Un caso particular del problema de prescribir la curvatura escalar en S^n

Claudia Granados Pinzón

Recibido Abril 27, 2006 Aceptado Sept. 14, 2006

Abstract

In this paper we exhibit a family of metrics which are conformal to the Euclidean metric on the unit sphere in \mathbb{R}^{n+1} and such that K=n(n-1) is its scalar curvature. To obtain this family we use stereographic projection, conformal transforms of dilatation and pullback of the metric.

Keywords: conformal metric, scalar curvature, stereographic projections, pullback metric, conformal transformation

MSC(2000): Primary: 53A10, Secondary: 53A05, 53A30

Resumen

En este trabajo mostramos una familia de métricas conformes a la métrica usual en la esfera unitaria de \mathbb{R}^{n+1} tal que K=n(n-1) sea su curvatura escalar. El resultado se obtiene usando proyección estereográfica, transformaciones conformes de dilatación y pullback de la métrica.

Palabras y frases claves: Curvatura escalar, métrica conforme, proyección estereográfica, transformación conforme de dilatación y pullback de la métrica.

1 Introducción

Sea
$$S^n = \left\{ (x_1, x_2, ..., x_{n+1}) \in \mathbb{R}^{n+1} : \sum_{i=1}^{n+1} x_i^2 = 1 \right\}, n \geq 3$$
 la esfera unitaria en

 \mathbb{R}^{n+1} con la métrica usual $g_0 = \sum_{i=1}^{n+1} dx_i^2$. S^n tiene curvatura escalar constante

igual a $K_0=n(n-1)$. Si g es otra métrica Riemanniana en S^n , decimos que g es una deformación conforme de g_0 si y sólo si existe una función u suave positiva tal que $g=u^{\frac{4}{n-2}}g_0$. Un problema clásico en geometría diferencial es determinar las funciones K definidas sobre S^n para las cuales existe una métrica conforme a la métrica g_0 , con curvatura escalar prescrita K en S^n .

Dada la función K, la existencia de g es equivalente a la existencia de una solución positiva suave u del problema siguiente,

$$-\Delta u + \frac{n(n-2)}{4}u = \frac{n-2}{4(n-1)}K(x)u^{\frac{n+2}{n-2}}, \quad x \in S^n,$$

 $donde g = u^{\frac{4}{n-2}}g_0.$

En este trabajo tomamos el caso particular donde $K = K_0 = n(n-1)$. Luego, la existencia de g es equivalente a la existencia de una solución positiva suave u del problema siguiente,

$$-\Delta u + \frac{n(n-2)}{4}u = \frac{n(n-2)}{4}u^{\frac{n+2}{n-2}}, \quad x \in S^n,$$
 (1)

 $donde g = u^{\frac{4}{n-2}}g_0.$

Presentamos en la sección de preliminares una definición, una observación sin demostrar y dos ejemplos que usaremos para encontrar una familia de soluciones de la ecuación diferencial no lineal (0.1).

2 Preliminares

Definición 2.1. Sean M una variedad suave de dimensión n, (N, g_1) una variedad Riemaniana suave de dimensión n y la función $F: M \to N$ un difeomorfismo. El pullback de la métrica g_1 , asociada a F es la métrica $F^*(g_1)$ sobre M definida por $F^*(g_1)(v_p, w_p) = g_1(dF_p(v_p), dF_p(w_p))$ para todo v_p, w_p en T_pM .

Observación 2.2. Si $(M_1, g_1), (M_2, g_2)$ y (M_3, g_3) son variedades Riemanianas diferenciables, $\phi: M_1 \to M_2$ y $\psi: M_2 \to M_3$ aplicaciones biyectivas suaves con diferencial biyectivo, entonces

$$(\psi \circ \phi)^*(g_3) = \phi^*(\psi^*(g_3))$$

donde si la métrica $(\psi \circ \phi)^*(g_3)$ se evalúa en p_1 , entonces la métrica g_3 se evalúa en $\psi(\phi(p_1))$ y la métrica $\psi^*(g_3)$ en $\phi(p_1)$.

