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Abstract
In this paper we study the stability of the feasible set of a balanced transportation problem. A
transportation problem is balanced when the total supply is equal to the total demand. One can
easily see that when we make minor adjustments to the data (supply and demand), the resulting
problem may lose the property of balance. Therefore, although the transportation problem is
a particular case of linear programming, you cannot apply the familiar results of stability. For
a fixed number of origins and destinations we have obtained a vector representation for any
feasible solution of the transportation problem. We have used this representation to prove that
the feasible set mapping is continuous. We have also proved that the extreme point set mapping
is lower semi continuous.1

Keywords: Transportation problem, Stability, Linear programming

MSC(2000): 74PXX, 47N10

1 Introduction

The well-known Hitchcock transportation problem (TP in short) with m-sources
and n-destinations can be formulated as the following linear program:

Minimize
m∑

i=1

n∑

j=1

cijxij (1)

subject to
n∑

j=1

xij = ai, i = 1, 2, ...,m, (2)

m∑

i=1

xij = bj , j = 1, 2, ..., n, (3)

xij ≥ 0, i = 1, 2, ...,m; j = 1, 2, ..., n, (4)

where cij is the unit shipping cost from source i to destination j; the variable xij
represents the number of units shipped from source i to destination j; ai is the
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supply of the source i and bj is the demand of destination j. Let us define

d = (a1, ..., am, b1, ..., bn)

as the supply and demand vector, wich is a vector with m+ n positive numbers
with

∑m
i=1 ai =

∑n
j=1 bj ; this equality means that transportation problem is

balanced. Let F denote the solution set of the equality and inequality systems
(2), (3) and (4). In this work we study the behavior of F when data suffer small
changes. As you can see, from (2) and (3), F depends only on the supply and
demand. Therefore, to study the stability of the feasible set F , see [1], [2] and
[3], we fix m and n, and we vary only the right hand side of the constraints, i.e.,
the vector d, which we will call the parameter. Thus, our parameter space will
be the set

B =



d ∈ Rm+n

++ |
m∑

i=1

ai =
n∑

j=1

bj



 ,

where Rm+n
++ = {x ∈ Rm+n : xi > 0, i = 1, ...,m + n}. The set B is a relatively

open cone of the dimension m + n − 1 and it does not contain the origin. For
instance, for m = 1, n = 2,

B =
{
d ∈ R3

++ | a1 = b1 + b2
}
.

When various transportation problems (or vectors d) are simultaneously con-
sidered, they and their associated feasible sets are distinguished by means of
subscripts: dk and F k respectively.

To measure the size of the adjustments we consider the Euclidean norm of
Rm+n restricted to B.

The following results can be found in [4], p. 557 : the vector x̄ with compo-
nents

x̄ij =
aibj∑m
i=1 ai

satisfies (2), (3) and (4), and if x ∈ F then the next inequalities hold:

0 ≤ xij ≤ min {ai, bj} ,

for each component of x. Therefore F is a nonempty, convex, closed and bounded
set.

The paper is organized as follows: Section 2 introduces the necessary concepts
and notation and summarizes the existing theory on stability in linear semi-
infinite programming, when the right hand side of the constraints is the only one
variable. Section 3 gives a vector representation of a feasible solution of the TP.
Finally Section 4 shows that the feasible set mapping F is continuous everywhere
in B, and also shows that the extreme points set mapping is lower semicontinuous
everywhere in B.
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2 Preliminaries

In this section we present some well-known definitions of continuity of set-valued
mappings and a characterization of lower semicontinuity that will be used in the
proof of the main result.

Definition 1. ([1] p. 128) Let us have a set-valued mapping P : X → Y , between
two topological spaces. We say that P is lower (upper) semicontinuous, according
to Berge, at the point x0 ∈ X, if for every open set W such that

W ∩ P (x0) 6= ∅ (W ⊃ P (x0))

there exists a neighborhood V 3 x0 such that for every x ∈ V , the following holds:

W ∩ P (x) 6= ∅ (W ⊃ P (x)).

