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Abstract
A fully developed, axisymmetric, pulsatile motion of an incompressible Newtonian �uid,
under the action of an oscillatory pressure gradient, has been considered in this work. The
�ow is assumed to take place in the annular space between two coaxial circular cylinders,
the outer one a porous cylinder of uniform permeability and the inner one a naturally
permeable tube. There arises a coupled �ow, which has been analysed by solving the
Navier-Stokes equations in the free �uid region and the Darcy's equation in the porous
region, together with the Beavers-Joseph slip condition at the free �uid-porous medium
interface. Using an appropriate set of similarity variables, the governing partial di�erential
equations have been transformed to a system of nonlinear ordinary di�erential equations.
The solution of the resulting system, together with appropriate boundary conditions, has
been obtained, for a special case, by a perturbation approach. It has been assumed that
the frequency of pulsation and the suction parameter are small (<< 1). The variation of
velocity pro�les, pressure drop and skin friction has been illustrated in a number of cases
of interest. The analytical results have been compared with numerical solution for small
values of suction parameter.

Keywords: Pulsatile �ow, similarity analysis, porous annulus, Darcy's law, Navier-Stokes
equations
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1 Introduction

The mathematical analysis of viscous laminar �ow through channels with
porous walls has attracted a lot of attention due to their industrial appli-
cations and theoretical interest. Terrill [1] carried out a detailed study of
the laminar �ow through a porous annulus by assuming the swirl to be zero,
and presented a series solution for small suction or injection. The work also
included the asymptotic behaviour for large blowing or suction. In a subse-
quent work, Terrill [2] obtained general solution for the fully developed �ow
in a permeable annulus. Huang [3] corrected the �rst order solution [1] for
small suction or injection. Verma and Gaur [4] investigated the �ow in a
porous annulus with surface mass transfer in radial as well as circumferential
directions.

Skalak and Wang [5], Verma and Gaur [6] considered axial pulsatile �ows
between two porous cylinders. Singh and Rajvanshi [7],[8] conducted a de-
tailed investigation on the viscous �ow in a porous annulus under periodic
pressure gradient. They employed regular perturbation techniques for small
suction or injection while singular perturbation method was used to study
the problem involving large suction at both the cylinders or for large values
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of the frequency of pulsation. There is a good agreement between analytical
and numerical results in their work.

The investigations of �ow through porous media are important in numer-
ous scienti�c and engineering applications, e.g. [9]. In particular, following
the introduction of the Beavers-Joseph [10] slip condition at a naturally per-
meable boundary, a large number of viscous incompressible �ows through
porous channels, cylinders or between porous disks have been extended to
the case when one or both boundaries are made of naturally permeable ma-
terial [11],[14]. The present work is related to the pulsatile �ow of a viscous
incompressible �ow in the annular space of a porous cylinder within which a
naturally permeable tube is placed coaxially. It is assumed that the porous
material is of small permeability and fully saturated with a viscous incom-
pressible �uid. Using similarity transformation approach [7], we have been
able to reduce the governing partial di�erential equations to a set of coupled
nonlinear ODEs. The latter set of equations has been solved assuming the
suction parameter and the frequency of the pulsation to be small and using
BJ condition [10] at the surface of the inner permeable tube. The e�ect of
various �ow parameters has been discussed in relation to velocity pro�les and
pressure drop. The skin-friction at the surface of inner cylinder has also been
discussed. For small values of suction Reynolds number the numerical com-
putation has been done. These results have been compared with analytical
results.

2 Governing equations and boundary conditions

A fully developed incompressible laminar �ow in the region bounded by two
long coaxial cylinders of radii a and b (a < b) respectively is considered. The
outer cylinder is porous and the inner cylindrical tube is made of a permeable
material, with small permeability, and fully saturated. It is assumed that the
�ow is axisymmetric without any swirl velocity. A periodic pressure gradient
is imposed across the annulus. In the cylindrical polar coordinate system
(r, θ, z), the z-axis is taken along the common axis of the cylinders. Let u
and w be the velocity components of the �uid in the positive directions of
r and z respectively. The governing Navier-Stokes equations in the annular
free �uid region (a < r < b) are

