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Abstract
We study the semilinear second order ODE u” + g(¢,u) = 0 under the following Sturm-
Liouville boundary condition au(0) + bu'(0) = wo and cu(T) + du'(T) = ur. We obtain
solutions by topological methods. Moreover, we show that a solution may be constructed
recursively, under appropriate conditions.
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1 Introduction

We study the semilinear second order problem

u’ 4+ g(t,u) =0
au(0) + bu'(0) = g (1)
cu(T) + du'(T) = ur

with g : [0, 7] xR — R continuous, and ad—bc # 0. Problems of this kind have
been considered since the fifties by, among others, Ehrmann [4] and Struwe [7]
using shooting arguments, and by Bahri-Berestycki [1], Rabinowitz [6], using
critical point theory. In the nineties, Capietto, Henrard, Mawhin and Zanolin
[2], [3] applied the Leray-Schauder continuation method for a nonlinearity of
the type g = g1(u) +p(t, u,u’), where g1 is superlinear and p satisfies a linear
growth condition.

Throughout the paper, we shall assume that all the eigenvalues {\, } en
of the problem

—u" = M, au(0) + bu'(0) = cu(T) + du/(T) = 0

are non-negative. Writing u = ve™ + de™"" as a possible eigenfunction (cor-
responding to an eigenvalue A = —r?), it is easy to verify that the previous

non-negativity assumption is equivalent to the following condition:
(a+br)(c—dr) # (a —br)(c+ dr)e*T for r > 0. (2)

If furthermore ad — bc + acT # 0, then A1 > 0, and the problem is called
non-resonant. On the other hand, if ad — bc + acl’ = 0, then Ay = 0. This
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situation corresponds to the resonant case, for which a simple computation
shows that the corresponding (normalized) eigenfunction ; is given by

-1/2
©1(t) = (“253 —abT? + b2T> (b — at). (3)

We shall prove the existence of solutions of (1) by topological methods.
More precisely, for the non-resonant case we obtain in section 2.1 an existence
result under a linear growth condition on g using Schauder’s fixed point theo-
rem. On the other hand, we shall prove the existence of at least one solution
when g is subquadratic and satisfies the one-sided growth condition

t —g(t
ot —glte) - W
U —v
We recall that the first eigenvalue can be computed by the Rayleigh quotient:

.- Tl (tyu(t)dt
m T
ueE—{0} [ u?(t)dt

AL = (5)

with £ = {u € H%(0,T) : au(0) + bu’(0) = cu(T) + du/(T) = 0}.

In section 2.2 we shall embed problem (1) in a family (1), of problems
with a parameter o € [0,1]. Thus, starting at a solution u, for some o < 1
we shall define recursively a sequence which converges to a solution of (1),
for some appropriate step €. In particular, when ¢ does not depend on u,,
we obtain recursively solutions for 0 = 09 < 01 < ... < oy = 1, which gives
a solution of the original problem. Finally, in section 3 we obtain solutions
for the resonant case under the so-called Landesman-Lazer type conditions.

Remark 1.1. For simplicity, we consider only the case g = g(t,u), although
the methods presented in this paper can be extended to the non-variational
case g = g(t,u,u’).

2 The non-resonant case

In this section we study the non-resonant case, in which condition
ad — bc+acl # 0 (6)
holds. In section 2.1 we establish two existence results by topological methods,

and in section 2.2 we define an iterative scheme that converges to a solution
of (1).
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2.1 Solutions by fixed point methods

We shall define a fixed point operator in order to obtain solutions of (1) by
topological methods, under the assumption ad — bc + acT # 0. In this case,
for any 6 € L?(0,T) there exists a unique solution of the problem

u” =0, au(0) + bu'(0) = cu(T) + du/(T) =0

given by the integral formula

T
u(t):/o G(t,s)0(s)ds,

where G is the following Green function:

(b —at)(c(T — s) +d)

t.s) =
Gt ) ad — be + acT

+ max{t — s,0}.

Thus, the solutions of (1) can be regarded as fixed points of the operator T
given by

T
Tut) =at+ 5~ [ Glt.s)gls,uls)ds (7)
0
where
_aur — cug 5= (cT + d)up — bur
T wd—be+acl’  ad—be+acT

Thus we obtain:

Theorem 2.1. Let (2) and (6) hold, and assume that |g(t,u)| < klu| + 1,
with k < \1. Then problem (1) admits at least one solution.

