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Selecting oligonucleotide probes for
whole-genome tiling arrays with a

cross-hybridization potential.
Christoph Hafemeister, Roland Krause, and Alexander Schliep

Abstract—For designing oligonucleotide tiling arrays popular, current methods still rely on simple criteria like Hamming distance or
longest common factors, neglecting base stacking effects which strongly contribute to binding energies. Consequently, probes are
often prone to cross-hybridization which reduces the signal-to-noise ratio and complicates downstream analysis.
We propose the first computationally efficient method using hybridization-energy to identify specific oligonucleotide probes. Our Cross
Hybridization Potential (CHP) is computed with a Nearest Neighbor Alignment, which efficiently estimates a lower bound for the Gibbs
free energy of the duplex formed by two DNA sequences of bounded length. It is derived from our simplified reformulation of t-gap
insertion-deletion-like metrics. The computations are accelerated by a filter using weighted ungapped q-grams to arrive at seeds.
The computation of the CHP is implemented in our software OSProbes, available under the GPL, which computes sets of viable probe
candidates. The user can choose a tradeoff between running time and quality of probes selected.
We obtain very favorable results in comparison with prior approaches with respect to specificity and sensitivity for cross-hybridization
and genome coverage with high-specificity probes. The combination of OSProbes and our Tileomatic method, which computes optimal
tiling paths from candidate sets, yields globally optimal tiling arrays, balancing probe distance, hybridization conditions and uniqueness
of hybridization.

F

1 INTRODUCTION

DNA microarrays have received a recent surge of interest
due to their ability to investigate complete genomes with
tiling arrays, which do not target specific transcripts
of genes but rather cover the complete genome with
oligonucleotide probes. Complete bacterial genomes can
be represented densely on single microarray chips, ex-
panding the use of tiling arrays beyond the most popular
model organisms [1]. For the human genome, similar
set-ups spanning several chips have been constructed.
As several vendors make such low-volume custom mi-
croarrays available at highly competitive prices, targeted
or whole genome studies elucidating gene expression,
protein-DNA binding or chromosomal aberrations have
become routine for many laboratories. Next generation
sequencing technologies still signify a major investment
and are not obtainable for all labs. Moreover, they are
only competitive if their maximal throughput of DNA
reads generated is actually used in experiments. In many
settings, for example for microbial genomes, tiling arrays
provide a good cost efficiency. Tiling arrays rather com-
plement next generation sequencing for large eukaryotic
genomes as they can be used to select specific genomic
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regions for sequencing [2], [3].
The computational challenge in designing tiling arrays

is to find an optimal set of oligonucleotide probes, called
a tiling path, which balances inter-probe distances, hy-
bridization conditions and, most importantly, the poten-
tial of probes to cross-hybridize, that is to bind outside
their intended target position on the genome. Cross-
hybridization decreases the signal-to-noise ratio and
greatly complicates downstream analysis. Most meth-
ods for normalization take all probes into account, see
e.g. [4], and thus a sizable amount of cross-hybridizing
oligonucleotide probes will in fact also change the
normalized hybridization intensities of others. To ad-
dress this problems, several approaches have been pub-
lished [5], [6] which try to estimate the potential of cross-
hybridization and correct for this effect on the probe
level. Note that any thorough approach for estimating
the potential of cross-hybridization would have to solve
the very problem we are addressing, on a slighter smaller
scale, namely for an individual chip. We argue that the
computational effort is better spent on the design side,
as is by no means guaranteed that one can remove the
increases in variances and errors for bad probes post-
facto, even if the potential of cross-hybridization can be
assessed.

The problem of tiling array design can be broken
down in two sub-problems: first, one needs to identify
all probe candidates for a genome which have a low po-
tential for cross-hybridization, recording relevant probe
properties such as the melting temperature Tm. Second,
one needs to compute a tiling path. The last problem
we solved recently by proposing a linear-time algorithm
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which computes globally optimal tiling paths [7]. Some
of the desired parameters for probe selection are trivial
to compute, such as melting temperature, others, in par-
ticular the tendency to cross-hybridize are very complex
and typically assessed by a simple heuristic.

Here, we propose a method for the generation and
selection of oligonucleotide probe candidates for whole-
genome tiling arrays based on their tendency to cross-
hybridize. The Cross Hybridization Potential (CHP)
is a novel measure of oligonucleotide probe binding
specificity and based on thermo-dynamic calculations.
Our Nearest Neighbor Alignment (NNA) algorithm ef-
ficiently estimates a lower bound for the Gibbs free
energy of the duplex formation of two DNA sequences
of bounded length. It is derived from a simplified refor-
mulation of t-gap insertion-deletion-like metrics [8]. To
reduce the computational effort the Nearest Neighbor
Alignment is only computed for cases which cannot
safely be decided by faster hamming-distance based
heuristics, for which we use gapped q-grams. Moreover,
seeds for the alignment are computed with weighted
ungapped q-grams which extend the q-gram formal-
ism to include energy contributions from the thermo-
dynamic model. Our method, including some routinely
used filters, is implemented in our software OSProbes,
which computes sets of viable probe candidates and
which is available under the GPL. The computational
costs of computing such candidate sets can be amortized
over many tiling path computations. The combination of
OSProbes with Tileomatic yields globally optimal tiling
arrays, balancing probe distance, hybridization condi-
tions and uniqueness of hybridization.