∂u

∂t
+ u

∂u

∂r
+ w

∂u

∂z
= −1

ρ

∂p

∂r
+ ν

(

∂2u

∂r2
+

1

r

∂u

∂r
+

∂2u

∂z2
− u

r2

)

(1)

∂w

∂t
+ u

∂w

∂r
+ w

∂w

∂z
= −1

ρ

∂p

∂z
+ ν

(

∂2w

∂r2
+

1

r

∂w

∂r
+

∂2w

∂z2
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(2)

The equation of continuity is

∂u

∂r
+

u

r
+

∂w

∂z
= 0 (3)
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In the above equations, t is the time, p is the pressure, ρ is the �uid density
and ν is the kinematic viscosity. The �ow in the permeable tube follows
Darcy's law. It is further assumed that the �ow is entirely due to axial
pressure gradient, so there is no radial �ow. The governing equations with U
and W as velocity components are

U = 0, W = −k

µ

∂P

∂z
, (4)

k being the permeability of the porous medium and µ is the coe�cient of
viscosity. The boundary conditions on the outer cylinder are:

u = V, w = 0 at r = b, (5)

V being the suction velocity at the surface of the outer cylinder. The slip con-
dition on the surface of the inner cylinder (r = a) is prescribed by the modi�ed
BJ condition, applicable at a curved surface (see, for instance [15],[16].

∂u

∂z
+

∂w

∂r
= γ (w − W ) , (6)

where γ =
α∗

√
k
, α∗ being a constant depending upon the porous medium.

In addition, the continuity of normal velocity on the interface of the inner
permeable material and the free �uid region is assumed.

Since the radial velocity is constant at the bounding wall, it is a function
of the radial coordinate, r, only. It can thus be written as

u =
1

r
F (r) , (7)

F (r) being an arbitrary function to be determined. From (7) and the equation
of continuity (3), it is easily found that

w = −z

r
F ′ (r) + φ (r, t) , (8)

where φ(r, t) is an arbitrary function of r and t, while prime denotes ordinary
derivative with respect to the variable r.

Equations (1), (7) and (8) yield:

−p

ρ
=

1

2

(

F

r

)2

− ν

(

F ′

r

)

+ p1 (z, t) (9)

As the �ow is pulsatile in nature, p1(z, t) and φ(r, t) can be taken in the
form [7]:

p1 (z, t) = L1z
2 − L2z + L3 + Re [(L4z + L5) exp (iωt)] , (10)
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φ (r, t) = G (r) + Re [H(r) exp (iωt)] , (11)

where Re stands for �real part of� and ω is the frequency of pulsation.
From equations (7) to (11) one may notice that the velocity components, u

and w, and the pressure, p, are now expressed in terms of arbitrary functions,
F (r) , G(r) and H(r), which need to be determined. On using these equa-
tions, (7) to (11), in the equation (2), we can easily obtain a set of ordinary,
nonlinear di�erential equations connecting F,G and H. The corresponding
boundary conditions are obtained by using these equations in conjunction
with equations (4), (5) and (6) together with continuity of pressure at the
interface of free �uid region and permeable medium. The continuity require-
ment of the radial velocity at r = a has also been maintained. The details
of the derivation are recorded in Appendix. However, the non-dimensional
form of the equations connecting the arbitrary functions, along with bound-
ary conditions, can be obtained by introducing the following non-dimensional
variables:

r = b
√

η, F (r) = bV f (η) , G (r) = V g (η) ,H (r) =

(

L4b
2

4ν

)

h (η) (12)

After a bit of algebra, it can be shown that the ODEs satis�ed by newly
introduced functions, f, g, and h, are given by

ηf ′′′ + f ′′ +
1

2
R

(

f ′2 − ff ′′
)

= β (13)

ηg′′ + g′ +
1

2
R

(

gf ′ − g′f
)

= d (14)

ηh′′ + h′ − iα2h +
1

2
R

(

hf ′ − h′f
)

= −1 (15)

where a set of non-dimensional parameters is de�ned as

β = −Rb2L1

4V 2
, d =

L2b
2

4νV
, α2 =

ωb2

4ν
, R =

b V

ν
, (16)

were R stands for the Reynolds number.
In the equations (13) through (15), primes now denote derivatives of var-

ious orders with respect to η while the parameter α now characterizes the
frequency of pulsation. It may be remarked that the equations (13) and (14)
depict the steady �ow while the equation (15) correspond to the unsteady
component of the �ow.