Also we say that P is lower (upper) semicontinuous on X, if P is lower (upper)
semicontinuous at every x ∈ X. We say that P is continuous, according to Berge,
at the point x0 ∈ X, if it is both lower and upper semicontinuous at x0 ∈ X.
Finally we say that P is continuous on X if it is continuous at every x ∈ X.

We will use the following characterization of the lower semicontinuity of a set
valued mapping.

Lemma 1. (see Lemma 1.1 [6]). Let us have a set-valued mapping P : X → Y ,
between two metric spaces. Then P is lower semicontinuous at the point x0 ∈ X
if and only if for every y0 ∈ P (x0) and for each sequence {xn}n≥1 converging to
x0, there exists a subsequence {ynm}m≥1 such that ynm ∈ P (xnm), m=1,2,..., and
{ynm}m≥1 converges to y0.

We also use the results concerning the stability of the solution set of a linear
semi-infinite system represented by σ. That is,

σ := {a′tx ≤ bt : t ∈ T},

where at and x are vectors in Rn; a′t represents the corresponding transposed
vector, bt is a scalar, and the nonempty index set T is a Hausdorff compact space,
possibly infinite. This class of systems are considered in [6] where the right hand
side of the inequalities is the only one variable, so the parameter space will be
the set of continuous functions C(T ), endowed with the Tchebycheff norm. Let
P denote the solution set of σ. Then we can define the feasible set mapping
P : C(T )→ Rn that assigns to each b ∈ C(T ) the feasible set P of the system σ
defined by b. Next we recall the well-known Slater condition:

Definition 2. ([1] p. 128) We say that σ satisfies the Slater condition if there
exists a x ∈ Rn such that a′tx < bt, for every t ∈ T .
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Note that if T is a finite set, then a Slater point is in fact an interior point of
the feasible set of the system σ.
We study the behavior of the feasible set F of the TP by mean of the continuity,
according to Berge, of the feasible set mapping F : B → Rmn that assigns to each
d ∈ B the feasible set F of the TP defined by d. In ordinary linear programming
(OLP) and in linear semi-infinite programming (LSIP), as can be seen in Theorem
1 and Theorem 4.6 of [5], there is a characterization of the lower semicontinuity
of the feasible set mapping with the Slater condition.

Theorem 1. (see Theorem 2.1 [6]) Let b ∈ C(T ). Then the following two
statements are equivalent:

1. The feasible set mapping P is lower semicontinuous at b.

2. The system σ defined by b satisfies the Slater condition.

However, in the feasible set of a TP there is not a Slater point. Furthermore,
it is no difficult to see that, in the general theory of set mappings, those properties
are not equivalent.

3 Vector representation for feasible solutions of TP

To study the continuity of the feasible set mapping F , it is necessary a vector
representation for any feasible point of the TP. We do this solving the system of
equations (2) and (3) for some variables in terms of the other ones. It has not
been difficult to obtain such representation in various individual cases.

Example 1. For the case m = 2, n = 3, we have 2 sources and 3 destinations,
and d = (a1, a2, b1, b2, b3) satisfies the equation a1+a2 = b1+b2+b3. Furthermore,
x = (x11, x12, x13, x21, x22, x23) ∈ F if and only if

x11 + x12 + x13 = a1

x21 + x22 + x23 = a2

x11 +x21 = b1
x12 +x22 = b2

x13 + x23 = b3

(5)

x11, x12, x13, x21, x22, x23 ≥ 0.

This system has infinitely many solutions. If x22 = t22 and x23 = t23, we have
that x ∈ F if and only if
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x =




b1 − a2 + t22 + t23

b2 − t22

b3 − t23

a2 − t22 − t23

t22

t23




=




b1 − a2

b2
b3
a2

0
0




+ t22




1
−1

0
−1

1
0




+ t23




1
0
−1
−1

0
1



,

where, because of (4), t = (t22, t23)
′

is a solution of the following inequality
system:




−1 −1
1 0
0 1
1 1



(
t22

t23

)
≤




b1 − a2

b2
b3
a2


 (6)

t22, t23 ≥ 0.

The solution set of the inequality system (6) is a polytope in R2, and

t = (t22, t23) = (
a2b2

a1 + a2
,
a2b3

a1 + a2
)

is a Slater point, therefore the solution set of the inequality system (6) has at least
3 extreme points. Also note that there is a biunivoque correspondence between
the solution set of the systems (5) and (6). Moreover, there is a biunivoque
correspondence between the extreme points of the systems (5) and (6).

