
Proof. If $w(0), w(T) \leq 0$, the result is the well-known maximum principle for Dirichlet conditions.

If for example $w(0)>0$, then restricting w up to its first zero if necessary, it suffices to consider only the case $w \geq 0$. Taking $p(t)=e^{\int_{0}^{t} \phi(s) d s}$, it is observed that $\left(p w^{\prime}\right)^{\prime} \geq \lambda p w \geq 0$. Thus, $p w^{\prime}$ is nondecreasing on $[0, T]$, and hence

$$
0 \geq p(T) a_{T} w(T) \geq p(T) w^{\prime}(T) \geq p(0) w^{\prime}(0) \geq p(0) a_{0} w(0)>0
$$

a contradiction. The proof is similar when $w(T)>0$.
In order to define our iterative scheme, we shall assume that f_{0} and f_{T} satisfy a one-side Lipschitz condition:
(F) There exists a positive constant R such that

$$
f_{0}(y)-f_{0}(x) \leq R(y-x)
$$

if $\alpha(0) \leq x<y \leq \beta(0)$, and

$$
f_{T}(y)-f_{T}(x) \geq-R(y-x)
$$

if $\alpha(T) \leq x<y \leq \beta(T)$.
In virtue of Lemma 1, if (5) holds then for $\lambda=\min \left\{R, k \frac{\pi}{T}-\left(\frac{\pi}{T}\right)^{2}-\frac{1}{2} \inf r^{\prime}\right\}$, we may define the compact operator $\mathcal{T}: C([0, T]) \rightarrow C([0, T])$ given by $\mathcal{T} v=u$, where u is the unique solution of the problem

$$
u^{\prime \prime}+r u^{\prime}+h\left(\cdot, v, u^{\prime}\right)-\lambda u=-\lambda v
$$

satisfying the following Sturm-Liouville condition:

$$
u^{\prime}(0)-R u(0)=f_{0}(v(0))-R v(0), \quad u^{\prime}(T)+R u(T)=f_{T}(v(T))+R v(T) .
$$

From Remark 1, we observe, moreover, that the set $\mathcal{T}(\{v: \alpha \leq v \leq \beta\})$ is bounded for the C^{1}-norm. In particular, this implies the existence of a constant $M=M(R)$ such that if $u=\mathcal{T} v$ for some v lying between α and β, then $\left\|u^{\prime}\right\|_{\infty} \leq$ M. This suggests to consider the following Lipschitz condition on h :

$$
\begin{equation*}
|h(t, u, A)-h(t, v, A)| \leq R|u-v| \tag{H}
\end{equation*}
$$

for u, v such that $\alpha(t) \leq u<v \leq \beta(t)$ and $|A| \leq M(R)$.
Remark 2. Conditions (F) and (H) are trivially satisfied if f_{0}, f_{T} and h are C^{1} functions, and $\frac{\partial h}{\partial u}$ is bounded with respect to u^{\prime}.

Theorem 3. Assume there exists an ordered couple (α, β) of a lower and an upper solution as before. Further, assume that (5), (H) and (F) hold. Set λ as before, and define the sequences $\left\{\underline{u}_{n}\right\}$ and $\left\{\bar{u}_{n}\right\}$ recursively by

$$
\underline{u}_{0}=\alpha, \quad \bar{u}_{0}=\beta
$$

and

$$
\bar{u}_{n+1}=\mathcal{T} \bar{u}_{n}, \quad \underline{u}_{n+1}=\mathcal{T} \underline{u}_{n}
$$

Then $\left(\underline{u}_{n} \bar{u}_{n}\right)$ is an ordered couple of a lower and an upper solution. Furthermore, $\left\{\bar{u}_{n}\right\}$ (resp. $\left\{\underline{u}_{n}\right\}$) is non-increasing (non-decreasing) and converges to a solution of the problem.