In terms of similarity functions, the boundary conditions can be shown to
be given by

f (1) = 1, f ′ (1) = 0, g (1) = 0, h (1) = 0, (17)

f ′′ (η0) −
1

λ
f ′ (η0) +

β

λ
C∗ = 0, g′ (η0) −

1

λ
g (η0) −

d

λ
C∗ = 0, (18)
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h′ (η0) −
1

λ
h (η0) +

1

λ
C∗ = 0, f (η0) = 0 (19)

where, another set of non-dimensional parameters, is

λ =
2a

γb2
, C∗ =

4k

b2
, η0 =

a2

b2
. (20)

3 Solution of governing ODEs

We now proceed to solve the set of coupled nonlinear ODEs (13) to (15),
subject to the boundary conditions (17) to (18), analytically. To facilitate
this, we �rst of all resort to the approach of Skalak and Wang [5] and thus
assume a particular solution of equation (14) as

g (η) = −L2f
′ (η)

bL1

(21)

In view of (21), the ODEs (13) and (15) only need to be solved.
Introducing∈= R/2 we can rewrite equations (13) and (15) as

ηf ′′′ + f ′′+ ∈
(

f ′2 − ff ′′
)

= β (22)

ηh′′ + h′ − iα2h+ ∈
(

hf ′ − h′f
)

= −1 (23)

Assuming ∈ to be small and positive, we next seek solutions of (22) and (23)
as regular perturbation solutions, in powers of ∈, by assuming

f (η) = f0 (η) + ∈ f1 (η) + O
(

∈2
)

(24)

h (η) = h0 (η) + ∈ h1 (η) + O
(

∈2
)

(25)

β = β0+ ∈ β1 + O
(

∈2
)

(26)

Note that we are e�ectively �nding solutions for small suction at the
boundary surface of the outer cylinder. We next set out to obtain
perturbation equations for f(η) and h(η).

3.1 Perturbed equations: steady components

The zeroth and �rst order perturbed equations for f(η), together with bound-
ary conditions, can be easily obtained from equations (22), (24), (26) and
relevant equations in (17) to (19). After some algebra, the various order
equations and associated boundary conditions can be shown to be given by:

ηf ′′′
0 + f ′′

0 = β0,

ηf ′′′
1 + f ′′

1 = β1 − f ′2
0 + f0f

′′
0 (27)



56 E. Hamza, S. Rajvanshi and N. Sacheti

f0(1) = 1, f ′
0 (1) = 0, f1 (1) = 0, f ′

1 (1) = 0,

f0(η0) = 0, f ′′
0 (η0) −

1

λ
f ′
0 (η0) +

1

λ
β0C

∗ = 0,

f1(η0) = 0, f ′′
1 (η0) −

1

λ
f ′
1 (η0) +

1

λ
β1C

∗ = 0 (28)

The solutions of linear ODEs (27), subject to the boundary conditions above,
have been obtained as

f0 (η) = A1 + A2η + A3η ln η +
1

2
β0η

2 (29)

f1 (η) = B0 + B1η + B2η ln η +

(

1

2
β1 + B3

)

η2 + B4η (ln η)2 + B5η
3

+ B6η
4 + B7η

2 ln η + B8η
3 ln η + B9η

2 (ln η)2 (30)

where N0 = ln η0 and

A1Q0 = −η2

0 + η3

0 − 1

2
η3

0N0 + λ

(

η0 −
3

2
η2

0 + η2

0N0

)

+ C∗η2

0 (−1 + N0)

A2Q0 = η0 − η2

0 + η0N0 + λ (−1 + η0) + C∗η0

A3Q0 = −η0 + η2

0 − λη0 − C∗η0

β0Q0 = λ − η0N0

Q0 = η0 − 2η2

0 + η3

0 +
1

2
η0N0 −

1

2
η3

0N0

+ λ

(

−1

2
+ 2η0 −

3

2
η2

0 + η2

0N0

)

+ C∗
(

η0 − η2

0 + η2

0N0

)

B0Q1 =
1

2
C1

(

η0 − η2

0 + η0N0

)

+ C2

(

−1 + η0 −
1

2
N0 − λ +

λ

2η0

)

