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Abstract
We study the semilinear second order ODE u′′ + g(t, u) = 0 under the following Sturm-
Liouville boundary condition au(0) + bu′(0) = u0 and cu(T ) + du′(T ) = uT . We obtain
solutions by topological methods. Moreover, we show that a solution may be constructed
recursively, under appropriate conditions.
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1 Introduction

We study the semilinear second order problem
u′′ + g(t, u) = 0
au(0) + bu′(0) = u0

cu(T ) + du′(T ) = uT

(1)

with g : [0, T ]×R → R continuous, and ad−bc 6= 0. Problems of this kind have
been considered since the �fties by, among others, Ehrmann [4] and Struwe [7]
using shooting arguments, and by Bahri-Berestycki [1], Rabinowitz [6], using
critical point theory. In the nineties, Capietto, Henrard, Mawhin and Zanolin
[2], [3] applied the Leray-Schauder continuation method for a nonlinearity of
the type g = g1(u)+ p(t, u, u′), where g1 is superlinear and p satis�es a linear
growth condition.

Throughout the paper, we shall assume that all the eigenvalues {λn}n∈N
of the problem

−u′′ = λu, au(0) + bu′(0) = cu(T ) + du′(T ) = 0

are non-negative. Writing u = γert + δe−rt as a possible eigenfunction (cor-
responding to an eigenvalue λ = −r2), it is easy to verify that the previous
non-negativity assumption is equivalent to the following condition:

(a+ br)(c− dr) 6= (a− br)(c+ dr)e2rT for r > 0. (2)

If furthermore ad − bc + acT 6= 0, then λ1 > 0, and the problem is called
non-resonant. On the other hand, if ad − bc + acT = 0, then λ1 = 0. This
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situation corresponds to the resonant case, for which a simple computation
shows that the corresponding (normalized) eigenfunction ϕ1 is given by

ϕ1(t) =
(
a2T 3

3
− abT 2 + b2T

)−1/2

(b− at). (3)

We shall prove the existence of solutions of (1) by topological methods.
More precisely, for the non-resonant case we obtain in section 2.1 an existence
result under a linear growth condition on g using Schauder's �xed point theo-
rem. On the other hand, we shall prove the existence of at least one solution
when g is subquadratic and satis�es the one-sided growth condition

g(t, u)− g(t, v)
u− v

≤ γ < λ1. (4)

We recall that the �rst eigenvalue can be computed by the Rayleigh quotient:

λ1 = inf
u∈E−{0}

−
∫ T
0 u′′(t)u(t)dt∫ T
0 u2(t)dt

(5)

with E = {u ∈ H2(0, T ) : au(0) + bu′(0) = cu(T ) + du′(T ) = 0}.
In section 2.2 we shall embed problem (1) in a family (1)σ of problems

with a parameter σ ∈ [0, 1]. Thus, starting at a solution uσ for some σ < 1
we shall de�ne recursively a sequence which converges to a solution of (1)σ+ε

for some appropriate step ε. In particular, when ε does not depend on uσ,
we obtain recursively solutions for 0 = σ0 < σ1 < . . . < σN = 1, which gives
a solution of the original problem. Finally, in section 3 we obtain solutions
for the resonant case under the so-called Landesman-Lazer type conditions.

Remark 1.1. For simplicity, we consider only the case g = g(t, u), although
the methods presented in this paper can be extended to the non-variational
case g = g(t, u, u′).

2 The non-resonant case

In this section we study the non-resonant case, in which condition

ad− bc+ acT 6= 0 (6)

holds. In section 2.1 we establish two existence results by topological methods,
and in section 2.2 we de�ne an iterative scheme that converges to a solution
of (1).
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2.1 Solutions by �xed point methods

We shall de�ne a �xed point operator in order to obtain solutions of (1) by
topological methods, under the assumption ad − bc + acT 6= 0. In this case,
for any θ ∈ L2(0, T ) there exists a unique solution of the problem

u′′ = θ, au(0) + bu′(0) = cu(T ) + du′(T ) = 0

given by the integral formula

u(t) =
∫ T

0
G(t, s)θ(s)ds,

where G is the following Green function:

G(t, s) =
(b− at)(c(T − s) + d)

ad− bc+ acT
+ max{t− s, 0}.

