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CHARACTERIZATION OF PRECLONES BY MATRIX

COLLECTIONS

ERKKO LEHTONEN

Abstract. Preclones are described as the closed classes of the Galois con-
nection induced by a preservation relation between operations and matrix col-

lections. The Galois closed classes of matrix collections are also described by

explicit closure conditions.

1. Introduction

Preclones, also known as operads, are heterogeneous algebras that resemble ab-
stract clones, but the superposition operation is slightly different from clone com-
position and membership of certain elements that are present in every clone is not
stipulated. Precise definitions will be given in Section 2. The notion of operad
originates from the work in algebraic topology by May [14] and Boardman and
Vogt [1], and it has found applications in various fields of mathematics, including
algebra, geometry, homotopy theory, category theory, and mathematical physics.
For general background and basic properties of operads, we refer the reader to the
survey article by Markl [13]. The term preclone was introduced recently by Ésik
and Weil [6] in a study of the syntactic properties of recognizable sets of (finite,
ranked) trees, leading to a theorem linking pseudovarieties of preclones and varieties
of tree languages.

One can define in a natural way a preclone structure on the set of all operations
on a set A, and its subalgebras are called preclones of operations on A. Every
preclone is isomorphic to a preclone of operations on some set, and that is why
preclones of operations are in a way the most interesting ones. This raises the
obvious problem of describing the subalgebras of the preclone of all operations on
A.

One possible approach to this problem is to characterize the subalgebras in terms
of a Galois connection. The motivating classical example for this approach is the
Pol–Inv theory of clones and relations: (locally closed) clones are precisely the closed
classes of operations under the Galois connection between operations and relations
induced by the so-called preservation relation; see [2, 8, 17, 19]. Analogous Galois
connections have been developed for other related function algebras; see [3, 9, 10,
12, 16]. The basic idea here is to set conditions on how a function should behave
on certain finite subsets of its domain. These subsets are represented by matrices
whose rows are the elements of the respective subsets. Relations and the various
other dual objects in the Galois connections mentioned above serve as shorthand
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representations of sets of matrices. We refer the reader to [12] for a brief survey on
this line of research. For general background on clones and other function algebras,
see [5, 11, 18, 20].

In this paper, we will introduce the notion of matrix collection, and we define
a preservation relation between operations and matrix collections on a set A. The
preservation relation induces a Galois connection between operations and matrix
collections, and it leads to the following dual definition of characterization: a set F
of operations on A is characterized by a setM of matrix collections if F is exactly
the set of operations that preserve all the elements of M; and a set M of matrix
collections is characterized by a set F of operations on A if the elements of M
are exactly the matrix collections that are preserved by all the operations in F .
We will show that the closed classes of operations under this Galois connection, or,
equivalently, the classes of operations characterized by sets of matrix collections are
precisely the locally closed preclones of operations on A. We will present several
examples of preclones and matrix collections characterizing them. While the closed
classes of operations are of our main concern, we will follow the model of the earlier
work cited above and we also present explicit closure properties that form together a
necessary and sufficient condition for a set of matrix collections to be characterized
by a set of operations.

2. Preliminaries

2.1. Preclones. A preclone (or an operad) is a heterogeneous algebra

C :=
(
(C(n))n≥1; (∗nm1,...,mn

)n≥1,m1,...,mn≥1, 1
)

consisting of

(1) infinitely many base sets, i.e., disjoint sets C(n) for n ≥ 1,
(2) operations ∗nm1,...,mn

, called superpositions, for all n ≥ 1, m1, . . . ,mn ≥ 1,

where ∗nm1,...,mn
is a map from C(n) × C(m1) × · · · × C(mn) to C(m), where

m =
∑n
i=1mi (in order to simplify notation, we will write f ∗ (g1, . . . , gn)

for ∗nm1,...,mn
(f, g1, . . . , gn)),

(3) a distinguished element 1 ∈ C(1);

satisfying the following three equational axioms:

(P1)
(
f ∗ (g1, . . . , gn)