+ C3

[(

η0 − η2

0 +
1

2
η2

0N0

)

+ λ

(

−1 +
3

2
η0 − η0N0

)]

+ C4

[

1

2
η0 (−1 + η0 − η0N0) +

1

2
λ (1 − η0 + 2η0N0)

]

+ C∗ [C3η0 (1 − N0) + C4η0N0 − C2]

B1Q1 =
1

2
C1

(

−1 + η2

0 − 2η0N0

)

+ C2

(

1 − η0 + N0 + λ − λ

η0

)

+ C3

(

−1 + η0 − N0 − λ +
λ

η0

)

+ C4

[

1

2

(

1 − η2

0 + N0 + η2

0N0

)

+
1

2
λ

(

η0 − 2η0N0 −
1

η0

)]
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+ C∗ (C2 − C3 − C4η0N0)

B2Q1 =
1

2
C1

(

−1 + 2η0 − η2

0

)

+ C2(−1 + η0 − λ) + C3 (1 − η0 + λ)

+
1

2
C4

(

−1 + 2η0 − η2

0 − 2λ + 2λη0

)

+ C∗ [−C2 + C3 + C4 (−1 + η0)]

β1Q1 = C1 (1 − η0 + η0N0) + C2(−N0 +
λ

η0

) + C3

(

N0 −
λ

η0

)

+ C4

(

−1 + η0 − N0 − λ +
λ

η0

)

Q1 = −1 + 2η0 − η2

0 − 1

2
N0 +

1

2
η2

0N0 + λ

(

−2 +
3

2
η0 − η0N0 +

1

2η0

)

+ C∗ (−1 + η0 − η0N0)

B3 =
1

2
A1β0 −

1

2
A2

2 −
7

2
A2

3 + 2A2A3

B4 =
1

2
A1A3, B5 = − 1

72
β0 (A3 + 6A2) , B6 = − 1

72
β2

0

B7 = 2A2

3 − A2A3, B8 = − 1

12
A3β0, B9 = −1

2
A2

3

C1 = 2B3 (−η0 + λ) + B4

(

−2N0 − N2

0 +
2λ

η0

+
2λ

η0

N0

)

+ B5

(

−3η2

0 + 6λη0

)

+ B6

(

−4η3

0 + 12λη2

0

)

+ B7 (−η0 − 2η0N0 + 3λ + 2λη0)

+ B8

(

−η2

0 − 3η2

0N0 + 5λη0 + 6λη0N0

)

+ B9

(

−2η0N0 − 2η0N
2

0 + 2λ + 6λN0 + 2λN2

0

)

C2 = −B3η
2

0 − B4η0N
2

0 − B5η
3

0 − B6η
4

0

− B7η
2

0N0 − B8η
3

0N0 − B9η
2

0N
2

0

C3 = −B3 − B5 − B6, C4 = −2B3 − 3B5 − 4B6 − B7 − B8

3.2 Perturbed equations: unsteady component

Having obtained analytical solution for f(η), and hence g(η), we now proceed
to solve the coupled second order nonlinear ODE(23) for h(η). The equations
(23) and (25) can be shown to yield the following set of equations for the
function h(η) :

ηh′′
0 + h′

0 − iα2h0 = −1, ηh′′
1 + h′

1 − iα2h1 = f0h
′
0 − f ′

0h0, (31)

while the associated set of boundary conditions are:

h0(1) = 0, h′
0 (η0) −

1

λ
h0 (η0) +

1

λ
C∗ = 0,

h1(1) = 0, h′
1 (η0) −

1

λ
h1 (η0) = 0 (32)
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The solution of the set of equations in (31) is sought in the form:

h0 (η) = s0 (η) + α2s1 (η) + α4s2 (η) + O
(

α6
)

h1 (η) = q0 (η) + α2q1 (η) + O
(

α4
)

(33)

It is worth mentioning that perturbation solutions (33) above correspond
to the assumption that the frequency of pulsation, ω, is small. For large value
of ω (i.e., α2 >> 1), the problem leads to a singular perturbation problem.
This type of �ow will be discussed in a separate study.