Proof. Let us firstly prove that $\alpha \leq \bar{u}_{1} \leq \beta$. From the definition,

$$
\bar{u}_{1}^{\prime \prime}+r \bar{u}_{1}^{\prime}+h\left(\cdot, \beta, \bar{u}_{1}^{\prime}\right)-\lambda \bar{u}_{1}=-\lambda \beta \geq-\lambda \beta+\beta^{\prime \prime}+r \beta^{\prime}+h\left(\cdot, \beta, \beta^{\prime}\right)
$$

Hence, setting

$$
\psi=\frac{h\left(\cdot, \beta, \bar{u}_{1}^{\prime}\right)-h\left(\cdot, \beta, \beta^{\prime}\right)}{\bar{u}_{1}^{\prime}-\beta^{\prime}} \in L^{\infty}(0, T)
$$

we deduce that

$$
\left(\bar{u}_{1}-\beta\right)^{\prime \prime}+(r+\psi)\left(\bar{u}_{1}-\beta\right)^{\prime}-\lambda\left(\bar{u}_{1}-\beta\right) \geq 0
$$

On the other hand,

$$
\bar{u}_{1}^{\prime}(0)-R \bar{u}_{1}(0)=f_{0}(\beta(0))-R \beta(0)
$$

and

$$
\bar{u}_{1}^{\prime}(T)+R \bar{u}_{1}(T)=f_{T}(\beta(T))+R \beta(T)
$$

Thus,

$$
\left(\bar{u}_{1}-\beta\right)^{\prime}(0)-R\left(\bar{u}_{1}-\beta\right)(0)=0=\left(\bar{u}_{1}-\beta\right)^{\prime}(T)-R\left(\bar{u}_{1}-\beta\right)(T)
$$

and from Lemma 2 we obtain that $\bar{u}_{1} \leq \beta$.
In the same way,

$$
\bar{u}_{1}^{\prime \prime}+r \bar{u}_{1}^{\prime}+h\left(\cdot, \beta, \bar{u}_{1}^{\prime}\right)-\lambda \bar{u}_{1} \leq-\lambda \beta+\alpha^{\prime \prime}+r \alpha^{\prime}+h\left(\cdot, \alpha, \alpha^{\prime}\right)
$$

and hence

$$
\left(\bar{u}_{1}-\alpha\right)^{\prime \prime}+(r+\psi)\left(\bar{u}_{1}-\alpha\right)^{\prime}-\lambda\left(\bar{u}_{1}-\alpha\right) \geq 0
$$

where

$$
\psi=\frac{h\left(\cdot, \alpha, \bar{u}_{1}^{\prime}\right)-h\left(\cdot, \alpha, \alpha^{\prime}\right)}{\bar{u}_{1}^{\prime}-\alpha^{\prime}} \in L^{\infty}(0, T)
$$

Also

$$
\bar{u}_{1}^{\prime}(0)-R \bar{u}_{1}(0)=f_{0}(\beta(0))-R \beta(0) \leq f_{0}(\alpha(0))-R \alpha(0)
$$

and

$$
\bar{u}_{1}^{\prime}(T)+R \bar{u}_{1}(T)=f_{T}(\beta(T))+R \beta(T) \geq f_{T}(\alpha(T))+R \alpha(T)
$$

and we conclude that $\bar{u}_{1} \geq \alpha$.
On the other hand,
$\bar{u}_{1}^{\prime \prime}+r \bar{u}_{1}^{\prime}+h\left(\cdot, \bar{u}_{1}, \bar{u}_{1}^{\prime}\right)=(\lambda-R)\left(\bar{u}_{1}-\beta\right)+\left[h\left(\cdot, \bar{u}_{1}, \bar{u}_{1}^{\prime}\right)+R \bar{u}_{1}\right]-\left[h\left(\cdot, \beta, \bar{u}_{1}^{\prime}\right)+R \beta\right] \leq 0$,
and we deduce that \bar{u}_{1} is an upper solution of the problem. Inductively, it follows that \bar{u}_{n} is an upper solution for every n, with $\alpha \leq \bar{u}_{n+1} \leq \bar{u}_{n}$, which by Dini's
theorem implies that \bar{u}_{n} converges uniformly to a function \bar{u}. From the definition of $\left\{\bar{u}_{n}\right\}$,

