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Abstract

A fully developed, axisymmetric, pulsatile motion of an incompressible Newtonian fluid,
under the action of an oscillatory pressure gradient, has been considered in this work. The
flow is assumed to take place in the annular space between two coaxial circular cylinders,
the outer one a porous cylinder of uniform permeability and the inner one a naturally
permeable tube. There arises a coupled flow, which has been analysed by solving the
Navier-Stokes equations in the free fluid region and the Darcy’s equation in the porous
region, together with the Beavers-Joseph slip condition at the free fluid-porous medium
interface. Using an appropriate set of similarity variables, the governing partial differential
equations have been transformed to a system of nonlinear ordinary differential equations.
The solution of the resulting system, together with appropriate boundary conditions, has
been obtained, for a special case, by a perturbation approach. It has been assumed that
the frequency of pulsation and the suction parameter are small (<< 1). The variation of
velocity profiles, pressure drop and skin friction has been illustrated in a number of cases
of interest. The analytical results have been compared with numerical solution for small
values of suction parameter.

Keywords: Pulsatile flow, similarity analysis, porous annulus, Darcy’s law, Navier-Stokes
equations

MSC(2000): 76M99, 76505

1 Introduction

The mathematical analysis of viscous laminar flow through channels with
porous walls has attracted a lot of attention due to their industrial appli-
cations and theoretical interest. Terrill [1] carried out a detailed study of
the laminar flow through a porous annulus by assuming the swirl to be zero,
and presented a series solution for small suction or injection. The work also
included the asymptotic behaviour for large blowing or suction. In a subse-
quent work, Terrill [2] obtained general solution for the fully developed flow
in a permeable annulus. Huang [3] corrected the first order solution [1] for
small suction or injection. Verma and Gaur [4] investigated the flow in a
porous annulus with surface mass transfer in radial as well as circumferential
directions.

Skalak and Wang [5], Verma and Gaur [6] considered axial pulsatile flows
between two porous cylinders. Singh and Rajvanshi [7],[8] conducted a de-
tailed investigation on the viscous flow in a porous annulus under periodic
pressure gradient. They employed regular perturbation techniques for small
suction or injection while singular perturbation method was used to study
the problem involving large suction at both the cylinders or for large values
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of the frequency of pulsation. There is a good agreement between analytical
and numerical results in their work.

The investigations of flow through porous media are important in numer-
ous scientific and engineering applications, e.g. [9]. In particular, following
the introduction of the Beavers-Joseph [10] slip condition at a naturally per-
meable boundary, a large number of viscous incompressible flows through
porous channels, cylinders or between porous disks have been extended to
the case when one or both boundaries are made of naturally permeable ma-
terial [11],]14]. The present work is related to the pulsatile flow of a viscous
incompressible flow in the annular space of a porous cylinder within which a
naturally permeable tube is placed coaxially. It is assumed that the porous
material is of small permeability and fully saturated with a viscous incom-
pressible fluid. Using similarity transformation approach [7], we have been
able to reduce the governing partial differential equations to a set of coupled
nonlinear ODEs. The latter set of equations has been solved assuming the
suction parameter and the frequency of the pulsation to be small and using
BJ condition [10] at the surface of the inner permeable tube. The effect of
various flow parameters has been discussed in relation to velocity profiles and
pressure drop. The skin-friction at the surface of inner cylinder has also been
discussed. For small values of suction Reynolds number the numerical com-
putation has been done. These results have been compared with analytical
results.

2 Governing equations and boundary conditions

A fully developed incompressible laminar flow in the region bounded by two
long coaxial cylinders of radii a and b (a < b) respectively is considered. The
outer cylinder is porous and the inner cylindrical tube is made of a permeable
material, with small permeability, and fully saturated. It is assumed that the
flow is axisymmetric without any swirl velocity. A periodic pressure gradient
is imposed across the annulus. In the cylindrical polar coordinate system
(r,0,z), the z-axis is taken along the common axis of the cylinders. Let u
and w be the velocity components of the fluid in the positive directions of
r and z respectively. The governing Navier-Stokes equations in the annular
free fluid region (a < r < b) are

ouu, du_ 1o (% 10w Pu_u
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ot ar Yoz T por (1)
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The equation of continuity is
ou u Ow
a + - + 9 0 (3)