)
∗ (h1, . . . , hm) = f ∗ (g1 ∗ h̄1, . . . , gn ∗ h̄n),

where f ∈ C(n), gi ∈ C(mi) (1 ≤ i ≤ n), m =
∑n
i=1mi, hj ∈ C`j (1 ≤ j ≤ m), and

if we denote
∑i
j=1mj by m̂i (0 ≤ i ≤ n), then h̄i = (hm̂i−1+1, . . . , hm̂i

) (1 ≤ i ≤ n);

1 ∗ f = f,(P2)

f ∗ (1, . . . ,1) = f,(P3)

where f ∈ C(n) and 1 appears n times on the left-hand side of Axiom (P3).
Axiom (P1) is a generalization of associativity, and Axioms (P2) and (P3) state

that 1 is a neutral element. The elements of each base set C(n) (n ≥ 1) are said to
have rank n.

An operation on a nonempty set A is a map f : An → A for some integer n ≥ 1,

called the arity of f . We denote the set of all n-ary operations on A by O(n)
A , and we

let OA :=
⋃
n≥1O

(n)
A . The i-th n-ary projection is the operation (a1, a2, . . . , an) 7→

ai, and it is denoted by x
(n)
i .
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It is an easy exercise to verify that we can obtain a preclone structure on

(O(n)
A )n≥1 by defining the superposition operations ∗nm1,...,mn

as follows. For f ∈
O(n)
A , gi ∈ O(mi)

A (1 ≤ i ≤ n), we let ∗nm1,...,mn
(f, g1, . . . , gn) := f ∗ (g1, . . . , gn),

where the operation f ∗ (g1, . . . , gn) ∈ O(m)
A , m =

∑n
i=1mi, is given by the rule(

f ∗ (g1, . . . , gn)
)
(a1,1, . . . , a1,m1 , a2,1, . . . , a2,m2 , . . . , an,1, . . . , an,mn) =

f
(
g1(a1,1, . . . , a1,m1), g2(a2,1, . . . , a2,m2), . . . , gn(an,1, . . . , an,mn)

)
,

for all ai,j ∈ A, 1 ≤ i ≤ n, 1 ≤ j ≤ mi. The first unary projection x
(1)
1 serves

as the neutral element. The preclone
(
(O(n)

A )n≥1; (∗nm1,...,mn
)n≥1,m1,...,mn≥1, x

(1)
1

)
described above is called the full preclone of operations on A, and its subalgebras
are called preclones of operations on A.

It is a well-known fact that every preclone is isomorphic to a preclone of opera-
tions on some set (see Proposition 2.8 in [6] for a proof).

We conclude this subsection with a few examples of preclones of operations.
Further examples are provided in the papers by Ésik and Weil [6] and Markl [13].

Example 2.1. The composition of operation f ∈ O(n)
A with g1, . . . , gn ∈ O(m)

A is

the operation f ◦ (g1, . . . , gn) ∈ O(m)
A given by the rule

f ◦ (g1, . . . , gn)(a) := f
(
g1(a), . . . , gn(a)

)
for all a ∈ Am.

A clone on A is a set of operations on A that is closed under composition and

contains all the projections x
(n)
i for all n and 1 ≤ i ≤ n. For general background

on clones, see, e.g., [5, 11, 18, 20].
Every clone on A is (the universe of) a preclone of operations on A. For, let C

be a clone on A. By definition, C contains the unary first projection. We want to
verify that C is closed under superposition. Let f ∈ C(n), gi ∈ C(mi) (1 ≤ i ≤ n),
m :=

∑n
i=1mi. Since C contains all projections and is closed under composition, C

contains the m-ary operations

g′i := gi ◦ (x
(m)
m̂i−1+1, x

(m)
m̂i−1+2, . . . , x

(m)
m̂i

) (1 ≤ i ≤ n),

where m̂i :=
∑i
j=1mj (0 ≤ i ≤ n), and we clearly have that

f ∗ (g1, . . . , gn) = f ◦ (g′1, . . . , g
′
n),

which is a member of C since C is closed under composition.