Thus, the solutions of (1) can be regarded as �xed points of the operator T
given by

Tu(t) = αt+ β −
∫ T

0
G(t, s)g(s, u(s))ds, (7)

where

α =
auT − cu0

ad− bc+ acT
, β =

(cT + d)u0 − buT

ad− bc+ acT
.

Thus we obtain:

Theorem 2.1. Let (2) and (6) hold, and assume that |g(t, u)| ≤ k|u| + l,
with k < λ1. Then problem (1) admits at least one solution.

Proof. From the assumption on g, it follows that T : L2(0, T ) → L2(0, T ) is
well de�ned. Furthermore, by Arzelá-Ascoli's Theorem we deduce that T is
compact. Moreover, from the Rayleigh quotient (5) we get, for �xed ũ:

‖Tu− T ũ‖L2 ≤
1
λ1
‖(Tu− T ũ)′′‖L2 =

1
λ1
‖g(·, u)− g(·, ũ)‖L2 ≤

k

λ1
‖u‖L2 + s

for some constant s ≥ 0. Thus, for R large enough we conclude that
T (BR(0)) ⊂ BR(0), and the proof follows from Schauder's Fixed Point theo-
rem.

Theorem 2.2. Let (2) and (6) hold. Further, assume that g satis�es (4),
and that |g(t, u)| ≤ k|u|r + l for some constants k, l and some r < 2. Then
problem (1) admits a unique solution.
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Proof. From the assumptions, if u ∈ L2(0, T ) then g(·, u) ∈ Lp(0, T ) for some
p > 1, and the operator T : L2(0, T ) → L2(0, T ) given by (7) is well de�ned.
Moreover, if u = σTu for some σ ∈ [0, 1], then

Sσu := u′′+σg(t, u) = 0, au(0)+ bu′(0) = σu0, cu(T )+ du′(T ) = σuT .

Let ũ ∈ H2(0, T ) satisfy aũ(0) + bũ′(0) = σu0, cũ(T ) + dũ′(T ) = σuT . Then:

‖Sσu− Sσũ‖L2‖u− ũ‖L2 ≥ −
∫ T

0
(Sσu− Sσũ)(u− ũ)dt

≥ λ1‖u− ũ‖2
L2 −

∫ T

0
(g(t, u)− g(t, ũ))(u− ũ)dt ≥ (λ1 − γ)‖u− ũ‖2

L2 .

It follows that

‖u− ũ‖L2 ≤
1

λ1 − γ
‖Sσu− Sσũ‖L2 =

1
λ1 − γ

‖Sσũ‖L2 .

Thus, if we �x z ∈ H2(0, T ) such that az(0)+bz′(0) = u0, cz(T )+dz′(T ) = uT ,
then setting ũ = σz we obtain:

‖u− σz‖L2 ≤
σ

λ1 − γ
‖z′′ + g(·, σz)‖L2 ≤ C

for some constant C independent of σ. This implies that all solutions of the
problem u = σTu satisfy ‖u‖L2 ≤M for some constant M , and the existence
of a �xed point of T follows from the Leray-Schauder theorem (see e.g. [5]).

Finally, if u and ũ are solutions of (1), then S1u = S1ũ = 0. As before,

‖u− ũ‖L2 ≤
1

λ1 − γ
‖S1u− S1ũ‖L2 = 0.

2.2 An iterative procedure for problem (1)

In what follows of this section we shall embed problem (1) in a family of
problems

(1)σ


u′′(t) + σg(t, u) = 0
au(0) + bu′(0) = u0

cu(T ) + du′(T ) = uT .

Starting at a solution uσ for σ < 1 we shall de�ne recursively a sequence that
converges to a solution of (1)σ+ε for some step ε ≤ 1− σ.

As a basic assumption, we shall assume that g is C2 with respect to u,
and ∂g

∂u ≤ γ < λ1. In particular, note that (4) holds.
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Let uσ be a solution of (1)σ and consider the sequence {un} ⊂ H2(0, T )
given recursively by u1 = uσ, and un+1 the unique solution of the linear
problem: 

u′′n+1 + (σ + ε)
(
g(t, un) + ∂g

∂u(t, un)(un+1 − un)
)

= 0
aun+1(0) + bu′n+1(0) = u0

cun+1(T ) + du′n+1(T ) = uT .