By substituting (33) into (31) and (32), and equating coe�cients of like
powers of α2, we can obtain a system of ordinary di�erential equations to-
gether with a set of modi�ed boundary conditions. The solution of such a
system of boundary-value problems has been obtained, by a straight-forward
integration, as

h0 (η) = 1 − η + E1 ln η + iα2[−C2 + C3 ln η + m1 (η)]

+ α4[E6 + E5 ln η + g2 (η)], (34)

where

m1 (η) = η − 1

4
η2 + E1 (η ln η − 2η) C2 =

3

4
− 2E1 (35)

g2 (η) = C2η − C3 (η ln η − 2η) − 1

4
η2 +

1

36
η3 +

1

4
E1η

2 (3 − ln η) (36)

E1 (λ − η0N0) = η0 (−η0 + λ + 1 − C∗) (37)

C3 (λ − η0N0) = η0

[

m1 (η0) − λm′
1 (η0) −

3

4
+ 2E1

]

(38)

E5 (λ − η0N0) = η0

[

g2 (η0) − g2 (1) − λg′2 (η0)
]

E6 = −g2 (1) , (39)

while the expression for the perturbed quantity, h1 (η) , is given by

h1 (η) = D1 + D2 ln η + η (−A1 − A2 + A3 + 3A2E1 − 6A3E1)

+
1

8
η2 (3β0E1 − 2β0 + 2A3) +

1

18
η3β0

+
1

2
A1E1 (ln η)2 + η ln η (−A3 − A2E1 + 4A3E1)

− A3E1η (ln η)2 − 1

4
β0E1η

2 ln η + iα2[D3 + D4 ln η

+ η
(

D1 + A1 + 3A2C3 + A2C2 − A3C2 − 2D2 − 6A3C3

)

+
1

8
η2

(

−3A1 − 2A2 + 10A2E1 − 19A3E1 + 3β0C3 + 2β0C2 + 2A3

)

+
1

216
η3 (57β0E1 − 18β0 + 16A3 − 6A2)

+
1

288
η4β0 + η ln η

(

D2 − A1E1 − A2C3 + A3C2 + 4A3C3

)
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− 1

4
η2 ln η

(

A3 − 6A3E1 + A2E1 + β0C3

)

− 1

36
η3 ln η (3β0E1 + A3) +

1

2
A1C3 (ln η)2

+
1

2
η (ln η)2

(

A1E1 − 2A3C3

)

− 1

4
A3E1η

2 (ln η)2], (40)

where D1 = A1 + A2 − 5

4
A3 − 3A2E1 + 6A3E1 − 3

8
β0E1 + 7

36
β0 and

D2 (λ − η0N0) = λη0 (A1 + A2 − 2A2E1 + 2A3E1)

− 1

2
λη2

0 (β0E1 − β0 + A3) −
1

6
λβ0η

3

0 − λA1E1N0

+ λη0N0 (A3 + A2E1 − 2A3E1) + λA3E1η0N
2

0

+
1

2
λβ0E1η

2

0N0 +
1

36
η0(36A1 + 36A2 − 45A3

− 108A2E1 + 216A3E1 −
27

2
β0E1 + 7β0)

− η2

0 (A1 + A2 − A3 − 3A2E1 + 6A3E1)

+
1

8
η3

0(3β0E1 − 2β0 + 2A3)

+
1

18
β0η

4

0 +
1

2
A1E1η0N

2

0 − η2

0N0(A3 + A2E1 − 4A3E1)

− A3E1η
2

0N
2

0 − 1

4
β0E1η

3

0N0

D3 = −D1 −
5

8
A1 − 3A2C3 − A2C2 + A3C2 + 2D2 + 6A3C3 +

5

18
A2

− 5

4
A2E1 +

19

8
A3E1 −

3

8
β0C3 −

1

4
β0C2 −

35

108
A3 −

19

72
β0E1 +

23

288
β0

D4

(

λ

η0

− N0

)

= −D1 −
5

8
A1 − 3A2C3 − A2C2 + A3C2 + 2D2

+ 6A3C3 +
5

18
A2 −

5

4
A2E1 +

19

18
A3E1 −

3

8
β0C3

− 1

4
β0C2 −

35

108
A3 −

19

72
β0E1 +

23

288
β0

+ η0(D1 + A1 + 3A2C3 + A2C2 − A3C2 − 2D2 − 6A3C3)