We compare our method to prior approaches with
favorable results on a range of genomes measured by
specificity and sensitivity for cross-hybridization and
genome coverage with high-specificity probes.

Prior work: Assessing an oligonucleotide probe’s po-
tential to hybridize to an unintended position in the
genome, thus giving spurious positive signals, has been
studied intensively. Nevertheless the heuristic employed
in many labs relies on a simple two-pass filter relying
on thresholds known as Kane’s first and second crite-
ria [9]. Probes with an identity > 75–80% to a non-
target sequence, or contiguous perfect matches > 25% of
probe length are discarded. These filters are employed
in many tools in use for microarray probe selection
such as ROSO [10], GoArrays [11], OligoPicker [12],
OligoWiz [13] and Oliz [14].

Incorporation of more accurate thermodynamic calcu-
lations were described as early as 2001 [1]. Probesel [15],
Promide [16], OligoArray [17], [18] and Thermonu-
cleotideBLAST [19] estimate probe specificity based
on more accurate DNA thermodynamics. Some tiling-
specific approaches focus on selecting probes in fixed
windows [20], [21] but most practically relevant ap-
proaches rely on ad-hoc-methods and do not explicitly
state more than one quality criterion for filtering the
possible probes [22].

In the following we introduce the Cross Hybridiza-
tion Potential, the Nearest Neighbor Alignment and the
weighted q-gram filters. We describe additional filters,
including a gapped q-gram filter for filtering based
on hamming distance, and the implementation of our
software. Computer experiments demonstrate the effec-
tiveness of the Cross Hybridization Potential and its
advantage over Kane’s criteria. In the evaluation of the
filter performance, our method compares very favorably
to state-of-the-art methods for candidate generation and
subsequent tiling path computation. We have calculated
example candidate sets for typical small genomes and
the complete human chromosome 1, demonstrating the
feasibility to compute our measures for all possible
probes of the human genome.

2 METHODS

2.1 Cross Hybridization Potential

We propose the Cross Hybridization Potential (CHP) as
a measure for how likely it is that a probe will bind to
a non-target sequence during a microarray experiment.
The CHP is based on the scores of Nearest Neighbor
Alignments (NNAs) at genome positions where cross-
hybridization could possibly occur.

2.1.1 Nearest Neighbor Alignment

The Nearest Neighbor Alignment is an alignment which
uses a scoring function that takes energy contributions
from base stacking effects into account. It can be used
to compute a lower bound of the free energy of duplex
formation of two DNA sequences.

D’Yachkov et al. introduced t-gap block isomorphic
subsequences and used them to describe abstract string
metrics similar to the Levenshtein insertion-deletion
metric. A particular variant of the T-gap insertion-
deletion-like metrics captures key aspects of nearest
neighbor thermodynamic modeling and defines a ther-
modynamic distance function for hybridized DNA du-
plexes [8].

In this section we present a slightly modified version
of their algorithm and show how it is used to obtain
a lower bound for the hybridization energy of two
oligonucleotides. The resulting algorithm computes the
score for the lowest scoring NNA, that can be interpreted
as a lower bound for the Gibbs energy ∆rG

◦ of DNA
duplex formation.

We are interested in an alignment of two DNA
oligonucleotides that we can interpret as a virtual sec-
ondary structure that the two molecules could form.
We call this structure virtual, because the two DNA
molecules are not expected to form this structure in
solution. Instead, the score of the alignment obtained
by the NNA algorithm will be used as a lower bound
for the free energy associated with the DNA duplex that
will form in vitro. This is possible, because the algorithm
uses a simplified model of the hybridization energy and



TCBB 3

TABLE 1
Thermodynamic weights of stacked pairs, in kcal

mol . For
example, F (G,A) = −1.3 denotes the free energy

associated with the stacked pair 5′GA3′

3′CT5′ .

F A C G T

A -1.00 -1.44 -1.28 -0.88
C -1.45 -1.84 -2.17 -1.28
G -1.30 -2.24 -1.84 -1.44
T -0.58 -1.30 -1.45 -1.00

AAGA-TGTC---CCCGAAAGGTCAGTATAC
|||| ||| ||| ||||||||||||
AAGAG-GTCTAT--CGA-AGGTCAGTATAC

Fig. 1. An example of a Nearest Neighbor Align-
ment of two sequences of length 25. With a score of
-22.3 it is the lowest-scoring alignment of the two
sequences, i.e. the most stable virtual secondary
structure.

takes only energetically favorable terms into account
disregarding destabilizing structural elements.

First, we define the nearest neighbor score Snn, which
is a score for the thermodynamic stability of a sequence
when being aligned to its reverse complement.

Snn of a sequence s with length l is the sum of
the thermodynamic weights of all adjacent base pairs,
assuming a perfect matching Watson-Crick duplex

Snn(s) =

l−1∑
i=1

F (si, si+1) . (1)

Table 1 shows the free energy parameters used [23].
Scoring Scheme: The score of the alignment is the

sum of nearest neighbor scores of all matched stretches
with a minimum length of two. Mismatches and indels
do not contribute to the score; they would only lead
to destabilizing structures and can be omitted for the
computation of a lower bound for the Gibbs energy. An
example of a NNA and its score is given in Figure 1.