Ejemplo 2.3. Sea $\Pi: \mathbb{R}^n \to S^n$ la inversa de la proyección estereográfica desde el polo norte de la esfera, definida por

$$\Pi(x) = \left(\frac{2x}{1+|x|^2}, \frac{|x|^2 - 1}{1+|x|^2}\right),\,$$

donde $x = (x_1, ..., x_n) \in \mathbb{R}^n$. Si \tilde{g} es la métrica en S^n inducida por \mathbb{R}^{n+1} entonces el pullback de la métrica \tilde{g} , asociada a Π es la métrica

$$\Pi^*(\widetilde{g}) = \frac{4}{\left(1 + |x|^2\right)^2} \delta_{ij}.$$

En efecto,

$$\frac{\partial \Pi}{\partial x_i} = d\Pi(e_i) = \left(\frac{2(1+|x|^2)e_i - 4x_ix}{\left(1+|x|^2\right)^2}, \frac{2x_i(1+|x|^2) - 2x_i(|x|^2 - 1)}{\left(1+|x|^2\right)^2}\right).$$

Un cálculo directo muestra que $\Pi^*(\widetilde{g}) = \langle d\Pi(e_i), d\Pi(e_j) \rangle = \frac{4}{\left(1 + |x|^2\right)^2} \delta_{ij}$.

Además, si trasladamos el origen de coordenadas al polo sur de S^n encontramos que el pullback de la métrica \tilde{g} , asociada a Π es la métrica

$$\Pi^*(\widetilde{g}) = \frac{64}{\left(4 + |x|^2\right)^2} \delta_{ij}.$$

Ejemplo 2.4. Sea $T: \mathbb{R}^n \to \mathbb{R}^n$ la transformación lineal de dilatación definida por $T(x) = \beta x$, $\beta \geq 1$. Entonces $dT = \beta I$ y por lo tanto $T^*(\delta_{ij}) = \langle dT(e_i), dT(e_j) \rangle = \beta^2 \delta_{ij}$.

3 Resultado principal

En esta sección demostramos el siguiente teorema, el cual implica la existencia de una familia de métricas conformes a la métrica usual en S^n .

Teorema 3.1. La ecuación diferencial no lineal,

$$-\Delta u + \frac{n(n-2)}{4}u = \frac{n(n-2)}{4}u^{\frac{n+2}{n-2}}, \quad x \in S^n,$$
 (2)

tiene infinitas soluciones.

Demostraci'on. Tomemos un sistema de coordenadas en \mathbb{R}^{n+1} tal que el polo sur de S^n sea el origen de coordenadas O y el centro de la bola B^{n+1} sea el punto $e_{n+1}=(0,...,0,1)$. Denotaremos por |.| a la distancia en \mathbb{R}^{n+1} .

Sean \widetilde{g} la métrica estándar sobre S^n , $T:(\mathbb{R}^n, \delta_{ij}) \to (\mathbb{R}^n, \delta_{ij})$ la dilatación definida por $T(x) = \beta x$, $\beta \geq 1$, y $\Pi:(\mathbb{R}^n, \delta_{ij}) \to (S^n(e_{n+1}), \widetilde{g})$ la inversa de la proyección estereográfica desde el polo norte. La familia de soluciones suaves positivas u del problema (5.1) se obtiene al componer la inversa de la proyección estereográfica con dilataciones y tomar el pullback de la métrica estándar \widetilde{g} de S^n .

