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Abstract
The unsteady component of axial �ow of an incompressible �uid in the region lying between the
annular spaces of two coaxial cylinders has been investigated. The outer cylinder is assumed to
possess uniform permeability and the inner one is a naturally permeable tube obeying Darcy's
Law. The �ow is maintained by a periodic pressure gradient across the annulus. Making use of
an appropriate set of similarity variables, the governing partial di�erential equations have been
transformed to a set of a system of nonlinear ordinary di�erential equations. The solution of
the resulting equations subject to appropriate boundary conditions has been obtained using a
singular perturbation technique. The frequency of pulsation has been considered to be large.
The e�ect of the �ow parameters on the unsteady component of axial �ow has been discussed.
The analytical results have been compared with numerical solutions.
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1 Introduction

Pulsatile �ows occur in many areas of engineering �uid dynamics like pressure
surges in pipelines, cavitations in hydraulic systems, pumping of slurries, refrig-
eration systems, combustion mechanisms, de-watering devices and cardiovascular
biomechanics. Considerable attention has been given to the study of the problems
of pulsatile �ow of �uids in channels of various cross-sections due to their increas-
ing application in the analysis of blood �ow and in the �ows of other biological
�uids.

Flow through porous medium has generated a lot of interest due to appli-
cations in many industrial operations in the areas of chemical and metallurgical
engineering. In recent years �ow through porous medium has gained considerable
attention due to its relevance in a wide range of applications such as underground
spreading of chemical waste and water movements in geothermal engineering. The
problem of the �ow through an annulus with porous walls is useful in the transpi-
ration cooling, boundary layer control etc. The drilling operations of oil and gas
wells involve �ow in annular space. The �ow of the drilling mud in the annulus
between the well wall and drill pipe is extremely complex problem.
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For circular pipes and tubes, Yuan & Finkelstein [1] presented asymptotic so-
lutions in the limiting cases of small suction and both small and large injection.
Their formulation depended on the cross-�ow Reynolds number. Berman [2] ob-
tained the exact solutions of the steady state laminar �ow of an incompressible
viscous �uid in an annulus with porous walls by assuming the constant in�ux
through one wall equal to the e�ux through the other wall. Terrill [3] explicated
the laminar �ow through a porous annulus. He assumed the swirl to be zero and
his work includes the cases of small and large suction/ injection. Terrill [4] ob-
tained general solution for fully developed �ow in a permeable annulus. Verma &
Bansal [5] discussed the solution of Navier-Stokes equations in cylindrical coordi-
nates for �ow of a viscous incompressible �uid in a porous annulus with di�erent
radial velocities at the walls. Verma & Gaur [6] described unsteady �ows of an
incompressible viscous �uid in a porous annulus. Verma & Gaur [7] investigated
the �ow of an incompressible viscous �uid in a porous annulus, under constant
pressure gradient with mass transfer across the boundaries. They have discussed
in detail the perturbation in the radial and axial velocities by decaying swirl.
Huang [8] employed the quasilinearization technique to solve the nonlinear di�er-
ential equations representing the boundary value problem of a �uid �ow though
an annulus with porous walls of di�erent permeability.

Skalak & Wang [9] presented solution for axial pulsatile �ow in a tube with in-
jection/suction on the wall. They used method of matched asymptotic expansions
for solving the equation of �uid �ow. In a subsequent paper [10] they presented
similarity solutions for pulsatile �ow in a porous tube with wall suction and wall
injection. The analysis centres on the e�ect of suction and injection on the pul-
satile �ow. The governing equations have been solved numerically and by the
method of matched asymptotic expansions. Kanwal & Verma [11] examined the
unsteady �ow of a viscous �uid through an annulus when one boundary of annulus
is �xed and the other boundary is subjected to a series of pulses. Singh and Ra-
jvanshi [12], [13] presented detailed study of the viscous �ow in a porous annulus
assuming pressure gradient to be periodic. They obtained the solution for small
mass transfer across the porous walls as well as for large values of the frequency
of pulsation. Their analytical results compared well with numerical solution.