Example 2.2. Let A := (A; (fAi )i∈I) be an algebra of type τ . It is well-known
that the set Wτ (X)A of term operations on A is a clone (see [5, 11, 18, 20]) and
hence it is a preclone by Example 2.1. Consider the following subsets of Wτ (X)A:

• the set W lin
τ (X)A of term operations on A induced by linear terms, i.e.,

terms of type τ where no variable occurs more than once;
• the set W inc

τ (X)A of term operations on A induced by linear terms where
the variables occur in increasing order, i.e., if t is a linear term of type τ
and variables xi and xj occur in t and the occurrence of xi in t is to the
left of that of xj , then i < j.

It is easy to verify that W lin
τ (X)A and W inc

τ (X)A are preclones, but they are not
in general clones.
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Example 2.3. Let ≤ be a partial order on A. We say that f : An → A is order-
preserving in its i-th variable (with respect to ≤) if for all a1, . . . , an, a

′
i ∈ A, we

have

f(a1, . . . , ai−1, ai, ai+1, . . . , an) ≤ f(a1, . . . , ai−1, a
′
i, ai+1, . . . , an)

whenever ai ≤ a′i. Similarly, we say that f is order-reversing in its i-th variable
(with respect to ≤) if for all a1, . . . , an, a

′
i ∈ A

f(a1, . . . , ai−1, ai, ai+1, . . . , an) ≥ f(a1, . . . , ai−1, a
′
i, ai+1, . . . , an)

whenever ai ≤ a′i. LetN≤ be the set of all operations on A that are order-preserving
or order-reversing in each of their variables. It is easy to verify thatN≤ is a preclone.
(However, N≤ is not in general a clone.)

Example 2.4. A transformation semigroup on A is a set S of mappings A → A
that is closed under functional composition. If it contains the identity map on A, it
is called a transformation monoid. Every transformation monoid on A constitutes
a preclone of operations that has only elements of rank 1.

Example 2.5. Let p ≥ 1 be an integer. Let Ep :=
⋃
n≡1 (mod p)O

(n)
A . It is easy to

verify that Ep is a preclone for every p ≥ 1 (but Ep is not a clone for p ≥ 2).

2.2. A Galois connection between operations and matrix collections. Let
A be a set. A mapping c : P(A) → P(A) on the power set of A is called a closure
operator on A, if for all subsets X,Y ⊆ A the following properties are satisfied:

(i) X ⊆ c(X) (extensivity),
(ii) X ⊆ Y ⇒ c(X) ⊆ c(Y ) (monotonicity),
(iii) c(X) = c(c(X)) (idempotency).

Subsets of A of the form c(X) are called closed (with respect to the closure operator
c), and c(X) is said to be the closed set generated by X.

A Galois connection between setsA andB is a pair (σ, τ) of mappings σ : P(A)→
P(B) and τ : P(B)→ P(A) between the power sets P(A) and P(B) such that for
all X,X ′ ⊆ A and all Y, Y ′ ⊆ B the following conditions are satisfied:

X ⊆ X ′ =⇒ σ(X) ⊇ σ(X ′),
Y ⊆ Y ′ =⇒ τ(Y ) ⊇ τ(Y ′),

and
X ⊆ τ(σ(X)),
Y ⊆ σ(τ(Y )),

or, equivalently,

X ⊆ τ(Y )⇐⇒ σ(X) ⊇ Y.
The sets A and B are referred to the sets of primal objects and dual objects, re-
spectively.

The following well-known theorem describes the relationship between closure
operators and Galois connections (see [4, 5, 11]):

Theorem 2.6. Let the pair (σ, τ) with σ : P(A)→ P(B) and τ : P(B)→ P(A) be
a Galois connection between sets A and B. Then

(i) σ ◦ τ ◦ σ = σ and τ ◦ σ ◦ τ = τ ;
(ii) τ ◦ σ and σ ◦ τ are closure operators on A and B, respectively;

(iii) the sets closed under τ ◦ σ are precisely the sets of the form τ(Y ) for some
Y ⊆ B; the sets closed under σ ◦ τ are precisely the sets of the form σ(X) for
some X ⊆ A.
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For a Galois connection (σ, τ) between sets A and B, the subsets of A and B
that are closed with respect to the closure operators τ ◦ σ and σ ◦ τ , respectively,
(or, equivalently, sets of the form τ(Y ) for some Y ⊆ B and σ(X) for some X ⊆ A)
are called the (Galois) closed classes of primal and dual objects (with respect to
the Galois connection (σ, τ)).