The use of this scoring scheme is motivated by the
following observations:

• Indels or mismatches cannot increase the stability of
the duplex.

• Hamming distance does not take sequence compo-
sition into account.

• Position dependence of mismatches [24], [25], is
implicitly taken into account. Mismatches at the
beginning or end of the sequences will disrupt only
one stacked pair, whereas mismatches in the middle
disrupt two stacked pairs.

• Many non-contiguous mismatches between two se-
quences lead to a high number of destabilizing
structures [26].

Given the scoring scheme, we compute the lowest-
scoring alignment of two sequences based on dynamic
programming. Similar to other dynamic programming

alignment algorithms, the NNA algorithm builds up an
optimal alignment using previous solutions of optimal
alignments of smaller subsequences.

Given two sequences x = (x1, x2, . . . , xm) and y =
(y1, y2, . . . , yn), we compute a matrix M : {1, 2, . . . ,m}×
{1, 2, . . . , n} → R, in which M(i, j) equals the best
score of the alignment of the two prefixes (x1, x2, . . . , xi)
and (y1, y2, . . . , yj). Because a sequence of length one
cannot be part of an alignment with stacked pairs, M
is initialized with zeros in the first row and column,
M(i, 1) = 0 for i = 1, . . . ,m and M(1, j) = 0 for
j = 1, . . . , n. The remaining matrix fields are filled based
on existing values and the nearest neighbor score of
common suffices. M(i, j) is computed recursively from
the values of M(i − 1, j), M(i, j − 1), or the values on
the upper left diagonal from M(i, j), depending on the
length of the longest common suffix of (x1, . . . , xi) and
(y1, . . . , yj).

This gives rise to the following main recursion for
filling the Matrix M ,

M(i, j) = min

 M(i− 1, j)
M(i, j − 1)
D(i, j)

, (2)

where

D(i, j) = min
2≤r≤lcs

(
Snn(x[i−r+1,i]) + M(i− r, j − r)

)
(3)

and lcs is the length of the longest common suffix of
x1, . . . , xi and y1, . . . , yj . The notations x[i−r+1,i] and
xi−r+1, . . . , xi are equivalent and used interchangeably.
In the case that lcs < 2, D(i, j) defaults to 0. The NNA
score of x and y, denoted as nna(x, y), is then given as the
value of the matrix at M(m,n). From the main recursion
if follows that nna(x, x) = Snn(x).

An example: Let x = GAAAGG and y = CGAAGG be
two sequences with length m = n = 6. The score matrix
after running the NNA algorithm is shown in Table 2.
The gray fields are those of matched bases contributing
to the final score. The score of the best NNA of x and y
is −4.42, the value in M(6, 6). For descriptive purposes
we also show the traceback matrix TB for this example
(Table 3). Here the arrows indicate which value of the
three choices in Equation 2 was the minimum. In the
case of D(i, j), the number behind the arrow indicates
which value of r minimized Equation 3. The resulting
alignment is -GAAAGG

CGA-AGG in single-base form, and, to better
see the matched stacked pairs, in dinucleotide form
-- GA AA AA AG GG
CG GA A- -A AG GG . This example also shows why the loop
over 2 ≤ r ≤ lcs in Equation 3 is needed. This loop makes
sure that potential gaps are placed at optimal positions
maximizing the sum of the aligned base pairs. A greedy
algorithm with r = 2 would lead to -GAAAGG

CGAA-GG (score −4.14)
and r = lcs would lead to --GAAAGG

CG--AAGG (score −4.12), both
not yielding the optimal score.

In our further application of the NNA x will be a
probe candidate and y a genome region of the same
length. This length limitation allows the NNA to pro-
duce a sharper bound on the free energy but gives rise
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TABLE 2
M matrix after running the NNA algorithm with

x = GAAAGG and y = CGAAGG. Gray fields show matched
bases.

M C G A A G G

G 0.0 0.0 0.0 0.0 0.0 0.0
A 0.0 0.0 -1.3 -1.3 -1.3 -1.3
A 0.0 0.0 -1.3 -2.3 -2.3 -2.3
A 0.0 0.0 -1.3 -2.3 -2.3 -2.3
G 0.0 0.0 -1.3 -2.3 -2.58 -2.58
G 0.0 0.0 -1.3 -2.3 -2.58 -4.42

TABLE 3
Traceback matrix after running the NNA algorithm with

x = GAAAGG and y = CGAAGG. Arrows indicate where the
value in the corresponding M field derived from. The

number behind the arrow indicates wich value of r
yielded the minimum.

TB C G A A G G

G ← ← ← ← ←
A ↑ ↑ ↖ 2 ← ← ←
A ↑ ↑ ↑ ↖ 3 ← ←
A ↑ ↑ ↑ ↑ ↑ ↑
G ↑ ↑ ↑ ↑ ↖ 2 ←
G ↑ ↑ ↑ ↑ ↑ ↖ 3

to the chance of missing cross-hybridizing targets that
span more than the probe candidate length. However,
we have experimentally shown that this problem does
not occur frequently (see supplemental material) and
chances of making this kind of error are negligible.