+
1

72
η3

0(19β0E1 − 6β0 +
16

3
A3 − 2A2)

+
1

288
β0η

4

0 + η0N0(D2 − A1E1 − A2C3 + A3C2 + 4A3C3)

− 1

4
η2

0N0

(

A3 − 6A3E1 + A2E1 + β0C3

)

+
1

8
η2

0

(

−3A1 − 2A2 + 10A2E1 − 19A3E1 + 3β0C3 + 2β0C2 + 2A3

)
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− 1

36
η3

0N0 (3β0E1 + A3) +
1

2
A1C3N

2

0 +
1

2
η0N

2

0

(

A1E1 − 2A3C3

)

− 1

4
A3E1η

2

0N
2

0 + λ
(

−D1 − A1 − 2A2C3 − A2C2 + D2 + 2A3C3 + A1E1

)

+
1

4
λη0

(

3A1 + 2A2 − 9A2E1 + 13A3E1 − 2β0C3 − 2β0C2 − A3

)

+
1

72
λη2

0 (−51β0E1 + 18β0 − 14A3 + 6A2) −
1

72
β0η

3

0

− 1

η0

λA1C3N0 + N0

(

−D2 + A2C3 − A3C2 − 2A3C3

)

+
1

2
λη0N0

(

A3 − 5A3E1 + A2E1 + β0C3

)

+
1

12
λη2

0N0 (3β0E1 + A3)

− 1

2
λN2

0

(

A1E1 − 2A3C3

)

+
1

2
λA3E1η0N

2

0

4 Discussion

For numerical work the value of (a/b) is �xed at 0.5, so that η0 = 0.25.

4.1 Velocity pro�les

The variations of radial and axial velocity pro�les have been shown in Figs.
1 through 5. 1 shows the radial velocity pro�les for R = 0.05 and λ = 0.1.
The e�ect of the parameter C∗ has been depicted on these pro�les. With
increase in the value of this parameter, the magnitude of radial velocity is
decreased in the free �uid region. The 2 illustrates the e�ect of the suction
Reynolds number, R, on radial velocity pro�les for a �xed C∗ (= 0.05) and
λ (= 0.1). With an increase in R, the magnitude of radial velocity can be
seen to enhance, although the quantitative di�erence is now less marked (cf.
pro�les in Figs. 1 and 2). The 3 shows the e�ect of C∗ on axial velocity
pro�les. It is interesting to note that the slip velocity on the surface of the
inner permeable cylinder is more pronounced for small C∗. An increase in
C∗ apparently decreases the slip on the inner surface. Furthermore, the axial
velocity assumes a maximum in a region which is nearer to this inner cylinder.
The 4 exhibits the e�ect of the suction Reynolds number (R) on the axial
velocity pro�les. An increase in R has a tendency to enhance the velocity slip
on the permeable (inner) cylinder, a phenomenon similar to that observed in
the previous Figure but less pronounced. In the 5, we have shown unsteady
(�uctuating) component of axial velocity for R = 0.05, α2 = 0.01, C∗ = 0.05
and λ = 0.1 at di�erent times. It is noted that axial velocity pro�les have
critical points closer to the inner boundary because of the forward momentum
imparted to the �ow by the permeable surface. The critical points occur at
η = 0.450 for ωt = 0, 3π/4 and π. There is a slight variation in case of
ωt = π/4; it has been observed to occur at η = 0.455. This �uctuating
component of velocity can be seen to reverse its direction for values of ωt
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between π/2 and π, thus likely to have considerable e�ect on the resulting
axial velocity.

Figure 1: Variation of Radial Velocity
(for �xed R)

Figure 2: Variation of Radial Velocity
(for �xed C∗)

Figure 3: Variation of Axial Velocity
(for �xed R)

Figure 4: Variation of Axial Velocity
(for �xed C∗)

4.2 Pressure drop

The non-dimensional pressure drop, p∗, across the annulus is obtained from
the equations (9), (10) and (12) following [7]. It is de�ned as

p∗ =
2f ′

R
− f2

2η
(41)

As an illustration, we have shown the variation of p∗ for C∗ = 0.05, λ =
0.1, η0 = 0.25 and R = 0.02 in the 6. The pressure pro�le assumes maximum
in the central region.
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Figure 5: Variation of Unsteady Axial
Velocity