The most popular Galois connections are derived from binary relations, as the
following well-known theorem shows (for early references, see [7, 15]; see also [4, 5,
11]):

Theorem 2.7. Let A and B be nonempty sets and let R ⊆ A × B. Define the
mappings σ : P(A)→ P(B), τ : P(B)→ P(A) by

σ(X) := {y ∈ B | ∀x ∈ X : (x, y) ∈ R},
τ(Y ) := {x ∈ A | ∀y ∈ Y : (x, y) ∈ R}.

Then the pair (σ, τ) is a Galois connection between A and B.

For any nonnegative integers m,n, we denote by Am×n the set of all matrices
with m rows and n columns and entries from A. Subsets Γ ⊆

⋃
p≥0A

m×p, for a
fixed m ≥ 1, are called matrix collections on A, and the number m is referred to as
the arity of Γ. For m ≥ 1, we denote

M(m)
A := {Γ | Γ ⊆

⋃
p≥0

Am×p} and MA :=
⋃
m≥1

M(m)
A .

The breadth of a matrix collection Γ is the maximum number of columns of the
matrices that are members of Γ, provided that this maximum exists; if there is no
maximum, we say that Γ has infinite breadth. We also agree that the breadth of
the empty matrix collection ∅ is 0.

Let f ∈ O(n)
A , and let M := (aij) ∈ Am×n. We denote by fM the m-tuple

(f(a11, a12, . . . , a1n), f(a21, a22, . . . , a2n), . . . , f(am1, am2, . . . , amn)),

i.e., the m-tuple obtained by applying f to the rows of M. We will interpret fM as

a column vector. We say that an operation f ∈ O(n)
A preserves a matrix collection

Γ ∈M(m)
A , denoted f B Γ, if for all m-row matrices M := [M1|M2|M3], where M2

has n columns, the condition M ∈ Γ implies [M1|fM2|M3] ∈ Γ.
Let M ⊆ MA be a set of matrix collections on A, and let F ⊆ OA be a

set of operations on A. We say that F is characterized by M, if F = {f ∈
OA | ∀Γ ∈ M : f B Γ}, i.e., F is precisely the set of all operations that preserve
all matrix collections in M. Similarly, we say that M is characterized by F , if
M = {Γ ∈ MA | ∀f ∈ F : f B Γ}, i.e., M is precisely the set of all matrix
collections that are preserved by all operations in F . In light of Theorem 2.7,
the relation B induces a Galois connection between OA and MA, and its closed
classes of operations (matrix collections) are exactly those which are characterized
by matrix collections (operations, respectively).

In the remaining two sections, we will show that the closed classes of opera-
tions are precisely the locally closed preclones (Theorem 3.1), and we will describe
(in Theorem 4.8) the closed classes of matrix collections as subsets of MA that
are closed under certain operations on matrix collections that will be defined in
Section 4

We will conclude this section with examples of characterizations of preclones by
matrix collections.



6 ERKKO LEHTONEN

Example 2.8. For an m-ary relation ρ ⊆ Am, an operation f : An → A is said to
preserve the relation ρ, denoted f B ρ, if for all m×n matrices M ∈ Am×n it holds
that if the columns of M are elements of ρ, then fM ∈ ρ. The set {f ∈ OA | f B ρ}
is denoted by Pol ρ, and for a set R of relations on A, we denote PolR :=

⋂
ρ∈R Pol ρ.

For an m-ary relation ρ ⊆ Am, let Γρ be the m-ary matrix collection that consists
precisely of all m-row matrices M ∈ Am×p (p ≥ 1) whose columns are m-tuples
from ρ. It is straightforward to verify that f B Γρ if and only if f B ρ.

As mentioned in Example 2.1, every clone C on A is a preclone. It is well-known
that every locally closed (see Section 3 for definition) clone on A equals the set of all
operations on A that preserve some set of relations on A (see [2, 5, 8, 11, 17, 18, 19]).
Thus, if C is a locally closed clone on A, then there exists a set R of relations such
that C = PolR, that is, C is characterized by the set {Γρ | ρ ∈ R} of matrix
collections.