(2)
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In the above equations, t is the time, p is the pressure, p is the fluid density
and v is the kinematic viscosity. The flow in the permeable tube follows
Darcy’s law. It is further assumed that the flow is entirely due to axial
pressure gradient, so there is no radial flow. The governing equations with U
and W as velocity components are

U=0, W=—-———) 4
e (4)
k being the permeability of the porous medium and p is the coefficient of
viscosity. The boundary conditions on the outer cylinder are:

u=V, w=0atr=>0, (5)

V being the suction velocity at the surface of the outer cylinder. The slip con-
dition on the surface of the inner cylinder (r = a) is prescribed by the modified
BJ condition, applicable at a curved surface (see, for instance [15],[16].

u , dw

S w W), (6)

*

where v = , a® being a constant depending upon the porous medium.

In addition, the continuity of normal velocity on the interface of the inner
permeable material and the free fluid region is assumed.

Since the radial velocity is constant at the bounding wall, it is a function
of the radial coordinate, r, only. It can thus be written as

u = %F (r), (7)

F (r) being an arbitrary function to be determined. From (7) and the equation
of continuity (3), it is easily found that

w=-"F'(r)+6(rt), ®)

where ¢(r, t) is an arbitrary function of r and ¢, while prime denotes ordinary
derivative with respect to the variable r.
Equations (1), (7) and (8) yield:

_i:;(l:>2_’/(]j> +p1 (2, t) (9)

As the flow is pulsatile in nature, pi(z,t) and ¢(r,t) can be taken in the
form [7]:

p1(z,t) = L122 — Loz + L3 + Re [(L4z + Ls) exp (iwt)] , (10)
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¢ (r,t) = G(r) + Re[H(r)exp (iwt)], (11)

where Re stands for “real part of” and w is the frequency of pulsation.

From equations (7) to (11) one may notice that the velocity components, u
and w, and the pressure, p, are now expressed in terms of arbitrary functions,
F(r), G(r) and H(r), which need to be determined. On using these equa-
tions, (7) to (11), in the equation (2), we can easily obtain a set of ordinary,
nonlinear differential equations connecting F,G and H. The corresponding
boundary conditions are obtained by using these equations in conjunction
with equations (4), (5) and (6) together with continuity of pressure at the
interface of free fluid region and permeable medium. The continuity require-
ment of the radial velocity at » = a has also been maintained. The details
of the derivation are recorded in Appendix. However, the non-dimensional
form of the equations connecting the arbitrary functions, along with bound-
ary conditions, can be obtained by introducing the following non-dimensional
variables:

L4b?
4v

P = by (r) = BV f (1) .G (r) = Vg (), H (r) = ( )h<n> (12)

After a bit of algebra, it can be shown that the ODEs satisfied by newly
introduced functions, f, g, and h, are given by

1
nf" 4 SR - £ = 8 (13)
1
ng" +9 +5R (9f' —4d'f) =d (14)
1
nh”+h’—z‘a2h+§R(hf’—h’f) =1 (15)
where a set of non-dimensional parameters is defined as
RV Ly Lob? 5  wb? bV
=1 g= =, R=— 16
b 4V2 WV Y T v (16)

were R stands for the Reynolds number.

In the equations (13) through (15), primes now denote derivatives of var-
ious orders with respect to n while the parameter a now characterizes the
frequency of pulsation. It may be remarked that the equations (13) and (14)
depict the steady flow while the equation (15) correspond to the unsteady
component of the flow.

In terms of similarity functions, the boundary conditions can be shown to
be given by

F) =1, (1) =0,9(1) = 0,k (1) =0, (17)
16} 1 d

£ (m) = 4 () + 5C° =0, ¢ () — 39 (m) = SCT =0, (18)
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1 1
W (m0) = 5 () + 5" =0, f () =0 (19
where, another set of non-dimensional parameters, is
Ao 2 M@ (20)
_’YbQ’ —b27770—b2-

3 Solution of governing ODEs

We now proceed to solve the set of coupled nonlinear ODEs (13) to (15),
subject to the boundary conditions (17) to (18), analytically. To facilitate
this, we first of all resort to the approach of Skalak and Wang [5] and thus
assume a particular solution of equation (14) as

g(n)=— Lzl;f ]:1(77)

(21)

In view of (21), the ODEs (13) and (15) only need to be solved.
Introducinge= R/2 we can rewrite equations (13) and (15) as

77fm + f//+ c (f/2 o ff”) _ 5 (22)
nh" + 1 —ia’h+ € (hf' =W f) = -1 (23)

Assuming € to be small and positive, we next seek solutions of (22) and (23)
as regular perturbation solutions, in powers of €, by assuming

fm) = fom)+e€ fi(n)+0(€) (24)

h(n) = ho(n)+ € h1(n) + O (€?) (25)

B = Bo+ € B+ 0 (€?) (26)

Note that we are effectively finding solutions for small suction at the
boundary surface of the outer cylinder.  We mnext set out to obtain

perturbation equations for f(n) and h(n).