Running time: For two sequences with the same
length of k, the matrix M has k2 fields. In the worst case,
the alphabet size of the concatenation of both sequences
is one, i.e. both sequences are stretches of the same single
nucleotide. In this case, the lcs in Equation 3 will always
be min(i, j) at every D(i, j). The worst-case running time
is thus O(k3). However, for our application to DNA
sequences this is an unlikely scenario. If we assume
two sequences independently generated from the i.i.d.
model, the probability of having a lcs of length 0 is
P (lcs = 0) = 3

4 , P (lcs = 1) = 1
4 , P (lcs = 2) = 1

16 ,
P (lcs = n) = 1

4n . The expected length of a lcs at field
M(i, j) is thus

E(lcs) = 1
1

4
+ 2

1

16
+ 3

1

64
+ . . . + n

1

4n
=

n∑
i=1

n

4n
(4)

where n is the minimum of i and j. As this sum quickly
converges to 0.44, it is sufficient to assume this value
as E(lcs) in every field of the matrix. As a result, for
two independent i.i.d. model sequences the expected run
time is thus < O(1.44 · k2). Genomic sequences are not
i.i.d. and real world lcs values are on average smaller
than 0.44. For the 100 million randomly selected NNA

computations of the experiment described in Section 3.3
the lcs has a mean of 0.36 with a variance of 0.003.

2.1.2 From Nearest Neighbor Alignment Scores to
Cross Hybridization Potential
In the previous section we introduced the Nearest Neigh-
bor Alignment and its score, a lower bound for the
free energy of oligonucleotide hybridization. We now
motivate the Cross Hybridization Potential, which we
interpret as a specificity measure, and use it to rank the
given probes by their quality.

During a microarray experiment, there should be a
high concentration of targets equally distributed over
all probes. The intended target and unintended targets
compete for the probe on the chip, with the duplex
of probe and intended target having the greatest sta-
bility. We assume that hybridization can occur when
a probe-target pair has a NNA score greater than a
certain threshold. This threshold depends on the nearest
neighbor score Snn of the probe and a free energy value
∆E. We define ∆E as the minimum difference of NNA
scores between probe vs. intended-target and probe vs.
unintended-target that eliminates the chance of cross-
hybridization. Thus, we define the cross-hybridization
NNA score threshold as Snn(probe) + ∆E. For example,
if a probe and its intended target have a NNA score of
−65.30, and ∆E is set to 30.0, then all NNA scores of
probes and unintended targets smaller than −35.30 are
considered to lead to cross-hybridization.

Given a probe p and its NNA scores T = T1, . . . , Tn

with unintended targets, and a cross-hybridization
threshold cht = Snn(p)+∆E, the CHP chp of p is defined
as

chp(p) =

∑n
i=1

{
cht−Ti if Ti < cht

0 else

∆E
. (5)

Of all NNA scores that indicate cross-hybridization, the
amount they are below the threshold cht is summed up.
By dividing the sum by ∆E, we can interpret the chp as
the number of positions where cross-hybridization will
occur under the following assumptions.

Sequences with a NNA score ≤ cht are not considered
to hybridize and there is a correlation of cht−Ti to the
affinity of probe and sequence. All sequences present
on the microarray appear in high copy number and
are distributed evenly over the surface of the chip.
We assume the hybridization process to be stochastic,
thus probability of hybridization increases linearly in the
amount by which the NNA score surpasses the cht and
the number of sequences present.

2.1.3 Filtering Using Weighted Seeds
To compute the CHP of a probe, we need its NNA
scores with unintended targets. The simplest but com-
putationally most expensive way to obtain these scores,
would be to align the probe to all non-target positions
of the genome. For large genomes and high numbers
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of probes, this becomes time consuming and one can
observe that a large portion of the NNA scores is above
the cross-hybridization threshold not contributing to the
CHP. We introduce a filter for the number of scores to be
computed a priori by only considering positions in the
genome where the probability of obtaining a low NNA
score is high.

Our filtering method is based on the observation that
low-scoring alignments have thermodynamic stable con-
tiguous matches, which fall below a certain score thresh-
old. Therefore, we look for stable seeds between query
and database and apply the NNA algorithm to only
those positions. Other large scale database search and fil-
tering algorithms like BLAST [27], [28], FASTA [29] and
QUASAR [30], which rely on the q-gram Lemma [31],
[32], search for short common factors between database
and query. These methods identify exact matches with
a minimum number of base pairs and extend the search
from there. Similarly, we also employ a seed and extent
approach, but use the free energy contribution of com-
mon factors to define seeds.

The filter exploits the correlation between the NNA
score nna(p, t) of a probe p and a target t and the weight
of the heaviest common factor of p and t.

Notation: We write sC t if s is a factor of t; the cases
that s is empty or that s = t are allowed.

A common factor of two strings p and t is a string s
with both sC p and sC t. A common factor is a heaviest
common factor if no energetically more stable factor exists.
We write

hcf(p, t) := min{Snn(s) : sC p and sC t} (6)

for the weight of the heaviest common factor.
Note the minimum in the definition; the weight is

the sum of free energy contributions from stacked pairs
(which are all negative), and the factor which can con-
tribute most to the overall energy associated with the
duplex formation of p and t is called the heaviest common
factor. The heavier a common factor, the lower its score.