Hamza et al [14] generalized the study reported in [12] to investigate the �ow
of an incompressible �uid in the annular space between two coaxial cylinders,
the outer one having uniform permeability and the inner one being a naturally
permeable tube. The inner tube was assumed to be of small permeability and fully
saturated with a viscous incompressible �uid and the governing equations were
simpli�ed using a similarity transformation [12]. The transformed set of equations
were solved for small suction at the outer boundary using BJ conditions [15] on
the surface of inner permeable tube. The technique of regular perturbation has
been used for the solution and the results compared well with those obtained
numerically. Frequency of pulsation was taken to be small in that investigation
and Hamza et al [14] did not include the case of large frequency in their work.
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Figure 1: Geometrical con�guration of the problem

In the present paper the case of large frequency of pulsation is examined for
the case described by Hamza et al [14]. A singular perturbation technique is used
to solve the governing equations and a comparison with numerical results shows
a good agreement.

2 Governing equations and boundary conditions

A fully developed incompressible laminar �ow in the region bounded by two long
coaxial cylinders of radii a and b (a < b) respectively is considered. The following
assumptions are made:

(i) the �ow is axisymmetric,

(ii) there is no swirl velocity,

(iii) the cylinders are su�ciently long as compared to the diameter, so that end-
e�ects can be neglected,

(iv) a periodic pressure gradient is imposed across the annulus,

(v) the inner cylinder is made of naturally permeable material.

Keeping in view the above con�guration, it is assumed that the volume of the �uid
entering the annulus and the pressure gradient maintain the laminar �ow. The
cylindrical polar coordinate system (r, θ, z) has been used to write the governing
equations. -axis is taken along the common axis of cylinders as depicted in Fig.
1

Let u and v be the velocity components of the �uid in the positive directions
of r and z respectively. Navier - Stokes equations in the annular free �uid region
(a < r < b) are

∂u

∂t
+ u

∂u

∂r
+ w

∂u

∂z
= −1

ρ

∂p

∂r
+ ν

(
∂2u

∂r2
+

1
r

∂u

∂r
+
∂2u

∂z2
− u

r2

)
(1)
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∂w

∂t
+ u

∂w

∂r
+ w

∂w

∂z
= −1

ρ

∂p

∂z
+ ν

(
∂2w

∂r2
+

1
r

∂w

∂r
+
∂2w

∂z2

)
(2)

The equation of continuity is

∂u

∂r
+
u

r
+
∂w

∂z
= 0 (3)

In the above equations t, p, ρ and ν denote time, pressure, �uid density and the
kinematic viscosity respectively. The �ow through the inner cylinder follows
Darcy's law. The boundary conditions assume that there is no-slip on the in-
ner boundary of the outer cylinder. The governing equations for the �ow through
inner cylinder consisting of naturally permeable material with U and W as radial
and axial velocity components are

U = 0, W = −κ
µ

∂P

∂z
(4)

where κ and µ are the permeability of the porous medium and the coe�cient of
viscosity of the �uid respectively and P is �uid pressure in the inner cylinder.

The boundary conditions on the outer cylinder are

u = V, w = 0, at r = b (5)

V being the constant suction velocity at the surface of the outer cylinder.
The slip condition on the surface of the inner cylinder is prescribed by the

modi�ed B-J condition, applicable at a curved surface as given in Hamza et al
[14];

∂u

∂z
+
∂w

∂r
= γ(w −W ) (6)

where γ = α∗/
√
κ, α∗ is an empirical dimensionless constant dependent upon the

nature of the porous material. In addition the continuity of normal velocity on
the interface of the inner permeable material and the free �uid region has been
assumed. The radial velocity has been taken as a function of the radial coordinate
r only. It can thus be written as

u =
1
r
F (r) (7)

where F (r) is an arbitrary function to be determined.
Using (7) in equation of continuity ([3]) we have

w = −z
r
F ′(r) + φ(r, t) (8)

where φ(r, t) is an arbitrary function of r and t and prime denotes di�erentiation
with respect to r . Substituting (7) and (8) in (1) and integrating with respect
to r we get

−p
ρ

=
1
2

(
F ′

r

)2

− ν F
r

+ p1(z, t) (9)
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Taking into account pulsatile nature of �ow, p1(z, t) and φ(r, t) are assumed in
the form

p1(z, t) = L1z
2 − L2z + L3 +Re

[
(L4z + L5)eιωt

]
(10)