3.1 Perturbed equations: steady components

The zeroth and first order perturbed equations for f(n), together with bound-
ary conditions, can be easily obtained from equations (22), (24), (26) and
relevant equations in (17) to (19). After some algebra, the various order
equations and associated boundary conditions can be shown to be given by:

nfo’ + fo = Bo,
nfi"+ =0 =[5+ fofy (27)
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fo1)=1,f(1) =0, f1 (1) =0, f{ (1) =0,

fo(mo) =0, fg (o) — %fé (n0) + %ﬂoC* =0,

fi(no) =0, f1 (no) — %f{ (n0) + %510* =0 (28)

The solutions of linear ODEs (27), subject to the boundary conditions above,
have been obtained as

1
fo(n) = A1 4+ Aan + Asnlnn + 5501% (29)

1
fi(n) = Bo+ Bin+ Banlnn + (2ﬁ1 + B3> n* + Ban (Inn)® + Bsy®

+ 36774 + B7n?Inn + Bgn® Inn + Byn? (In 77)2 (30)

where Ny = Inng and

1 3 \
A1Qo = —mg +mj — 5778’No + A <no — 5778 + nSNo> + C*ng (=1 + No)

AsQo = no — nj +1oNo + A (=1 + 1) + C*ng
A3Qo = —10 + 15 — Ano — C*no
BoQo = A — noNo

1 1
Qo =no — 213 +mg + 5770N0 - 57781\70

1 3 .
+ A <—2 + 20 — S +773No) +C" (0 = 115 + 15 No)

1 1 A
BoQ1 = 5C1 (0 — 5 +moNo) + C (—1 10— 3No = A+ 2770)

1 3
+C3 [(770 — g + 2773N0> +A <—1 + 30— 770N0>}

1 1
+ Cy [2770 (=14 mno — noNo) + 5/\ (1 —mno+ 2noNo)]

+ C™ [C3mo (1 — No) + CynoNg — Co]

1 A
B1Q = 501 (—14—173 —2770N0) + Cy (1—770+N0+)\— ?70>

A
+Cs <1+770N0)\+>
o

1 1 1
+ Cy |:2 (1 — T]g + Ny + 773]\70) + 5/\ <77() — 2n9Ng — 770)]
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+ C* (Cy — C3 — CynoNy)
1
ByQ = 5C1 (=1 + 20 - mg) + Co(—1+m9 — A) + C5 (1 —ng + A)

1
+5C4 (=1 +2n0 — 1§ — 2\ +2Xng) + C* [=Ca + C5 + Cy (=1 + m9)]

A A
ﬁlQl =0 (1 — o + 770N0) + C'2(_]\70 + %) + Cs (NO — 770)

A
+Cy (—1+770—N0—)\+77>
0

1 1 3 1
Q1 =-14+2n0—n3— =No+=n3No+ A =2+ =no — moNo + —
2 2 2 20

+ C* (=1 +mno0 — noNo)
gA%—{—QAQAg

Bi= A4, B ——iﬂ (A3+643), B ——iﬂ2
4= 54143, 5=~y (43 2) s 6=~

1 1
By = — Ay — = A3 —
3= 5 150 542

1 1
By =243 — AyA3, Bg = —EA?ﬁm By = —§A§
2\ 2\
C =2Bs (—770 + )‘) + By <_2NO - Ng + 777 + UNO)
0 0
+ Bs (=308 + 6Ano) + Be (—4nj + 12)\n3)
+ By (—no — 2n0No + 3A + 2X1p0)
+ B (—n¢ — 303 No + 5Ano + 6AnoNy)
+ By (—2n0No — 210 NG + 2X + 6AN, + 2AN])
Cy = —Bsng — BynoNg — Bsng — Bena
— B No — BsngNo — Bong N§
03 = —B3 —B5 —B@,C4 == —233 —3B5 —4B6 —B7 —Bg