$$
\bar{u}_{n+1}^{\prime \prime}+r \bar{u}_{n+1}^{\prime}+h\left(\cdot, \bar{u}_{n}, \bar{u}_{n+1}^{\prime}\right) \rightarrow 0
$$

uniformly. Moreover, from Lemma 1 and Remark 1 we know that $\left\{\bar{u}_{n}\right\}$ is bounded in $H^{2}(0, T)$, and it follows easily that

$$
\bar{u}^{\prime \prime}+r \bar{u}^{\prime}+h\left(\cdot, \bar{u}, \bar{u}^{\prime}\right)=0 .
$$

Thus, \bar{u} is a solution of the problem. The proof for \underline{u}_{n} is analogous. Moreover, if we assume as inductive hypothesis that $\underline{u}_{n} \leq \bar{u}_{n}$, then

$$
\begin{gathered}
\bar{u}_{n+1}^{\prime \prime}+r \bar{u}_{n+1}^{\prime}+h\left(\cdot, \bar{u}_{n}, \bar{u}_{n+1}^{\prime}\right)-\lambda \bar{u}_{n+1}=-\lambda \bar{u}_{n} \\
\leq-\lambda \underline{u}_{n}=\underline{u}_{n+1}^{\prime \prime}+r \underline{u}_{n+1}^{\prime}+h\left(\cdot, \underline{u}_{n}, \underline{u}_{n+1}^{\prime}\right)-\lambda \underline{u}_{n+1} .
\end{gathered}
$$

In the same way as before, we may define

$$
\psi=\frac{h\left(\cdot, \underline{u}_{n}, \bar{u}_{n+1}^{\prime}\right)-h\left(\cdot, \underline{u}_{n}, \underline{u}_{n+1}^{\prime}\right)}{\bar{u}_{n+1}^{\prime}-\underline{u}_{n+1}^{\prime}} \in L^{\infty}(0, T)
$$

and hence for $w=\bar{u}_{n+1}-\underline{u}_{n+1}$ we deduce:

$$
w^{\prime \prime}+(r+\psi) w^{\prime}-\lambda w \leq h\left(\cdot, \underline{u}_{n}, \bar{u}_{n+1}^{\prime}\right)-h\left(\cdot, \bar{u}_{n}, \bar{u}_{n+1}^{\prime}\right) \leq-R\left(\underline{u}_{n}-\bar{u}_{n}\right) \leq-R w
$$

From Lemma 2, we conclude that $w \geq 0$, i.e. $\underline{u}_{n+1} \leq \bar{u}_{n+1}$.
Remark 3. It is interesting to observe that, even if (5) is somewhat too restrictive, some condition regarding the growth of h with respect to u^{\prime} is required. We may recall, for instance, the following example by Habets and Pouso [8] for the mean curvature operator:

$$
\left(\frac{u^{\prime}}{\sqrt{1+u^{\prime 2}}}\right)^{\prime}=u+a
$$

where the function $a \in L^{\infty}(0, T)$ is defined by

$$
a(t)=2\left[\chi_{\left[0, \frac{T}{2}\right]}(t)-\chi_{\left(\frac{T}{2}, T\right]}(t)\right]=\left\{\begin{array}{cc}
2 & 0 \leq t \leq \frac{T}{2} \\
-2 & \frac{T}{2}<t \leq T
\end{array}\right.
$$

Under conditions (11) with $b_{0}=b_{T}=0$, it is seen that $\alpha=-3$ and $\beta=3$ is an ordered couple of a lower and an upper solution, but the equation has no solutions when $T>2 \sqrt{2}$. However, here

$$
h\left(\cdot, u, u^{\prime}\right)=(u+a)\left(\sqrt{1+u^{\prime 2}}\right)^{3 / 2}
$$

and (9) is satisfied. This explains the need of the Nagumo condition, or at least a similar one, in Theorem 2.

Acknowledgement

This work has been partially supported by projects UBACyT 20020090100067 and PIP 11220090100637, CONICET.