Proof. From the assumption on g, it follows that 7 : L%(0,T) — L?(0,T) is
well defined. Furthermore, by Arzelé-Ascoli’s Theorem we deduce that T is
compact. Moreover, from the Rayleigh quotient (5) we get, for fixed :

N 1 - 1 - k
|1Tw =Tl 2 < —[[(Tu = T@) |2 = =llg(w) = g( @)Lz < —llullr2 + 5

for some constant s > 0. Thus, for R large enough we conclude that
T(Bgr(0)) C Bgr(0), and the proof follows from Schauder’s Fixed Point theo-
rem. O

Theorem 2.2. Let (2) and (6) hold. Further, assume that g satisfies (4),
and that |g(t,u)| < klu|” + 1 for some constants k,l and some r < 2. Then
problem (1) admits a unique solution.
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Proof. From the assumptions, if u € L?(0,T) then g(-,u) € L?(0,T) for some
p > 1, and the operator T : L2(0,T) — L?(0,T) given by (7) is well defined.
Moreover, if u = ocT'u for some o € [0,1], then

Syu =" +og(t,u) =0, au(0) +bu'(0) = oug, cu(T)+du'(T) = cur.

Let @ € H?(0,T) satisfy at(0) + b’ (0) = oug, ci(T) + di'(T) = our. Then:

T
1St — Sil| g2l — ] g2 > —/ (St — ) (1 — @)t
0

T
> Al — 2 — / (g(t,u) — g(t, @) (u — @)t > Ay — )l — 1] %

It follows that

1 1
|Sou — Syt 2 =
1= AL =7

luw —all e < 1otz

Thus, if we fix z € H2(0, T) such that az(0)+bz'(0) = ug, cz(T)+dz'(T) = ur,
then setting & = oz we obtain:

g
lu = ozll2 < s——lIz" + 9(-, 02) 2 < C

for some constant C' independent of . This implies that all solutions of the

problem u = oT'u satisfy ||ul| 2 < M for some constant M, and the existence

of a fixed point of T follows from the Leray-Schauder theorem (see e.g. [5]).
Finally, if u and @ are solutions of (1), then Sju = S = 0. As before,

|lu—a 2 < 3 |S1u — Sit||2 = 0.

17

2.2 An iterative procedure for problem (1)

In what follows of this section we shall embed problem (1) in a family of
problems
u'(t) +og(t,u) =0
(1) ¢ au(0) + bu/(0) = ug
cu(T) + du'(T) = urp.

Starting at a solution u, for o < 1 we shall define recursively a sequence that
converges to a solution of (1), for some step ¢ <1 —o.

As a basic assumption, we shall assume that g is C? with respect to u,
and g—z <7 < A1. In particular, note that (4) holds.
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Let u, be a solution of (1), and consider the sequence {u,} C H?(0,T)
given recursively by u; = u,, and un41 the unique solution of the linear
problem:

Wl (o +2) (gt un) + 56 wn) (unss = un) ) =0
atn11(0) + buly 1 (0) = ug (8)
clny1(T) + duy, 1 (T) = ur.

From the Fredholm alternative for linear operators (and also as a particular
case of Theorem 2.2) sequence {u,} is well defined. Moreover, if u,, — u in
the L?-norm, then it is easy to see that u is a solution of (1)y4e..

Let 2, = up+1 — up, then for n > 2 we have:

9 (t, 1) (=i 1]

dg
! —J — _ _ I
zp+(o+e) ™ (t, un)zn (o+e)[g(t, un)—g(t, up—1) 5

2

SR L TNoE

for some mean value £(t) between uy,(t) and u,—1(t). Then, for some constant
w (independent of o):

0
lzullin < pl[2r + (0 +€) 50 (- un)

H3u2 -1
< CnHZn—lnHl

L2

for some constant Cy. In particular, 1f 5.2 is bounded, we may consider

C,=0C:= || 4| Lo for every n, Where v is the constant of the imbedding
HY0,T) — L4(0 T). On the other hand,

0
29 (t, w21 = = — (0 + €)g(t,w) = —eg(t, w),

2] + (a—i—s)au

whence ||z1]|g1 < pel|g(-,u1)|| 2. Thus we obtain:

Theorem 2.3. Assume that (2) and (6) hold, and let vy = u, be a solution
of (1)s for some o € [0,1). Furthermore, assume that g—z <y < A1 for some

constant v, and that % is bounded. Then the iterative scheme defined by (8)
converges to a solution of (1)y4c, provided that pueC||g(-, us)||r2 < 1, with C
and p as before.

Proof. From the previous computations, we deduce that

1 n
(1eCllg(-s uo)ll2)?

lznsilln < O Half < o

Then {u,} is a Cauchy sequence in H'(0,7T), and the proof follows. O
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Corollary 2.4. Let the assumptions of the previous theorem hold. Further,
assume that g is bounded. Then the step € in the iterative scheme defined by
(8) can be chosen independently of o. In particular, there exists a sequence
O=09g<o01<...<oy =1, with U, solution of (I)Uj constructed recursively
from (8), and usy is a solution of (1).