3.2 Perturbed equations: unsteady component

Having obtained analytical solution for f(n), and hence g(n), we now proceed
to solve the coupled second order nonlinear ODE(23) for h(n). The equations
(23) and (25) can be shown to yield the following set of equations for the
function h(n) :

nhi + o —io*ho = =1, nhi +hy —ia’hy = foh — foho,  (31)
while the associated set of boundary conditions are:

1 1,
ho(1) =0,  hg (o) — Xho (n0) + XC =0,

(1) = 0, (n0) = 1 () =0 (32
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The solution of the set of equations in (31) is sought in the form:

ho (1) = so (n) + o?s1 (n) + sz (n) + O (a°)
hi () = a0 (n) + o*q1 (n) + O (a*) (33)

It is worth mentioning that perturbation solutions (33) above correspond
to the assumption that the frequency of pulsation, w, is small. For large value
of w (i.e., @® >> 1), the problem leads to a singular perturbation problem.
This type of flow will be discussed in a separate study.

By substituting (33) into (31) and (32), and equating coefficients of like
powers of o, we can obtain a system of ordinary differential equations to-
gether with a set of modified boundary conditions. The solution of such a
system of boundary-value problems has been obtained, by a straight-forward
integration, as

ho (n) =1 —n+ Eilnn+ia®[-Cs + C3lnn + my (n)]

+ o*[Es + EsInn + ga (1)), (34)
where
ml(n)zn—in + E1 (nlnn — 2n) Co =1 =25 (35)
I 1 1 1

g2 (n) = Can — C5 (nlnn — 2n) — an - %n‘g’ + ZEWQ (3—Inn)  (36)
E1 (A —mnoNo) =m0 (=m0 + A +1—C%) (37)
o 3
Cs3 (A —noNo) =no |ma (no) — Am (o) — 1 2B (38)

E5 (A —m0No) = o [92 (0) — g2 (1) = Aga ()] Ee = —g2(1),  (39)
while the expression for the perturbed quantity, hy (1), is given by
hi(n) = D1+ Dalnn+n(—Ar — Az + A3 + 342E, — 6A3F))

1 1
+ §772 (3B0Er — 2060 + 243) + Engﬂo

1
+ §A1E1 (ln 77)2 +nlan (—Ag — AFE + 4A3E1)

1 I
— A3E1n(Inn)? — ZﬁOEIHQ In7n + ia?[D3 + Dylnn
+ n (Dl + A1 + 3A2€3 + AQ@ — Agﬁg — 2D2 — 6143073)

1 — _
+ g’f]2 (—3A1 —2A5 + 10A5E — 19A3E, + 3580C3 + 269Cs + 2143)

1
+ ﬁ”g (5760 Ey — 1805y + 16 A3 — 6 Asz)

1 — _ __
- @n‘*ﬁo +nlnn (Dy — A1Ey — AsCs + A3Ch + 445C3)
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1 R
— 7772 Inn (As — 6A3E1 + Ay Ey + 3oCs)

1
- %n *Inn (360E1 + As) + A103 (Inn)?

+ o (nn)? (AEy — 24505) — L AsBu (i), (10)
where Dy = Ay + Ay — A3 — 3421 + 6A3E1 — 350 E1 + 45 and
Dy (X —1oNo) = Mjo (A1 + Ag — 245 By + 2A3E7)
- éAﬁ(Q) (BoE1 — Bo + A3) — é>ﬁoﬂ% — A1 E1 Ny
+ M Ny (A3 + AsEy — 2A3F) + MAsE1ngNg

1 1
+ 5B B No + %no(BGAl + 3645 — 45 A3

— 108A5E + 216A3FE; — ?ﬂoEl + 7,80)

— 77(2) (A1 + Ay — A3 — 3A5F7 + 6A3E1)

1
+ 270 (36051 — 260 + 243)
1 1
+ Eﬁoﬁé‘ + 5141]51770]\702 — ngNo(Az + AsEy — 4A3Fy)

1
— AsExmg NG — ZﬁoEmgNo

— 5 — — — — 5
D3 =—-Dy — éAl — 3A5C5 — A3Cy + A3Cy + 2Dy + 6A3C5 + — Ay

18
5 19 3 —— 1 __ 35 19 23
— 1A2E1 + §A3E1 - gﬁoC:s - ZﬂOCQ - m!‘lg — 560E1 + @ﬂo
/A 5 . . .
Dy ( — N0> =-D; — §A1 —3A5C3 — AyCy + A3Cy + 2D
1o
19 I J—
+ 6A3C5 + 18A2 - A2E1 + §A3E1 — gﬂocs
35 23
- *ﬂoCQ 108A 50 1+ 288B

v no(D1 LA+ 3A203 + A202 — 45T — 2Dy — 6A5C5)
712770(1950191 — 60 + A3 —24s)