φ(r, t) = G(r) +Re
[
H(r)eιωt

]
(11)

where G(r) and H(r) are arbitrary functions, ω is the frequency of pulsation of
pressure gradient and Re means "Real part of". The following non- dimensional
variables are introduced

r = b
√
n, F (r) = bV f(η), G(r) = bG(η), H(r) =

(
L4b

2

4ν

)
h(η) (12)

Using equations (7) to (12) in equation (2) and equating coe�cients of like terms
on both sides yields the following

ηf ′′′ + f ′′ +
1
2
R(f ′2 − ff ′′) = β (13)

ηg′′ + g′ +
1
2
R(gf ′ − fg′) = d (14)

ηh′′ + h′ − ια2h+
1
2
R(hf ′ − fh′) = −1 (15)

where the set of additional non-dimensional parameters are de�ned as

β = −Rb
2L1

4V 2
, d =

L2b
2

4νV 2
, α2 =

ωb2

4ν
, R = Reynold number =

bV

ν
(16)

In above equations prime denotes derivative with respect to η. The parameter α
characterizes the frequency of pulsation. The equations (13) and (14) depict the
steady �ow while the equation (15) corresponds to the unsteady component of
the �ow. In terms of similarity functions, the modi�ed boundary conditions are
given by

f(1) = 1, f ′(1) = 0, g(1) = 0, h(1) = 0 (17)

f ′′(η0)− 1
λ
f ′(η0) +

β

λ
C∗ = 0 (18)

g′(η0)− 1
λ
g(η0)− d

λ
C∗ = 0 (19)

h′(η0)− 1
λ
h(η0)− 1

λ
C∗ = 0 (20)

f(η0) = 0 (21)

λ =
2a
γb2

, C∗ =
4κ
b2
, η0 =

a2

b2
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3 Solution of unsteady component

We now proceed to solve the set of coupled nonlinear ODEs (13) to (15), subject
to the boundary conditions (16) to (20). Following Hamza et al [14] a particular
solution of equation (14) is taken as

g(η) = −L2f
′(η)

bL1
(22)

It is required to determine the solution of equations (13) and (15) for large fre-
quency of pulsation. We further assume

ε =
R

2
(23)

where ε is small.
Substituting (23) in equations (13) and (15) we get

ηf ′′′ + f ′′ + ε
(
f ′

2 − ff ′′
)

= β (24)

ηh′′ + h′ − ια2h+ ε(hf ′ − h′f) = −1 (25)

and the boundary conditions reduce to

λf ′′(η)− f ′(η) + βC∗ = 0, λh′(η)− h(η) + C∗ = 0 at η = η0 (26)

f(η) = 0, h(η) = 0 at η = 1 (27)

Equations (24) and (25) subject to boundary conditions (26) and (27) were solved
by Hamza et al [14] for small ? by using a regular perturbation method.

Following Hamza et al [14], we express h(η) and the non dimensional param-
eter β appearing in equations (24) and (25) as a power series in ε in the following
form

h(η) = εh1(η) +O
(
ε2
)

(28)

β = β0 + εβ1 +O
(
ε2
)

(29)

Equations (25) and (28) yield the equations for h0(η) and h1(η) as under

ηh′′0 + h′0 − ια2h0 = −1 (30)

ηh′′1 + h′1 − ια2h1 = f0h
′
0 − f ′0h0 (31)

h0(η) and h1(η) as follows have been evaluated from (30) and (31) for small values
of α2 using regular perturbation technique in [14]. The corresponding boundary
conditions are

C∗1h
′
0 − C∗2h0 + 1 = 0, λh′1 − h1 = 0 at η = η0 (32)



Pulsatile �ow between two coaxial porous cylinders 17

h0 = 0, h1 = 0 at η = 1 (33)

where C∗1 = λ
C∗ and C

∗
2 = 1

C∗

In the present paper the solution of equations (30) and (31) is obtained for
large values of frequency of pulsation (α2 >> 1). Under the above condition
the equations belong to the category of singular perturbations. The equations
are solved by the method of matched asymptotic expansions. Following Nayfeh
[16] the �ow �eld is divided into an "inner" region near each boundary separated
by an "outer" region. The boundary conditions on the unsteady component h0

and h1 are satis�ed by the "inner" solutions, hence these are not imposed on the
"outer" solution.