Figure 6: Variation of Pressure Drop
(for �xed C∗ and R)

4.3 Skin friction

The shear stress on the surface of inner cylinder is given by

(τrz)wall = µ

(

∂w

∂r
+

∂u

∂z

)

Using (7), (8), (11) and (12) we get

(τrz)wall =
2µV η

1/2

0

b

[

−2z∗f ′′ (η0) + g′ (η0) + Re
{

L∗h′ (η0) exp (iωt)
}]

(42)

where z∗ =
z

b
and L∗ =

L4b
2

4νV
We de�ne a coe�cient of skin-friction in the non-dimensional form as

CF =
b

2V µ
(τrz)wall (43)

Using (18), (19) and (42) in equation (43) we have

CF =
η

1/2

0

λ

[(

2z∗ − d

β

)

(

βC∗ − f ′
)

+ L∗ Re {(h − C∗) exp (iωt)}
]

(44)

The variation of C∗
F

(

≡ λCF /η
1/2

0

)

has been shown against ωt in Fig. 7.

It is noted that the variation in the values of |C∗
F | increases with increase in

L∗ during one period. Even though the periodic character of the pro�le is
maintained, the amplitude is relatively less in case of L∗ = 0.5.

5 Numerical solution and comparison

The perturbation results of section 3 are strictly valid only when ∈ = 0 (1)
and α2 = 0 (1). To test the accuracy of these results we need to integrate
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Figure 7: Variation of Skin-friction

the governing equations numerically. To solve the two-point boundary value
problem expressed by equations (22), (23) and (17) - (??), we apply a shooting
and matching technique. The resulting equations were integrated by the use of
the Numerical Algorithms Group (NAG) subroutine (D02 AGF) which solves
the two-point boundary value problem for a system of ordinary di�erential
equations, using the initial value techniques (D02 ABF) and Newton iteration.
The D02 AGF subroutine requires initial estimates for the unknown boundary
conditions at η = η0 and η = 1. For ∈ = 0 (1) and α2 = 0 (1) , these
missing values were provided by the regular perturbation results of section 3.
This being successful, results for larger values of ∈ and α2 can be obtained
by progressively increasing ∈ and α2 by small amounts and estimating the
unknown boundary conditions from the previously computed set of results,
as in Hamza [17].

|f (η)| |h (η)|
η Perturbation Numerical Perturbation Numerical

0.40 0.2073 0.2003 0.1902 0.1902

0.55 0.4913 0.4846 01829 0.1829

0.70 0.7520 0.7481 0.1408 0.1408

0.85 0.9335 0.9323 0.0775 0.0775

Table 1: Comparison of Perturbation and Numerical Solutions for R = 0.02, C∗ =
0.05, λ = 0.10, α = 0.10

The comparison of |f (η)| and |h (η)| obtained by perturbation and numer-
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ical solution for small suction case has been presented in the Table 1. The
tabulated values show a good agreement of the results up to four decimal
places.

6 Appendix: Derivation of equations (18) - (19)

Equation (7) shows
∂u

∂z
= 0 From (8) and (11) we have

w = −1

r
zF ′ (r) + G (r) + Re [H (r) exp (iωt)] ,

∂w

∂r
=

1

r2
zF ′ (r) − 1

r
zF ′′ (r) + G′ (r) + Re

[

H ′ (r) exp (iωt)
]

(45)

Assuming continuity of pressure at the interface of free �uid region and per-
meable medium, (4), (9) and (10) give

W =
kρ

µ
[2L1Z − L2 + Re {L4 exp (iωt)}] (46)

Using equations
∂u

∂z
= 0, (45) and (46) in (6) at the inner cylinder r = a,

we have

z

a

[

F ′ (a)

(

1

a
+ γ

)

− F ′′ (a)

]

+ G′ (a) − γG (a) +

Re
[{

H ′ (a) − γH (a)
}

exp (iωt)
]

+
γkρ

µ
[2L1z − L2 + Re {L4 exp (iωt)}] = 0

Equating the coe�cients of z, terms independent of z and coe�cients of
exp (iωt) , we have

1

a
F ′ (a)

(

1

a
+ γ

)

− 1

a
F ′′ (a) +

2L1γkρ

µ
= 0

G′ (a) − γG(a) − γkρL2

µ
= 0, H ′ (a) − γH (a) +

γkρL4

µ
= 0. (47)

On using the continuity requirement of radial velocity at r = a, equation (7)
givesF (a) = 0 Introducing non-dimensional variables and parameters de�ned
by (12), (16) and (20) in (47) and F (a) = 0, we get equations (18) through
(??). Using (7) and (8) in the boundary conditions at the outer cylinder (5)
and following similar procedure we get (17).