3 Resonant case: Landesman-Lazer type conditions

In this section we study problem (1) for ug = up = 0 under the assumption
of resonance at the first eigenvalue A\; = 0; namely, we consider the case in
which the condition

ad —bc+acl =0 (9)
holds. The proof of following lemma is straightforward:

Lemma 3.1. Assume that (2) and (9) hold. Let E C C?*([0,T)) and F C
C([0,T]) the closed subspaces defined by

E = {u € C*([0,T]) : au(0) + bu'(0) = cu(T) + du/(T) = 0,
T
| wterwan = oy
0
and F = {0 € C([0,T]) fo t)dt = 0}. Then the continuous linear
operator L : B — F given by Lu = " is bijective, and hence an isomorphism.

In particular, there exists a constant v such that |ul|c2 < v||u”||c for every
ue k.

In order to introduce appropriate Landesman-Lazer conditions for our
problem, we shall assume that the following limits exist:

lim g(t,sp1(t)) == g™ (¢). (10)
s—+too
Thus, the main result of this section reads:

Theorem 3.2. Assume that (2) and (9) hold, and that the limits (10) exist.
Then problem (1) for ug = up = 0 admits at least one solution, provided that
one of the following conditions holds:

T T
+
/Og() dt<0</og t, (11)

/OTg() dt<0</0Tg : (12)
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Proof. Let us first observe that, for ¢ > 0, problem

u' +og(t,u) =0
{ au(0) fbu’(o) = cu(T) + du/(T) =0 (13)

is equivalent to the fixed point problem

U= <u - g(~,u), @1)@01 - O-K(g("u) - <g(~,u), @1)@01)7 (14)

where K : ' — FE is the inverse of the mapping L defined in Lemma
3.1, and (-,-) denotes the usual inner product of L?(0,T), namely (§,&) =
fOT 0(t)&(t)dt. Indeed, if u is a solution of (13) then (u”,¢1) = (u,¢]) = 0,
which implies (g(-,u), ¢1) = 0, and

u— (u, 1)1 = —0K(g(-,u)).

Conversely, if u solves (14) then u” = —o [g(t,u) — (g(-,u), ¥1)¢1] . Moreover,
(u, 1) = (u—g(-,u), p1), and hence (g(-,u), p1) = 0. Thus, it suffices to prove
that (14) is solvable for o = 1. On the other hand, observe that if o = 0 then
(14) is equivalent to the equalities

u=kei, (g, u),¢1) =0.

Let T, : C(]0,T]) — C([0,T]) be the compact operator defined by

Tou = (u—g(-,u), p1)p1 — o K(g(-,u) = (g(-,u), p1)p1),

and consider F,(u) = v — T,u. We claim that Fj(u) = 0 for some u, which
corresponds to a solution of the original problem. Indeed, we shall prove that

1. Fy(u) # 0 for ||ul|c large, and o € [0, 1].

2. degrs(Fo, Br,0) = £1 for R large enough, where Br C C(]0,T]) is the
ball of radius R centered at 0 and degrgs denotes the Leray-Schauder
degree.

We remark that once 1 and 2 are proved, the result follows from the homo-
topy invariance of the Leray-Schauder degree. In order to prove 1, assume first
that F, u, = 0, with |lu,||c — oo and oy, € (0,1]. Then u 4+ o,9(t, u,) = 0,
and hence

T
0= (ul, 1) = —O'n/ g(t, un)p1(t)dt.
0

On the other hand, we may write u, = v, + (un, p1)¢1, and from the previous
lemma

lonlle < Allvplle =Allulle < vllg( un)lle < M
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for some constant M. We deduce that ¢, := (uy, 1) — oo. Taking a subse-
quence, assume for example that ¢, — 400, then by dominated convergence

T T
0= /0 ot un ) (1)t = /0 9t 0n + caipr )1 (D)t — / Jo(t)dt # 0,

a contradiction. On the other hand, if Fyu,, = 0, with ||u,||c — oo, then
Up = Cpy1 and fOT g(t, cnp1(t))e1(t)dt = 0. Applying dominated convergence
as before, the claim follows.

Finally, we shall compute the Leray-Schauder degree degrs(Fo, Br,0) for
R large. As the range of Tj is contained in S := span{p;}, it suffices to
compute the Brouwer degree degp(Fo|s, BrNS,0). Furthermore F0|5 can be
identified with the mapping ¢ : R — R given by ¢(r fo (t,ro1(t))p1(t)dt.
Again, by dominated convergence we have that

r—=4o0

T
lim $(r) = /0 (D (1)t

Hence, ¢(r).¢(—r) < 0 for r > 0, and it follows that degg(Fo|s, BRNS,0) =
+1 for R large enough. O
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