Now we will give a vector representation to any feasible point of the trasporta-
tion problem. To this end we denote by ej the jth unit vector in Rn. Following
the last example we have obtained that, the point

x = (x11, x12..., x1n, x21, x22, ..., x2n, ..., xm1, xm2, ..., xmn)′

with xij ≥ 0 for i = 1, 2, ...,m and j = 1, ..., n and where each one of theses



80 S. Gómez, L. Hernández and G. Lancho

components have the form:

x11 =

(
b1 −

m∑

i=2

ai

)
+

m∑

i=2

n∑

j=2

tij

x12 = b2 −
m∑

i=2

ti2

...

x1n = bn −
m∑

i=2

tin

x21 = a2 −
n∑

j=2

t2j

x22 = t22

...

x2n = t2n (7)

x31 = a3 −
n∑

j=2

t3j

x32 = t32

...

x3n = t3n
...

xm1 = am −
n∑

j=2

tmj

xm2 = tm2

...

xmn = tmn

is a feasible solution to m × n TP. In other words, any feasible solution of the
transportation problem can be expressed in vector form as follows:

x = b̄ +
m∑

i=2

n∑

j=2

tijyij , (8)
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where

b̄ =




∑n
i=1 biei −

∑m
i=2 aie1

a2e1

a3e1
...

ame1



,

y2j =




e1 − ej
−e1 + ej

0n
...

0n



, j = 2, ..., n,

y3j =




e1 − ej
0n

−e1 + ej
...

0n



, j = 2, ..., n,

ymj =




e1 − ej
0n
0n
...

−e1 + ej



, j = 2, ..., n,

and t = (t22, ..., t2n, t32, ..., t3n, ..., tm2, ..., tmn)′ is a solution of the following in-
equality system

−
m∑
i=2

n∑
j=2

tij ≤ b1 −
n∑
i=2

ai

m∑
i=2

ti2 ≤ b2

...
m∑
i=2

tin ≤ bn

n∑
j=2

t2j ≤ a2

n∑
j=2

t3j ≤ a3

n∑
j=2

tmj ≤ am

tij ≥ 0 for i = 2, ...,m; j = 2, ..., n

(9)
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The solution set of the inequality system (9) is a polytope in R(m−1)(n−1). From
(8) we get a biunivoque correspondence between the solution set of the systems
(2)-(4) and (9). Also note that there is a biunivoque correspondence between the
extreme points of the systems (2)-(4) and (9). Let Z denote the solution set of
the inequality system (9). Then we can define a set valued mapping

Z : B → R(m−1)(n−1)

that assigns to each d ∈ B the solution set Z of the inequality system (9). In
the next section we will use the lower semicontinuity of Z to prove the lower
semicontinuity of F . The proof of the lower semicontinuity of Z requires the
next proposition:

Proposition 1. Given d ∈ B, the point t ∈ R(m−1)(n−1) with components

tij =
aibj∑m
i=1 ai

, for i = 2, ...,m; j = 2, ..., n,

is a Slater point of the Z.

Proof. It is clear that

tij =
aibj∑m
i=1 ai

> 0, for i = 2, ...,m; j = 2, ...n.

Let us see that the first inequality of (9) is satisfied strictly, i.e.,

m∑

i=2

n∑

j=2

aibj∑m
i=1 ai

>

m∑

i=2

ai − b1. (10)

Multiplying by
∑m

i=1 ai > 0, and using the equality
∑m

i=1 ai =
∑n

j=1 bj , we get
that (10) is equivalent to

m∑

i=2

n∑

j=2

aibj >

m∑

i=2

ai

n∑

j=1

bj − b1
m∑

i=1

ai. (11)

We can write (11) in an equivalent form as

m∑

i=2

n∑

j=2

aibj > b1

m∑

i=2

ai +
m∑

i=2

ai

n∑

j=2

bj − b1
m∑

i=2

ai − b1a1, (12)

and finally we get that (12) is equivalent to

b1a1 > 0.
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Now let us prove the next inequalities of (9), for j = 2, 3, ..., n.

m∑

i=2

tij =
m∑

i=2

aibj∑m
i=1 ai

=

∑m
i=2 ai∑m
i=1 ai

bj < bj for j = 2, 3, ..., n.