(8)

From the Fredholm alternative for linear operators (and also as a particular
case of Theorem 2.2) sequence {un} is well de�ned. Moreover, if un → u in
the L2-norm, then it is easy to see that u is a solution of (1)σ+ε.

Let zn = un+1 − un, then for n ≥ 2 we have:

z′′n+(σ+ε)
∂g

∂u
(t, un)zn = −(σ+ε)[g(t, un)−g(t, un−1)−

∂g

∂u
(t, un−1)(un−un−1)]

= −1
2
(σ + ε)

∂2g

∂u2
(t, ξ)z2

n−1

for some mean value ξ(t) between un(t) and un−1(t). Then, for some constant
µ (independent of σ):

‖zn‖H1 ≤ µ

∥∥∥∥z′′n + (σ + ε)
∂g

∂u
(·, un)zn

∥∥∥∥
L2

≤ µ

2

∥∥∥∥∂2g

∂u2
(·, ξ)z2

n−1

∥∥∥∥
L2

≤ Cn‖zn−1‖2
H1

for some constant Cn. In particular, if ∂2g
∂u2 is bounded, we may consider

Cn = C := µν
2 ‖

∂2g
∂u2 ‖L∞ for every n, where ν is the constant of the imbedding

H1(0, T ) ↪→ L4(0, T ). On the other hand,

z′′1 + (σ + ε)
∂g

∂u
(t, u1)z1 = −u′′1 − (σ + ε)g(t, u1) = −εg(t, u1),

whence ‖z1‖H1 ≤ µε‖g(·, u1)‖L2 . Thus we obtain:

Theorem 2.3. Assume that (2) and (6) hold, and let u1 = uσ be a solution
of (1)σ for some σ ∈ [0, 1). Furthermore, assume that ∂g

∂u ≤ γ < λ1 for some

constant γ, and that ∂2g
∂u2 is bounded. Then the iterative scheme de�ned by (8)

converges to a solution of (1)σ+ε, provided that µεC‖g(·, uσ)‖L2 < 1, with C
and µ as before.

Proof. From the previous computations, we deduce that

‖zn+1‖H1 ≤ C2n−1‖z1‖2n

H1 ≤
1
C

(µεC‖g(·, uσ)‖L2)2
n

.

Then {un} is a Cauchy sequence in H1(0, T ), and the proof follows.
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Corollary 2.4. Let the assumptions of the previous theorem hold. Further,
assume that g is bounded. Then the step ε in the iterative scheme de�ned by
(8) can be chosen independently of σ. In particular, there exists a sequence
0 = σ0 < σ1 < . . . < σN = 1, with uσj solution of (1)σj constructed recursively
from (8), and uσN is a solution of (1).

3 Resonant case: Landesman-Lazer type conditions

In this section we study problem (1) for u0 = uT = 0 under the assumption
of resonance at the �rst eigenvalue λ1 = 0; namely, we consider the case in
which the condition

ad− bc+ acT = 0 (9)

holds. The proof of following lemma is straightforward:

Lemma 3.1. Assume that (2) and (9) hold. Let E ⊂ C2([0, T ]) and F ⊂
C([0, T ]) the closed subspaces de�ned by

E = {u ∈ C2([0, T ]) : au(0) + bu′(0) = cu(T ) + du′(T ) = 0,∫ T

0
u(t)ϕ1(t)dt = 0}

and F = {θ ∈ C([0, T ]) :
∫ T
0 θ(t)ϕ1(t)dt = 0}. Then the continuous linear

operator L : E → F given by Lu = u′′ is bijective, and hence an isomorphism.
In particular, there exists a constant γ such that ‖u‖C2 ≤ γ‖u′′‖C for every
u ∈ E.