+ @50770 + noNo(D2 — A1 By — AyC3 + A3Cy 4 4A3C5)
- ingNo (A3 — 6A3E1 + AsE1 + (5Cs)

1 _ _
+ gng (=341 — 245 + 1042Fy — 19A3E7 + 360C5 + 28003 + 243)



60 E. Hamza, S. Rajvanshi and N. Sacheti

1 1 — 1 _
- %HSNO (360E1 + A3) + 514103]\73 + inoNg (A1E1 - 2A303)

1 _ - _
— 1A3E177(2)Ng + A (—D1 — A1 —2A5C5 — AsCs + Dy 4+ 2A3C5 + AlEl)

1 _ __
+ Z/\n() (3A1 +2A9 — 9AsFE + 13A3E — 26yC3 — 2580Cy — A3)

1 1
+ 5 i (5160 Er + 1800 — 1445 + 6A2) — = oy
1 . o . .
— ;AA103N0 + Ny (—D2 + AyC3 — A3Cy — 2A303)
0
1 — 1
+ 5AnONO (A3 — BA3E; + A2Ey + 3oCs) + EAU(%NO (360E1 + A3)

1 1
— 5AN§ (A1E — 2A303) + §AA3E1770N§

4 Discussion

For numerical work the value of (a/b) is fixed at 0.5, so that gy = 0.25.

4.1 Velocity profiles

The variations of radial and axial velocity profiles have been shown in Figs.
1 through 5. 1 shows the radial velocity profiles for R = 0.05 and A = 0.1.
The effect of the parameter C* has been depicted on these profiles. With
increase in the value of this parameter, the magnitude of radial velocity is
decreased in the free fluid region. The 2 illustrates the effect of the suction
Reynolds number, R, on radial velocity profiles for a fixed C* (= 0.05) and
A(=0.1). With an increase in R, the magnitude of radial velocity can be
seen to enhance, although the quantitative difference is now less marked (cf.
profiles in Figs. 1 and 2). The 3 shows the effect of C* on axial velocity
profiles. It is interesting to note that the slip velocity on the surface of the
inner permeable cylinder is more pronounced for small C*. An increase in
C* apparently decreases the slip on the inner surface. Furthermore, the axial
velocity assumes a maximum in a region which is nearer to this inner cylinder.
The 4 exhibits the effect of the suction Reynolds number (R) on the axial
velocity profiles. An increase in R has a tendency to enhance the velocity slip
on the permeable (inner) cylinder, a phenomenon similar to that observed in
the previous Figure but less pronounced. In the 5, we have shown unsteady
(fluctuating) component of axial velocity for R = 0.05,a? = 0.01,C* = 0.05
and A = 0.1 at different times. It is noted that axial velocity profiles have
critical points closer to the inner boundary because of the forward momentum
imparted to the flow by the permeable surface. The critical points occur at
n = 0.450 for wt = 0,37/4 and 7. There is a slight variation in case of
wt = 7/4; it has been observed to occur at n = 0.455. This fluctuating
component of velocity can be seen to reverse its direction for values of wt
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between 7/2 and 7, thus likely to have considerable effect on the resulting
axial velocity.

o
= 2
E ¥
_.-" o
E
)
ﬁ__."'f SR T = .-"'-.‘
v VL
®ora ' = &
gaF f— e
(3] w =
o r Fd
& = ____.-f
4 AL o o b 1R,
II' o -
'

Figure 2: Variation of Radial Velocity
Figure 1: Variation of Radial Velocity (for fixed C*)
(for fixed R)

By 3
"'\._"-.
N ona <l T TR L "
T £ £ fa & i i
Figure 3: Variation of Axial Velocity Figure 4: Variation of Axial Velocity
(for fixed R) (for fixed C*)

4.2 Pressure drop

The non-dimensional pressure drop, p*, across the annulus is obtained from
the equations (9), (10) and (12) following [7]. It is defined as

L2 P
P—f—% (41)