Using the heaviest common factor as an indicator for
cross-hybridization is motivated by the following obser-
vations:

• duplex formation needs a sufficiently stable core to
initiate binding [33],

• low scoring Nearest Neighbor Alignments usually
have relatively heavy common factors, and

• depending on sequence composition, the heaviest
common factor need not be the longest.

The filter is controlled by a seed threshold weight w.
This w determines the minimum weight a seed must
have and is defined as a fraction of the nearest neighbor
score of a given probe. For example, if a probe has a
nearest neighbor score of −59.20, then the maximum
score for a seed will be expressed as w · (−59.2), in
which w can be in the range of 0 ≤ w ≤ 1. In general,
small w will result in a greater number of seeds that will
be considered, which in turn leads to more positions

in the database that are verified. If the score of the
heaviest common factor of a probe and a subsequence in
the database is greater than the seed threshold, the NNA
score for this probe and the database subsequence is
computed.

To quickly find all occurrences of a given seed in a
database, a q-gram index over the database is build. For
a given probe, the filter then iterates over all minimal
length factors which meet the seed threshold criterion.
At all occurrences of every such seed in the database,
NNA score of probe and the database subsequence at
this position is computed.

2.2 Additional Probe Properties
The CHP as introduced in the previous section is our
main measure for probe specificity. Several other probe
properties are evaluated during candidate generation by
OSProbes for comparison and to speed up the calculation
of the candidate set by removing probes with flaws
easily recognized such as runs of particular length [34].

2.2.1 Hamming Distance
The Hamming distance filter during probe candidate
generation can be used to filter candidates with a Ham-
ming distance to a non-target position in the database
below a given threshold. To speed up the computation
of this approximate string matching problem, we apply
gapped q-gram filtering [35] or ungapped q-gram filter-
ing using the traditional q-gram lemma [31]. The shape
of the q-gram, as well as the q-gram threshold which
specifies how many matching q-grams must exist to
trigger verification, are part of the user input. This allows
for a flexible filter where the user can choose between
smaller, lossless shapes, and larger shapes which might
have a sensitivity below one but can increase the speed
dramatically. For example, consider the problem of find-
ing a sequence of length 51 with at most 10 differences
(a similarity of 80% or more). The shape 11011000101 (0s
are irrelevant positions) used with a threshold of one will
be lossless but has only a filtration ratio of about 0.012.
On the other hand, the shape 111011101001011 with the
same threshold has a filtration ratio of 0.00004 at the cost
of missing some of the less similar hits; its sensitivity is
0.976.

When the Hamming distance filter is initialized, an
index using the provided shape is built over the entire
database. This lookup structure is then used to quickly
find all exact q-gram matches for a given probe. A
counter at every database position is used to check if
the q-gram threshold is met and the Hamming distance
needs to be computed.

2.2.2 Uniqueness and Longest Common Factor
The uniqueness filter can be used to limit the number
of perfect or near-perfect matches a probe is allowed
to have. A near-perfect match is defined as a match
with a very low Hamming distance, i.e. we limit the
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number of mismatching base pairs so that in the worst
case there is still a common subsequence of length ≥ 25.
As a result, probes with a length l of 50 ≤ l < 75 are
allowed one and probes with 75 ≤ l < 100 up to two
mismatching base pairs for a near-perfect match. When
no unique probes can be found, non-unique probes
can be valuable for identifying sequences with group
testing [36], [37], or they can be used when designing a
minimal size tiling array spanning different strains of a
given genome [38]. In addition, we compute the length
of the longest common factor of probe and non-target
sequences.

Both of these filters make use of a contiguous q-gram
index of the database and are thus very efficient.

2.2.3 Intrinsic Properties
We compute a number of properties based on probe
sequence composition and allow filtering based on quan-
titative criteria [39]. These properties are the maximum
content of any single base, the maximum length of any
single base stretch and the GC content.

In addition, we compute palindromes, which are
scores as the the maximum number of contiguous com-
plementary base pairs formed by the probe folding
back to itself. Low-sensitivity probes that fold back on
themselves cannot bind their target and are therefore
undesirable candidates.

The melting temperature Tm of the probe and its
perfect Watson-Crick complementary target is computed
using the nearest neighbor method [23].

2.3 Implementation
The NNA algorithm and all filters and indices used by
OSProbes were implemented in ANSI C and compiled
to Python modules using SWIG. Computing all of the
probe properties is a time consuming exercise even for
small genomes and it is therefore useful to order filters
on the complexity of property computation. Local filters,
which operate only on the probe sequence, are applied
before the time consuming global filters, which assess
probe sequence with respect to the genome. Whenever
the properties of a probe do not lie within the user
defined boundaries, it is discarded and the remaining
properties do not have to be evaluated. For a complete
order of the filters see Table 4.

3 EXPERIMENTS

We designed a series of experiments to assess specificity
and sensitivity of the Cross Hybridization Potential,
the performance of the weighted seed filter, and how
an OSProbes candidate set compares to sets generated
by other software. Finally, we designed a tiling path
using OSProbes and Tileomatic and compared it to
other state of the art methods. For comparability, we
performed the following experiments on the genome
sequence of the fungus Trichoderma reesei, which was
used by Lemoine et al. for a comparative study of custom

microarray designs [40]. We compared our results for
tiling array design to those obtained with OligoTiler [20]
and ArrayDesign [21]. Both outperformed other methods
and were analyzed extensively by Lemoine et al. whose
procedure we follow.