References

[1] Amster P. and Cárdenas Alzate P. P.: Existence of solutions for some nonlinear beam equations. Portugaliae Matemática 63, fasc. 1 (2006), 113-125.
[2] Amster P. and Cárdenas Alzate P. P.: Sturm-Liouville boundary conditions for a second order ODE. Matemáticas: Enseñanza Universitaria (Colombia) XV N ${ }^{\circ} 1$ (2007), 3-12.
[3] Bernstein S.: Sur les équations du calcul des variations, Ann. Sci. Ecole Norm. Sup., 29 (1912), 431-485.
[4] Cherpion M., De Coster C. and Habets P.: A constructive monotone iterative method for second-order BVP in the presence of lower and upper solutions, Appl. Math. Comput. 123 (2001), no. 1, 7591.
[5] Franco D. and O'Regan D.: Existence of solutions to second order problems with nonlinear boundary conditions. Proc. of the Fourth Int. Conf. on Dynamical Systems and Diff. Equations, Discrete and Continuous Dynamical Systems (2003), 273-280.
[6] Gaines R. and Mawhin J.: Coincidence Degree and Nonlinear Differential Equation. Lecture Notes in Math. 568 (1977).
[7] Grossinho M. and Ma T. F.: Symmetric equilibria for a beam with a nonlinear elastic foundation. Portugaliae Mathematica, 51 (1994), 375-393.
[8] Habets P. and Pouso R.: Examples of the nonexistence of a solution in the presence of upper and lower solutions. ANZIAM J. 44 (2003), 591-594.
[9] Hamel G.: Über erzwungene Schwingungen bei endlichen Amplituden. Math. Ann., 86 (1922), 1-13.
[10] Jiang D., Fan M., Wan A.: A monotone method for constructing extremal solutions to second-order periodic boundary value problems. Journal of Computational and Applied Mathematics 136 (2001) 189-197.
[11] Kulpa W.: The Poincaré-Miranda Theorem. The American Mathematical Monthly, Vol. 104, No. 6 (1997), 545-550.
[12] Lichtenstein L.: Über einige Existenzprobleme der Variationsrechnung. Methode der unendlichvielen Variabeln, J. Reine Angew. Math. 145 (1915), 24-85.
[13] Mawhin J.: Periodic oscillations of forced pendulum-like equations. Lecture Notes in Math., Springer, 964 (1982), 458-476.
[14] Mawhin J.: The forced pendulum: A paradigm for nonlinear analysis and dynamical systems. Expo. Math., 6 (1988), 271-287.
[15] Mawhin J.: Boundary value problems for nonlinear ordinary differential equations: from successive approximations to topology. Development of mathematics 1900-1950 (Luxembourg, 1992), Birkhäuser, Basel (1994), 443477.
[16] Nagumo M.: Uber die differentialgleichung $y^{\prime \prime}=f\left(t, y, y^{\prime}\right)$. Proc. Phys-Math. Soc. Japan 19 (1937), 861-866.
[17] Omari P., A monotone method for constructing extremal soltions of second order scalar boundary value problems, Appl. Math. Comput. 18 (1986), 257275.
[18] Picard E.: Sur l'application des méthodes d'approximations succesives à l'étude de certaines équations différentielles ordinaires, J. Math. Pures Appl. 9 (1893), 217-271.
[19] Rebelo C. and Sanchez L.: Existence and multiplicity for an O.D.E. with nonlinear boundary conditions. Differential Equations and Dynamical Systems, Vol. 3, Number 4, October 1995, 383-396.
[20] Severini C.: Sopra gli integrali delle equazione differenziali del secondo ordine con valori prestabiliti in due punti dati, Atti R. Acc. Torino 40 (1904-5), 1035-1040.

Dirección de los autores
Pablo Amster - Departamento de Matemáticas, Facultad de Ciencias Exactas y
Naturales, Buenos Aires - Argentina
e-mail: pamster@dm.uba.ar
Pedro Pablo Cárdenas Alzate - Departamento de Matemáticas, Universidad
Tecnológica de Pereira, Risaralda - Colombia
e-mail: ppablo@utp.edu.co