As an illustration, we have shown the variation of p* for C* = 0.05,\ =
0.1,m0 = 0.25 and R = 0.02 in the 6. The pressure profile assumes maximum
in the central region.
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Figure 5: Variation of Unsteady Axial

Velocity Figure 6: Variation of Pressure Drop

(for fixed C* and R)

4.3 Skin friction

The shear stress on the surface of inner cylinder is given by

(v s = 11 (4
Trelwall = H\ 5 T g,
Using (7), (8), (11) and (12) we get

1/2

(Tr2) wan = % [—22" " (n0) + ¢’ (no) + Re {L*1' (no) exp (iwt)}] (42)

L4b?
where z* = d and L* = el

v
We define a coeflicient of skin-friction in the non-dimensional form as

b

Cr = ﬂ (Trz)wall

(43)

Using (18), (19) and (42) in equation (43) we have

1/2
_ "o o d * _ gl *Re — C" exp (1w
CF_T [(2 ﬁ> (BC* — f') + L*Re {(h — C*) exp (iwt)} (44)

The variation of C% (E )\Cp/né/2> has been shown against wt in Fig. 7.

It is noted that the variation in the values of |C}| increases with increase in
L* during one period. Even though the periodic character of the profile is
maintained, the amplitude is relatively less in case of L* = 0.5.

5 Numerical solution and comparison

The perturbation results of section 3 are strictly valid only when € = 0(1)
and a? = 0(1). To test the accuracy of these results we need to integrate
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Figure 7: Variation of Skin-friction

the governing equations numerically. To solve the two-point boundary value
problem expressed by equations (22), (23) and (17) - (??), we apply a shooting
and matching technique. The resulting equations were integrated by the use of
the Numerical Algorithms Group (NAG) subroutine (D02 AGF) which solves
the two-point boundary value problem for a system of ordinary differential
equations, using the initial value techniques (D02 ABF) and Newton iteration.
The D02 AGF subroutine requires initial estimates for the unknown boundary
conditions at 7 = 79 and n = 1. For € = 0(1) and a® = 0(1), these
missing values were provided by the regular perturbation results of section 3.
This being successful, results for larger values of € and a2 can be obtained
by progressively increasing € and o? by small amounts and estimating the
unknown boundary conditions from the previously computed set of results,
as in Hamza [17].

f (n)] 1 (n)]

n Perturbation | Numerical | Perturbation | Numerical
0.40 0.2073 0.2003 0.1902 0.1902
0.55 0.4913 0.4846 01829 0.1829
0.70 0.7520 0.7481 0.1408 0.1408
0.85 0.9335 0.9323 0.0775 0.0775

Table 1: Comparison of Perturbation and Numerical Solutions for R = 0.02, C* =
0.05, A =0.10, « = 0.10

The comparison of |f (n)| and |k (n)| obtained by perturbation and numer-
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ical solution for small suction case has been presented in the Table 1. The
tabulated values show a good agreement of the results up to four decimal
places.

6 Appendix: Derivation of equations (18) - (19)

Equation (7) shows gu =0 From (8) and (11) we have
z

1
w = —;zF’ (r)+ G (r) + Re[H (r) exp (iwt)],
8w 1 / 1 ! !/ ! .
o = T—QZF (r) — ;zF (r)+ G’ (r) + Re [H' (r) exp (iwt)] (45)
Assuming continuity of pressure at the interface of free fluid region and per-
meable medium, (4), (9) and (10) give

W= ’Z) 2017 — Ly + Re { Ly exp (iwt) )] (46)

Using equations gu =0, (45) and (46) in (6) at the inner cylinder r = a,
z
we have
z

[F’ (a) (i 4 7> 2 (a)} + @ () =G (a) +

a

Re [{H' (a) — vH (a)} exp (iwt)}%—fyzp [2L1z — Ly + Re{Ly exp (iwt) }] = 0

Equating the coefficients of z, terms independent of z and coefficients of
exp (iwt) , we have

@ (5 7) - o @+ 2
a a a W
L L
& (@) —~Gla) = 2PL2 _ o 1 (a) = yH (a) + ”kz L0, (47

On using the continuity requirement of radial velocity at r = a, equation (7)
givesF' (a) = 0 Introducing non-dimensional variables and parameters defined
by (12), (16) and (20) in (47) and F (a) = 0, we get equations (18) through
(??7). Using (7) and (8) in the boundary conditions at the outer cylinder (5)
and following similar procedure we get (17).
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