We used the unmasked FASTA file of the T. reesei
genome v.2.0 [41] from the U.S. Department of Energy
website1 with 33,454,791 base pairs in 87 sequences.

3.1 NNA Scores Versus Kane’s Criteria

To evaluate the performance of the Nearest Neighbor
Alignment (NNA) score and compare it to Kane’s cri-
teria, we generated oligonucleotide pairs with a low
Hamming distance and used the program hybridize, part
of the widely used DINAMelt package [42], [43], to
obtain free energy values for possible hybridizations.
DINAMelt simulates the melting of one or two single-
stranded nucleic acids in solution. The entire equilibrium
denaturation profiles as a function of temperature are
calculated to obtain the melting temperature Tm for
a given pair of strands. Stacked pairs, interior loops,
bulges and dangling bases at the ends are taken into
account for the computation of free energy of a duplex,
and all possible conformational states are recursively
tested. All free energy values obtained during our ex-
periments were those of the duplex at a temperature of
37◦C, Na+ concentration of 1 M and Mg++ concentration
of 0 M. We generated one million oligonucleotide pairs
s, t using the following method: Pick a random 50mer of
the genome sequence as s = t and a random Hamming
distance h between 10 and 15. Then change h bases
in t either (1) at the 5’ end, (2) in the middle, (3) at
the 3’ end, (4) maximally distributed, or (5) randomly
distributed. For varying free energy thresholds for hy-
bridization Htrue(s, t) = f · Snn(s) with f ∈ [0, 1] , we
then counted misclassified oligonucleotide pairs for each
method. Is the free energy Etrue(s, t) which is computed
by the hybridize program smaller than Htrue(s, t), s and
t are assumed to hybridize. Depending on the result
of the two predictors Kane’s criteria and NNA score the
oligonucleotide pair will then be counted as false/true
positive/negative. Figure 2 plots the false positive rate
versus true positive rate for all Htrue.

The NNA score showed a larger true positive rate
and a smaller false positive rate than Kane’s criteria.
Especially when used with ∆E = 25, it was a much
better predictor for cross-hybridization.

The running time for 1 million NNA score compu-
tations was 31.13 seconds. The optimized version of
hybridize running with the parameter --energy-only
and a maximum loop length of 30 bases needed more
than 353 minutes to complete the task on the same 2.33
GHz CPU.

1. http://genome.jgi-psf.org/Trire2/Trire2.home.html
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TABLE 4
Order of filters and their experimental filtration ratio and running time (for experiment details see Section 3.5).

Position Type Filter criterion Experimental filtration ratio and running time
1 local sequence composition (GC content, single

base run, single base contribution)
59.24% 3:02

2 local palindromes 99.97% 5:42
3 local Tm - -
4 global number of perfect or near-perfect matches 96.27% 1:49:22
5 global longest common factor 86.31% 1:47:08
6 global Hamming distance 99.51% 1463:25:09
7 global Cross Hybridization Potential - 2808:27:53
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3.2 Weighted Seed Filter

The weighted seed filter (Section 2.1.3), which reduces
the amount of NNA scores that have to be computed
is controlled by the seed threshold weight w. With the
following experiments we evaluated the filtration ratio
as well as the sensitivity and specificity of the filter for
varying w.

The filtration ratio of a filter is defined as the fraction
of the number of downstream particles to the number
of all upstream particles. In case of the weighted seed
filter, we treat every position in the genome as an
upstream particle, and every position where genome
and a given oligonucleotide share a common factor of a
weight greater than a certain threshold as a downstream
particle. We randomly selected one billion 50mer pairs
and computed the weight of the heaviest matching factor
hmf , which differs from the heaviest common factor
(Equation 6) that the start position in both oligonu-
cleotides is equal. For all seed thresholds smaller than
hmf , we added a downstream particle.

The filtration ratio experienced an exponential drop
with increasing w (Fig. 3). At w = 0.1 one percent, and
at w ≈ 0.14 only 0.1% of the oligonucleotide pairs passed
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Fig. 3. Filtration ratio of the weighted seed filter for
varying threshold weights w.

the filter.
Similarly, we measured sensitivity and specificity of

the filter by randomly picking oligonucleotide pairs and
computing their NNA score, as well as the weight of
their heaviest common factor. We could then evaluate
the ratio of oligonucleotide pairs which pass the filter
and have a NNA score that indicates cross-hybridization,
and all oligonucleotide pairs which pass the filter (speci-
ficity). In addition, we could determine the ratio of
oligonucleotide pairs which cross-hybridize, and those
which cross-hybridize and pass the filter (sensitivity).
Another measure of sensitivity was given by the fraction
of detected Cross Hybridization Potential (CHP) contri-
bution.

The results for 240 million 50mer pairs of T. reesei with
∆E = 25 show that the amount of detected CHP starts
to fall for w > 0.1 , where specificity is 0.65, and reaches
50% at w = 0.15 with a high specificity of 0.98 (Fig. 4).
Seed thresholds of w ≈ 0.12 result in a good trade-off by
detecting almost 90% of the total CHP and filtering by
a factor of 400, based on the previous experiment.