Usando la observación 2 y los ejemplos 3 y 4, tenemos que para $x \in \mathbb{R}^n$,

$$(\Pi \circ T)^*(\widetilde{g}) = T^*(\Pi^*(\widetilde{g})) = T^*\left(\frac{64}{(4+|x|^2)^2}\delta_{ij}\right) = \frac{64\beta^2}{(4+|\beta x|^2)^2}\delta_{ij}.$$

Puesto que las métricas $(\Pi \circ T)^*(\widetilde{g})$ y $\Pi^*(\widetilde{g})$ son conformes existe una función suave positiva u tal que

$$u^{\frac{4}{n-2}}\frac{64}{(4+|x|^2)^2}\delta_{ij} = \frac{64\beta^2}{(4+|\beta x|^2)^2}\delta_{ij},$$

por lo tanto

$$u^{\frac{2}{n-2}} = \frac{\beta(4+|x|^2)}{4+\beta^2|x|^2}.$$

Si $\overline{x} = \Pi(x)$, tomando coordenadas esféricas $\overline{x} = (r, \theta)$ en $S^n(e_{n+1})$, $(0 \le r \le \pi, \ \theta \in S^{n-1}(O))$ tenemos que $\tan \frac{r}{2} = \frac{|x|}{2}$ y $\sin \frac{r}{2} = \frac{|\overline{x}|}{2}$. Se sigue que $\sin \frac{r}{2} = \frac{|x|}{\sqrt{|x|^2 + 4}}$ y $|\overline{x}| = \frac{2|x|}{\sqrt{|x|^2 + 4}}$. Entonces

$$u^{\frac{2}{n-2}} = \frac{\beta \left(4 + \frac{4|\overline{x}|^2}{4 - |\overline{x}|^2}\right)}{4 + \beta^2 \frac{4|\overline{x}|^2}{4 - |\overline{x}|^2}} = \frac{16\beta}{16 - 4|\overline{x}|^2 + 4\beta^2 |\overline{x}|^2} = \frac{\beta}{1 + \frac{|\overline{x}|^2}{4}(\beta^2 - 1)}$$

donde $1 \le \beta < \infty$.

Tomando $\lambda = \frac{1}{\beta}$ se tiene que $0 < \lambda \le 1$ y

$$u^{\frac{2}{n-2}} = \frac{\lambda}{\lambda^2 + \frac{|\overline{x}|^2}{4}(1-\lambda^2)} = \frac{\lambda}{\lambda^2 + (1-\lambda^2)\sin^2\frac{r}{2}}.$$

Por consiguiente

$$u(x) = \left(\frac{\lambda}{\lambda^2 \cos^2 \frac{r}{2} + \sin^2 \frac{r}{2}}\right)^{\frac{n-2}{2}} = \left(\frac{\lambda}{\lambda^2 + (1-\lambda^2)\frac{x_{n+1}}{2}}\right)^{\frac{n-2}{2}}$$
(3)

donde x_{n+1} es la n+1 coordenada de x.

Esta solución (5.2) fue presentada en [1] sin dar alguna sugerencia de su demostración.

En general, si \tilde{q} es un punto de la esfera $S^n(e_{n+1})$, tomando la proyección estereográfica desde el punto de la esfera simétrico a \tilde{q} respecto de e_{n+1} , se obtienen las soluciones¹

$$u(x) = \left(\frac{\lambda}{\lambda^2 + \frac{1}{2}(1 - \lambda^2)(x_{n+1} + \widetilde{q}(e_{n+1} - x))}\right)^{\frac{n-2}{2}}.$$

Así, el problema (5.1) tiene infinitas soluciones.

Con lo anterior se encuentra una familia de métricas $g = u^{\frac{4}{n-2}}g_0$ conformes a la métrica usual en S^n .

Agradecimientos: La autora agradece a la Universidad del Valle por la asistencia de docencia otorgada para la culminación de la maestría.

¹Esta familia de funciones fue un aporte de mi director de tesis de maestría, Gonzalo García Camacho, profesor de la Universidad del Valle.

Referencias

- [1] W. Chen, and C. Li, Prescribing scalar curvature on S^n , Pacific Journal of Mathematics, 199 (2001), 61-78.
- [2] C. Granados, Tesis de maestría: Sobre la existencia de una métrica conforme a la métrica euclidiana en la n- esfera, Universidad del Valle, 2005.

Dirección del autor: Claudia Granados Pinzón, Escuela de Matemáticas, Universidad Industrial de Santander, AA 678, Bucaramanga, Colombia, cigranad@hotmail.com.