In order to �nd "outer" solution, we represent h0(η) and h1(η) in this region
by h0

0 and h0
1 respectively. The solution of equations (30) and (31) is sought in

the forms

h0
0 =

1
α
s1 +

1
α2
s2 +

1
α3
s3 +

1
α4
s4 + . . . (34)

h0
1 =

1
α
S1 +

1
α2
S2 +

1
α3
S3 +

1
α4
S4 + · · · (35)

Equations (30), (31), (34) and (35) give

h0
0 = − ι

α2
(36)

h0
1 =

1
λ4

[−A2 −A3 (1 + ln η) + β0η] (37)

where A2 and A3 are recorded in [14]. For �nding an "inner" solution near the
inner cylinder, let h0(η) and h1(η) in this region be represented by hι0 and hι1
respectively. In order to make the terms containing frequency parameter α and
the terms independent of α comparable in this region, a stretching variable de�ned
by

ζ1 =
√
ια(η − η0) (38)

where ι =
√
−1 is introduced.

Using (38) in equations (30) and (31) we get

(√
ιζ1 + ιαη0

)
(hι0)′′ +

√
ι (hι0)′ − ιαhι0 = − 1

α
(39)

(√
ιζ1 + ιαη0

)
(hι1)′′ +

√
ι (hι1)′ − ιαhι1 +

hι0f
′
0

α
−
√
ι (hι0) f0 = 0 (40)

The boundary conditions for the equations (39) and (40) are

C∗1
√
ια (hι0)′ − C2

∗hι0 + 1 = 0, λ (hι1)′ − hι1 = 0 at ζ1 = 0 (41)
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where prime denotes di�erentiation with respect to ζ1 . hι0 and hι1 are assumed
to be of the form

hι0 =
1
α
k1 +

1
α2
k2 +

1
α3
k3 +

1
α4
k4 + · · · (42)

hι1 =
1
α
k̄1 +

1
α2
k̄2 +

1
α3
k̄3 +

1
α4
k̄4 + · · · (43)

Substituting equations (42) and (43) into equations (39) and (40) respectively and
solving the resulting equations subject to the boundary conditions, equation (41)
and subsequent matching with the "outer" solutions (36) and (37) the expressions
for hι0 and hι1 are obtained in the following form

hι0 =
1
α

[
1√
ιC∗1a0

exp(−a0ζ1

]
+

1
α2

[
ι

(
1

4C∗1

C∗2
C∗1a

2
0

− a2
0ζ

2
1

4C∗1
+
a0ζ1

4C1

)
exp(−a0ζ1)− ι

]
+

1
α3

[√
ι

C∗1
exp(−a0ζ1)

(
3
8
a0 +

C2
2

2a0C∗1
+

C∗2
2

C∗1
2a3

0

− C∗2
a0

+
a5

0ζ
4
1

32

−3a4
0ζ

3
1

16
+

3a2
0ζ1

8
− C∗2a0ζ

2
1

4C∗1
+
C∗2ζ1

4C∗1

)]
(44)

hι1 =
1
α2

[
ιM1

2a2
0

(1 + a0ζ1)exp(−a0ζ1)
]

+
1
α3

√
ιexp(−a0ζ1)[

M1C
∗
2

2a3
0C
∗
1

− M2

2a2
0

− M3

4a3
0

− M4

4a4
0

− M2ζ1

2a0
+
M3

4a2
0

(
a0ζ

2
1 + ζ1

)
−M4

2a0

(
1
3
ζ3

1 +
1

2a0
ζ2

1 +
1

2a2
0

ζ1

)]
(45)

where

a0 =
1
√
η0
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M1 =
1
C∗1

(
A1

η0
+A2 +A3 ln η0 +

1
2
β0η0

)
M2 = − a0

C∗1

[
(A2 +A3 +A3 ln η0 + β0η0)− C∗2

C∗1

(
A1 +A2η0 +A3η0 ln η0 +

1
2
β0η0

)]
M3 = M1a

2
0 −

a2
0

C∗1
(A2 +A3 +A3 ln η0 + β0η0) +

3a4
0

4C∗1

(
A1 +A2η0 +

A3η0 ln η0 +
1
2
β0η0

)