3.3 Candidate set for comparison

We generated probe candidates with length 60 bp. To
receive a large maximal set with high coverage, we did
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Fig. 5. Candidate probe density for the sets generated by OSProbes (top) and OligoTiler (bottom) for T. reesei.
The graph shows the number of probes for all overlapping 5k windows. OligoTiler rejects more oligonucleotides than
OSProbes but these oligonucleotides are distributed evenly across the genome. The number of large gaps (> 500 bp)
is comparable in both sets (OligoTiler 31, Tileomatic 34).
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Fig. 4. Sensitivity and specificity of the weighted seed
filter. When using w = 0.13, about 80% of the total CHP
is detected, while only 10 % of the NNA scores do not
contribute.

not make use of most filters. Our only requirement was
a maximal uniqueness score of 1, i.e. every probe was
allowed a maximum of one perfect or near-perfect match
in the genome. As all oligonucleotide properties are part
of the output of OSProbes, filtering can easily be done
at any later time.

The gapped q-gram for the Hamming distance filter
was 1110101100011011 with a threshold of 1. The CHP
was computed with ∆E = 25 for the NNA score
thresholds, and w = 0.13 for determining the minimum

weights of seeds.
In the absence of similar tools that can generate probe

candidates, we employed OligoTiler to generate a 60mer
tiling with oligonucleotide distance 1 and compared
the two sets. OligoTiler was run via its web interface2,
leaving the advanced parameters at their default values
(IR region = 5, IR require = 3 and repeat region overlap
= 4).

Total running time of OSProbes was 9.5 CPU hours.
The OligoTiler website returned a results after ca. 45
minutes. Of the 33,449,658 60mers in T. reesei 0.1%
included an unknown base and were not considered by
both programs. From the total oligonucleotide set, 0.5%
were filtered out by OSProbes because they were non-
unique. OligoTiler rejected 7.8% of the oligonucleotides
but created less gaps with a length greater than 500 bp
(31 vs. 34), and the OSProbes set covered slightly less
bases with at least one oligonucleotide than OligoTiler
(99.8% vs. 99.9%). Thus, the oligonucleotides rejected by
OligoTiler were distributed evenly across the genome
(Fig. 5). In the OligoTiler set 0.4% of the candidates
are non-unique and appear at multiple locations in the
genome. Of the OSProbes set 7.5% of the candidates are
not in the OligoTiler set; of those oligonucleotides 87%
have a CHP of 0.0 indicating a strong specificity.

The OSProbes candidate set showed the same large
gaps as OligoTiler, which were the result of repeats in
the genome. But the overall larger candidate set could
prove to be valuable during subsequent tiling path com-

2. http://tiling.gersteinlab.org/OligoTiler/oligotiler.cgi
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putations, as we explored with the following experiment.

3.4 Tiling path
The candidate set generated by OSProbes holds all in-
formation about a number of probe properties. It is this
information that can be used to guide the computation
of an optimal tiling path with desired characteristics.
Tileomatic [7] can handle this multi-criterion optimiza-
tion problem gracefully by casting it into a shortest path
problem. This allowed us to not only minimize the CHP
of the tiling path probes, but also the variability in Tm

and probe distances.
We computed tile paths for T. reesei using Tileomatic

with a candidate set generated by OSProbes, OligoTiler,
and ArrayDesign and compared the resulting oligonu-
cleotide sets. OSProbes/Tileomatic and ArrayDesign but
not OligoTiler support varying probe lengths. We used
60 bp for ease of comparison.

Tileomatic was used with the OSProbes candidate
set described in the previous section and ran with the
following target parameters: probe distance = 90 bp, Tm

= 75◦C, CHP = 0.0. The weights penalizing deviation
from the target parameters were chosen as follows: 1, 1
and 10 for distance, Tm and CHP respectively.

OligoTiler was used with the same advanced pa-
rameters as in the previous section and the inter-
oligonucleotide distance was set to 90.

ArrayDesign sources were obtained from the au-
thor’s website3. As the software does not support
the design of tiling arrays natively, we followed the
steps described in [40] and created sequence windows
of 150 bp at every 90 bp. For suffix array creation,
the MAX PREFIX LENGTH variable was set to 15.
ArrayDesign defines a uniqueness score u as a specificity
measure for oligonucleotide probes. We generated two
probe sets, one with the default value of u = 0 and one
with u = 15 for high-specificity probes. In order to not
discard any probes based on their melting temperature
we set the temperature range to 20◦–200◦C. All remain-
ing parameters were left at their default values.

The OligoTiler webservice returned the result ca. 6
minutes after uploading of the sequence file finished.
Tileomatic took 21 minutes, and ArrayDesign needed 5
hours (u = 0) and 4.5 hours (u = 15).

OligoTiler picked the largest set (371k) with the lowest
deviation in probe distance, but also showed the largest
amount of probes with CHP > 0.1 (35k, 9.4%). The
Tileomatic set was the second largest (359k) and showed
the lowest CHP; 99.99% had a value below or equal to
0.1. The two ArrayDesign sets showed a higher variance
in probe distance and contained less probes than the
other two sets (341k and 280k). For these sets, the
number of probes with CHP > 0.1 lay in between the
other two methods; 19k for u = 0 and 11k for u = 15.