Acknowledgements: Thanks are due to the referee for his comments,
which led to the improvement of the paper. One of the authors (SCR) grate-
fully acknowledges the facilities extended when he was visiting Department
of Mathematics and Statistics, Sultan Qaboos University, Muscat, Oman.



Pulsatile �ow between two coaxial porous cylinders 65

References

[1] R. M. Terrill: Flow through a porous annulus, Appl. Sci. Res. 17 (1967)
204.

[2] R. M. Terrill: Fully developed �ow in a permeable annulus, J. Appl.
Mech. 35 E (1968) 184.

[3] C. L. Huang: Applying quasilinearization to the problem of �ow through
an annulus with porous walls of di�erent permeability, Appl. Sci. Res.
29 (1974) 145.

[4] P. D. Verma and Y. N. Gaur: Laminar swirling �ow in an annulus with
porous walls, Proc. Indian Acad. Sci. 80 A (1974) 211.

[5] F. M. Skalak and C. Y. Wang: Pulsatile �ow in a tube with wall injec-
tion, Appl. Sci. Res. 33 (1977) 269.

[6] P. D. Verma and Y. N. Gaur: Unsteady �ows of an incompressible
viscous �uid in a porous annulus, Indian J. Phys. 46 (1972) 203.

[7] Mohan Singh and S. C. Rajvanshi: Pulsatile �ow in a porous annulus
for small Reynolds number, J. Math. Phys. Sci. 20 (1986) 391.

[8] Mohan Singh and S. C. Rajvanshi: Pulsatile �ow in a porous annulus
for large suction, Proc. Indian natn. Sci. Acad. 53 A (1987) 622.

[9] R. C. Choudhary and T. Chand: Three dimensional �ow and heat
transfer through a porous medium, Int. J. Appl. Mech. & Engg. 7 (2002)
1141

[10] G. S. Beavers and D. D. Joseph: Boundary conditions at a naturally
permeable wall, J. Fluid Mech. 30 (1967) 197.

[11] E. M. Sparrow, G. S. Beavers and L. Y. Hung: Flow about a porous-
surfaced rotating disk, Int. J. Heat Mass Transf. 14 (1971) 993.

[12] P. D. Verma and B. S. Bhatt: On the steady �ow between rotating and
a stationary naturally permeable disc, Int. J. Engg. Sci. 13 (1975) 869.

[13] K. S. Sai: On the unsteady �ow of incompressible �uid over a naturally
permeable bed, J. Math. Phys. Sci. 14 (1980) 599.

[14] N. C. Sacheti: Application of Brinkman model in viscous incompressible
�ow through a porous channel, J. Math. Phys. Sci. 17 (1983) 567.

[15] I. P. Jones: Low Reynolds number �ow past a porous spherical shell,
Proc. Comb. Phil. Soc. 73 (1973) 231.



66 E. Hamza, S. Rajvanshi and N. Sacheti

[16] Mohan Singh and S. C. Rajvanshi: Flow between rotating disks one
being naturally permeable, Def. Sci. J. 39 (1989) 233.

[17] E. A. Hamza: The magnetohydrodynamic e�ects on a �uid �lm squeezed
between two rotating surfaces, J. Phys. D. Appl. Phys. 24 (1991) 547.

Dirección de los autores: Elsadig A. Hamza, Dept. of Math. and Statistics College

of Science, Sultan Qaboos University, Sultanate of Oman � Satish C. Rajvanshi,

School of Engineering Mathematics, Institute of Engineering and Technology, Bhad-

dal, Mianpur Post - 140108, Ropar, India, satish_rajvanshiyahoo.co.in � Nirmal

C. Sacheti, Dept. of Math. and Statistics, College of Science, Sultan Qaboos Uni-

versity, PO Box 36, Al Khod 123, Muscat Sultanate of Oman, nirmal@squ.edu.com.