M4 = −M1
a3

0

2
− a5

0

4C∗1

(
A1 +A2η0 +A3η0 ln η0 +

1
2
β0η0

)
The constantsA1, A2 and A3 are recorded in [14]. In order to �nd the "Inner"
solution near the outer cylinder let us represent h0(η) and h1(η) in this region by
hI0 and hI0 respectively. The stretching variable in the inner region near the outer
cylinder is de�ned by

ζ2 =
√
ια(1− η) (46)

Substituting (46) in equations (30) and (31), the following equations are obtained

(√
ια− ζ2

) (
hI0
)′′ − (hI0)′ −√ια (hI0) = − 1√

ια
(47)

(√
ια− ζ2

) (
hI1
)′′ − (hI1)′ −√ια(hI1) = − 1√

ια
+

1√
ια
hI0f

′
0 − (hI0)′f0 = 0 (48)

The corresponding boundary conditions for the equations (47) and (48) reduce to

hI0 = 0, hI1 = 0 at ζ2 = 0 (49)

hI0 and hI1 are assumed in the form

hI0 =
1
α
Q1 +

1
α2
Q2 +

1
α3
Q3 + · · · (50)

hI1 =
1
α
Q̄1 +

1
α2
Q̄2 +

1
α3
Q̄3 + · · · (51)

Substituting (50) and (51) into equations (47) and (48) respectively and solving
the resulting equations subjected to boundary conditions (49) and subsequent
matching with the "outer" solutions (36) and (37) the expressions for hI0 andhI1
are obtained as

hI0 =
1
α2

[ιexp(−ζ2)− ι] +
1
α

[
− ι

4
exp(−ζ2)(ζ2

2 − ζ2)
]

(52)
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hI1 =
1
α3

[
−1

2
√
ιζ2

(
A1 +A2 +

1
2
β0)exp(−ζ2

)]
(53)

The composite solution is given by

hc0 = hi0 + hI0 + h0
0 −

(
hi0
)0 − (hI0)0 (54)

hc1 = hi1 + hI1 + h0
1 −

(
hi1
)0 − (hI1)0 (55)

where (hi0)0 and (hi1)0 denote the outer limits of the inner solutionshi0 and hi1 as
ζ1 −→∞ and and denote the outer limits of the inner solutions (hI0)0 and (hI1)0 as
ζ2 −→ ∞ . Equations (36), (37), (44), (45) and (52) to (55) yield the composite
solutions as

hc0 =
N1

α
√
ι

+
ιN2

α2
+
√
ιN3

α3
+
ιN4

α3
(56)

hc1 =
ιN5

α2
+
√
ιN6

α3
(57)

where

N1 =
1

C∗1a0
exp(−a0ζ1)

N2 =
(

1
4C∗1

+
C∗2

C∗1
2a2

0

− a2
0ζ

2
1

4C∗1
+
a0ζ1

4C∗1

)
exp(−a0ζ1) + exp(−ζ2)− 1

N3 = − 1
C∗1

exp(−a0ζ1)

(
3a0

8
+

C∗2
a0C∗1

+
C∗2

2

C∗1
2a3

0

− C∗2
a0

+
a5

0ζ
4
1

32
−

3a4
0ζ1

16
− C∗2a0ζ

2
1

4C∗1
+
C∗2ζ1

4C∗1

)
N4 = −1

4
exp(−ζ2)(ζ2

2 − ζ2)

N5 = −M1

2a2
0

(1 + a0ζ1)exp(−a0ζ1)

N6 =
[
M1C

∗
2

2a3
0C
∗
1

− M2

2a2
0

− M3

4a3
0

− M4

4a4
0

− M2ζ1

2a0
− M3

4a2
0

(a0ζ
2
1 + ζ1)

]
exp(−a0ζ1)

−M4

2a0

[
ζ3

1

3
+

ζ2
1

2a0
+

ζ1

2a2
0

]
exp(−a0ζ1)