Probe count and CHP distribution for the different
probe sets is summarized in Figure 7. Distribution of

3. http://www.ebi.ac.uk/∼graef/arraydesign/
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probe distances, and Tm and GC content are shown in
Figure 6 and 8. Probes selected by Tileomatic show a
significantly smaller variance in Tm; Bartlett’s test of
homogeneity of variances indicates the same variance in
the other three sets (p-value 0.9638) but does not support
this when comparing the Tileomatic set to the other
sets (all p-values below 0.0005). Sensitivity measured as
palindrome score is virtually the same for all four tiling
paths and does not show any probes prone to self folding
(data not shown).

Overall, the combination of OSProbes and Tileomatic
resulted in the largest tiling path set with high-specificity
probes. In addition, more than 90% of inter-probe dis-
tances were between 85–95 bp and close to 100% were
between 70–110 bp. Furthermore, this probe set exhibits
the smallest variance in Tm and GC content.

3.5 Candidate set for the human genome

We establish the feasibility to compute the CHP for
suitable probes of the human genome. For in-depth
studies, smaller region of interest such as the ENCODE
region are selected for the design [44]. They are of the
same size as the genome of T. reseii and can therefore
be computed on modern desktop computers.

Nevertheless, we provide a set of probes for custom
arrays for the complete human genome. We used the
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repeat-masked version of Build GRCh37, downloaded
from Ensembl [45]. For the computation of the CHP for
probes of the human chromosome 1, the largest, we used
a machine with 8 AMD Opteron 8439 SE and 256GB
of memory. The total number of 60mers was 91,314,793.
After use of the standard filters, 44,567,348 remained for
computation of the CHP, which took 7 days utilizing
about 157GB of the shared memory. Filter parameters are
given in the supplemental material and filtration ratios
and running times in Table 4. Candidate set computa-
tion took 23,597,628 CPU seconds of which ca. 66% is
attributed to CHP computation, on average 0.23 CPU
seconds per probe. This computational effort can be
amortized over several design runs, as it is not necessary
to rerun such analyses for a given build of the genome.
The remaining chromosomes are underway. We are also
investigating further algorithmic and implementational
improvements to reduce running times.

4 CONCLUSION

While the design of oligonucleotide tiling arrays has
received a lot of attention over the last years, methods
still rely on simple criteria like Hamming distance to
determine the susceptibility of probes to cross-hybridize.
Cross-hybridization undermines the effectiveness of ex-
periments as binding to unintended targets is detrimen-
tal to the signal-to-noise ratio and complicates down-
stream analysis.

We address the problem of computing sets of can-
didate oligonucleotide probes using thermo-dynamic
considerations to predict cross-hybridization. The novel
Cross Hybridization Potential (CHP) we define directly
measures the quality of a given probe and has the
advantage of combining local and global similarity of po-
tential matches to the genome. Its computation is based
on a Nearest Neighbor Alignment (NNA) which we
derive from a simplified reformulation of t-gap insertion-
deletion-like metrics. The NNA efficiently estimates a
lower bound for the Gibbs free energy of the duplex
formation of two DNA sequences. A novel filter using
weighted ungapped q-grams to rapidly identify high-
energy binding sites reduces the number of NNA scores
that have to be computed by a factor of 400 while
maintaining a sensitivity of 0.9. To reduce the compu-
tational effort the Nearest Neighbor Alignment is only
computed for cases which cannot safely be decided by
faster hamming-distance based heuristics, for which we
use gapped q-grams. An additional suite of filters which
are routinely used in the design of DNA microarrays
is implement along the CHP in our software OSProbes,
which computes sets of viable probe candidates.

Our experiments show that the CHP is a better pre-
dictor for cross-hybridization than Kane’s criteria. Con-
sequently, the number of oligonucleotide probes likely
to cross-hybridize used in tiling arrays designed by
other methods is 4.0 – 9.4%. This can be reduced to
less than 0.01% by the use of OSProbes. The combi-
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nation of OSProbes with our recently proposed linear-
time algorithm which computes globally optimal tiling
paths [7], implemented in the software Tileomatic, yields
tiling arrays which are highly specific and balance inter-
probe distances, striving for equal-distance probes, the
probe quality with respect to cross-hybridization and the
hybridization conditions, to assure that probes are for
example as equi-thermal as possible. The computational
costs of OSProbes can be amortized over multiple tiling
arrays due to our two-step procedure. Both Tileomatic
and OSProbes are available under the GPL and as a
webservice at http://tileomatic.org.

Note that we found negligible differences between
prior methods used for designing tiling arrays. In com-
parison to those prior methods we find that not only
our probe qualities are significantly higher, but also that
our arrays show a statistically significant lower vari-
ance (p < 0.0005) in melting temperatures, GC-content
and other important design features, thus achieving im-
proved signal-to-noise ratios and improved interpretabil-
ity. The findings of several biological experiments will be
reported elsewhere.

While the CHP was designed and evaluated in the
context of tiling array design, it would be useful for other
methods requiring large scale selection of probes, e.g.
primer design and smaller scale oligonucleotide arrays
such as those used for gene expression analysis.
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