In order to introduce appropriate Landesman-Lazer conditions for our
problem, we shall assume that the following limits exist:

lim
s→±∞

g(t, sϕ1(t)) := g±(t). (10)

Thus, the main result of this section reads:

Theorem 3.2. Assume that (2) and (9) hold, and that the limits (10) exist.
Then problem (1) for u0 = uT = 0 admits at least one solution, provided that
one of the following conditions holds:∫ T

0
g+(t)ϕ1(t)dt < 0 <

∫ T

0
g−(t)ϕ1(t)dt, (11)

∫ T

0
g−(t)ϕ1(t)dt < 0 <

∫ T

0
g+(t)ϕ1(t)dt. (12)



Sturm-Liouville boundary conditions for a second order ODE 9

Proof. Let us �rst observe that, for σ > 0, problem{
u′′ + σg(t, u) = 0
au(0) + bu′(0) = cu(T ) + du′(T ) = 0

(13)

is equivalent to the �xed point problem

u = 〈u− g(·, u), ϕ1〉ϕ1 − σK(g(·, u)− 〈g(·, u), ϕ1〉ϕ1), (14)

where K : F → E is the inverse of the mapping L de�ned in Lemma
3.1, and 〈·, ·〉 denotes the usual inner product of L2(0, T ), namely 〈θ, ξ〉 =∫ T
0 θ(t)ξ(t)dt. Indeed, if u is a solution of (13) then 〈u′′, ϕ1〉 = 〈u, ϕ′′1〉 = 0,
which implies 〈g(·, u), ϕ1〉 = 0, and

u− 〈u, ϕ1〉ϕ1 = −σK(g(·, u)).

Conversely, if u solves (14) then u′′ = −σ [g(t, u)− 〈g(·, u), ϕ1〉ϕ1] .Moreover,
〈u, ϕ1〉 = 〈u−g(·, u), ϕ1〉, and hence 〈g(·, u), ϕ1〉 = 0. Thus, it su�ces to prove
that (14) is solvable for σ = 1. On the other hand, observe that if σ = 0 then
(14) is equivalent to the equalities

u = kϕ1, 〈g(·, u), ϕ1〉 = 0.

Let Tσ : C([0, T ]) → C([0, T ]) be the compact operator de�ned by

Tσu = 〈u− g(·, u), ϕ1〉ϕ1 − σK(g(·, u)− 〈g(·, u), ϕ1〉ϕ1),

and consider Fσ(u) = u − Tσu. We claim that F1(u) = 0 for some u, which
corresponds to a solution of the original problem. Indeed, we shall prove that

1. Fσ(u) 6= 0 for ‖u‖C large, and σ ∈ [0, 1].

2. degLS(F0, BR, 0) = ±1 for R large enough, where BR ⊂ C([0, T ]) is the
ball of radius R centered at 0 and degLS denotes the Leray-Schauder
degree.

We remark that once 1 and 2 are proved, the result follows from the homo-
topy invariance of the Leray-Schauder degree. In order to prove 1, assume �rst
that Fσnun = 0, with ‖un‖C →∞ and σn ∈ (0, 1]. Then u′′n +σng(t, un) = 0,
and hence

0 = 〈u′′n, ϕ1〉 = −σn

∫ T

0
g(t, un)ϕ1(t)dt.

On the other hand, we may write un = vn+〈un, ϕ1〉ϕ1, and from the previous
lemma

‖vn‖C ≤ γ‖v′′n‖C = γ‖u′′n‖C ≤ γ‖g(·, un)‖C ≤M
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for some constant M . We deduce that cn := 〈un, ϕ1〉 → ∞. Taking a subse-
quence, assume for example that cn → +∞, then by dominated convergence

0 =
∫ T

0
g(t, un)ϕ1(t)dt =

∫ T

0
g(t, vn + cnϕ1)ϕ1(t)dt→

∫ T

0
g+(t)ϕ(t)dt 6= 0,

a contradiction. On the other hand, if F0un = 0, with ‖un‖C → ∞, then

un = cnϕ1 and
∫ T
0 g(t, cnϕ1(t))ϕ1(t)dt = 0. Applying dominated convergence

as before, the claim follows.
Finally, we shall compute the Leray-Schauder degree degLS(F0, BR, 0) for

R large. As the range of T0 is contained in S := span{ϕ1}, it su�ces to
compute the Brouwer degree degB(F0|S , BR∩S, 0). Furthermore, F0|S can be

identi�ed with the mapping φ : R → R given by φ(r) =
∫ T
0 g(t, rϕ1(t))ϕ1(t)dt.

Again, by dominated convergence we have that

lim
r→±∞

φ(r) =
∫ T

0
g±(t)ϕ1(t)dt.

Hence, φ(r).φ(−r) < 0 for r � 0, and it follows that degB(F0|S , BR ∩S, 0) =
±1 for R large enough.
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