−ζ2

2

[
A1 +A2 +

β0

2

]
exp(−ζ2)

Equation (28) yields

h(η) =
[

1
α

N1√
ι

+
1
α2
ιN2 +

1
α3

√
ιN3 +

1
α3
ιN4

]
+ ε

[
1
α2
ιN5 +

1
α3

√
ιN6

]
(58)
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Fig. 2  Unsteady axial velocity for small suction and large α2 = 100
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e[

h(
η)

ex
p(

iω
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]
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ωt = π

ωt = 3π/4

ωt = π/4

 ωt = π/2

√ η  

Figure 2: Unsteady axial velocity for small suction and large α2 = 100

4 Discussion

Fig. 2 depicts the unsteady component of axial velocity for R = 0.001, α2 =
100, C∗ = 0.05 and λ = 0.1 at di�erent times. It can be observed from the
graph that the regions of maximum magnitude are situated near the boundaries.
With the passage of time the maxima merge together giving rise to only one
maximum at a certain instant. With further increase in time, di�erent maxima
show up again indicating the predominance of the frequency parameter e�ects
near the boundaries. Fig. 3 shows the unsteady component of axial velocity for
R = 0.001, α2 = 144, C∗ = 0.05 and λ = 0.1 at di�erent times. It shows the same
qualitative pattern as shown in Fig. 3 except that with increase in the value of
α2 there is decrease in the magnitude of unsteady component of axial velocity
near the inner boundary. Fig. 4 shows the unsteady component of axial velocity
for R = 0.001, α2 = 225, C∗ = 0.05 and λ = 0.1 at di�erent times. It shows
the same qualitative pattern as shown in Fig. 3 and Fig. 4 except that with
further increase in the value of α2 there is further decrease in the magnitude of
unsteady component of axial velocity near the inner boundary. With the passage
of time the maxima merge together giving rise to only one maximum at a certain
instant. The critical points in the axial velocity pro�les are closer to the lnner
boundary. From the present study it has been found that large α2 is conducive
to the boundary layer growth. Fig. 5 depicts that with increase inRthere is an
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Fig. 3  Unsteady axial velocity for small suction and α2 = 144

R
ea

l[h
(η

)e
xp

(iω
t)

]

 R  = 0.001   
α2 = 144

 ωt = π/4

 ωt = π

 ωt = 3π/4

 ωt = 0

 ωt = π/2

η  

Figure 3: Unsteady axial velocity for small suction and α2 = 144

increase in the magnitude of unsteady component of axial velocity near the inner
boundary. Fig. 6 shows that with increase in the value of λ there is further
increase in the magnitude of unsteady component of axial velocity near the inner
boundary. The investigation shows that the large value of frequency parameter
has a marked e�ect on pulsatile �ow in a porous annulus with small suction.

5 Numerical solution and comparison

Solution was also obtained numerically for large value of α2 and compared with
the values obtained from equations (58). The boundary value problem was solved
by a shooting method with the initial estimates for the unknown boundary con-
ditions at η = η0 and η = 1 being the results from the regular perturbation
case presented in [14]. Subsequently the results for large values of ε and α2

were obtained by progressively increasing ε and α2 by small values. The missing
boundary conditions were estimated by extrapolating the previously computed
values. These numerical values are compared with the results from the singular
perturbation solution in Table 1.
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Fig 4  Unsteady axial velocity for small suction and α2 = 225
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Figure 4: Unsteady axial velocity for small suction and α2 = 225
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Fig. 5  Unsteady axial velocity for R = 0.005 and α2 = 100
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Figure 5: Unsteady axial velocity for R = 0.005 and α2 = 100
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Fig. 6  Unsteady axial velocity for small suction λ = 0.4 and α2 = 100
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Figure 6: Unsteady axial velocity for small suction λ = 0.4 and α2 = 100

η 0.40 0.50 0.60 0.70 0.80 0.90

|h|= Perturbation 0.0118 0.0105 0.0103 0.0107 0.0102 0.0074

|h|= Numerical 0.0120 0.0100 0.0102 0.0106 0.0101 0.0071

Table 1: Comparison of Perturbation and Numerical Solutions for R = 0.001,α2 = 100,
C∗ = 0.05
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