Finally we prove the last inequalities of (9), for i = 2, 3, ...,m.

n∑

j=2

tij =
n∑

j=2

aibj∑n
j=1 bj

=

∑n
j=2 bj∑n
j=1 bj

ai < ai for i = 2, 3, ...,m.

So, we find that the dimension of the feasible set F is (n−1)(m−1). Moreover,
by Theorem 1 and Proposition 1 we have:

Corollary 1. The set valued mapping Z : B → R(m−1)(n−1) is lower semicontin-
uous at every d ∈ B.

4 Feasible and extreme point set mappings continuity

In this section we use the vector representation of any point of the set F to prove
the continuity of the feasible set mapping F . Next we state the main result of
this paper.

Theorem 2. The feasible set mapping F : B → Rmn of the m×n transportation
problem is lower semicontinuous at every d ∈ B.
Proof. Let us assume that the mapping F is not lower semicontinuous at the
point d0 ∈ B, i.e., there exists an open set W ⊂ Rmn such that W ∩F 0 6= ∅, and
a sequence {dn}n≥1 ⊂ B such that dn → d0, and such that

W ∩ F n = ∅ for every n = 1, 2, 3, ... (13)

Let us take x0 ∈W ∩ F 0. Then, using the vector representation (8), we have

x0 = b̄0 +
m∑

i=2

n∑

j=2

(t0)ijyij ,

where (t0)ij is the (ij)th component of the vector t0, for some t0 ∈ Z0, where Z0

is the solution set of the inequality system (9). Because of Corollary 1, the set
valued mapping Z is lower semicontinuous at d0. Then, as dn → d0, by Lemma
1 there exists a subsequence {tnm}m≥1 such that tnm ∈ Znm and tnm → t0. Now
let us construct a sequence {xnm}m≥1 as follows : for every tnm ∈ Znm , using
again the vector representation (8), let set

xnm = b̄nm +

m∑

i=2

n∑

j=2

(tnm)ijyij .
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Then for every m = 1, 2, 3, ..., we have that xnm belongs to F nm . By construction
we have that {xnm}m≥1 converges to x0. Because of W is an open set, for m
sufficiently large, xnm ∈W . Thus, we have reached a contradiction with (13).

We have already seen that, for every d ∈ B, the feasible set F of the trans-
portation problem is closed and bounded. Since the multivalued feasible set
mapping F is lower semicontinuous, the following theorem is proved in a similar
way to Proposition 2.1 of [6].

Theorem 3. The feasible set mapping F of the m×n transportation problem is
upper semicontinuous at every d ∈ B.

We conclude, from Theorem 2 and Theorem 3, that the feasible set mapping
F of the TP is continuous at every parameter of the space B. That is, the feasible
set of any transportation problem is stable in B.

As an application of the Theorem 2 we prove the lower semicontinuity of the
extreme points set mapping extF : B → Rmn++ that assigns to each d ∈ B its
extreme points set, extF , of the feasible set F of the transportation problem.
To prove the lower semicontinuity of the extreme points set mapping, extF ,
we use the transmission properties theory between set mappings P : X → Y ,
where X and Y are normed spaces. Under the assumption that for each x ∈ X,
P (x) is convex, closed and bounded, the following result can be found in [7]:
If the feasible set mapping P is lower semicontinuous at x, then extP is lower
semicontinuous at x. Therefore, using this result and Theorem 2 we have the
following corollary:

Corollary 2. The extreme points set mapping extF of the m×n transportation
problem is lower semicontinuous on B.

Finally, to prove the continuity of extF we need to prove that extF is upper
semicontinuous but this is still an open problem.
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(2004), pp. 113-120.

[7] Goberna, M., Larriqueta, M., Vera de Serio, V. and Todorov, M.: On the
stability of the extreme point set in linear optimization, SIAM Journal on
Optimization, 15 (2005), pp. 1155-1169.

Authors’ address
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e-mail: lanchoga@mixteco.utm.mx