Example 2.9. Let ≤ be a partial order on A, and let N≤ be the preclone of
all operations on A that are order-preserving or order-reversing in each variable,
as defined in Example 2.3. Let Γ≤ be the 4-ary matrix collection that consists
precisely of all matrices of the form

a1 · · · ai−1 c1 ai+1 · · · an
a1 · · · ai−1 c2 ai+1 · · · an
b1 · · · bi−1 c3 bi+1 · · · bn
b1 · · · bi−1 c4 bi+1 · · · bn


for some n ≥ 1, 1 ≤ i ≤ n, a1, . . . , an, b1, . . . , bn, c1, c2, c3, c4 ∈ A such that

• c1 ≤ c2 and c3 ≤ c4, or
• c1 ≥ c2 and c3 ≥ c4.

It is easy to verify that N≤ is characterized by Γ≤, taking into account the fact
that f : An → A is neither order-preserving nor order-reversing in its i-th variable
if and only if there are elements a1, . . . , an, a

′
i, b1, . . . , bn, b

′
i with ai < a′i and bi < b′i

such that

f(a1, . . . , ai−1, ai, ai+1, . . . , an) � f(a1, . . . , ai−1, a
′
i, ai+1, . . . , an),

f(b1, . . . , bi−1, bi, bi+1, . . . , bn) � f(b1, . . . , bi−1, b
′
i, bi+1, . . . , bn).

Example 2.10. LetA be a finite set with r elements, and letM be a transformation
monoid on A. As mentioned in Example 2.4, M is a preclone on A. Let a :=
(a1, . . . , ar)

T be a column vector whose entries are the elements of A in some fixed
order. Consider the following two matrix collections:

Γ<2 :=
⋃
n≥2

A1×n,

ΓM := {fa | f ∈M}.

It is easy to verify that f ∈ O(n)
A preserves Γ<2 if and only if n = 1. We claim

that if f is a unary operation on A, then f B ΓM if and only if f ∈ M . Assume

first that f /∈ M . Since M contains the unary first projection x
(1)
1 , we have that

x
(1)
1 a = a ∈ ΓM . By the definition of ΓM , fa /∈ ΓM . This implies that f 6B ΓM .

Assume then that f ∈ M . Let b ∈ ΓM . By the definition of ΓM , there is a unary
operation g ∈ M such that ga = b. Then fb = f(ga) = (f ◦ g)a, which is an
element of ΓM by definition, since f ◦ g ∈M .

We conclude that M is characterized by the set {Γ<2,ΓM} of matrix collections.
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Example 2.11. Let Ep (p ≥ 1) be the preclone defined in Example 2.5. It is easy
to verify that Ep is characterized by the matrix collection

⋃
n≡1 (mod p)A

1×n.

3. Preclones are characterized by matrix collections

In this section, we will show that the sets of operations on A that are character-
ized by matrix collections are precisely the universes of preclones of operations on
A that are locally closed.

We say that a set F of operations on A is locally closed if for all f : An → A it
holds that f ∈ F whenever for all finite subsets S of An, there exists a g ∈ F such
that f |S = g|S . (Note that every set of operations on a finite set is locally closed
by definition.)

Theorem 3.1. Let F ⊆ OA be a set of operations on A. The following are equiv-
alent.

(i) F is the universe of a preclone of operations on A that is locally closed.
(ii) F is characterized by some set of matrix collections on A.

Proof. (ii) ⇒ (i): Assume that F is characterized by a set M ⊆ MA of matrix
collections. Let Γ ∈ M. For all matrices M := [M1|M2|M3] ∈ Γ such that M2

has exactly one column, we have that [M1|x(1)1 M2|M3] = [M1|M2|M3] ∈ Γ, and

hence x
(1)
1 B Γ. Therefore x

(1)
1 preserves every Γ ∈M, so x

(1)
1 ∈ F .

Let f ∈ F (n), gi ∈ F (mi) (1 ≤ i ≤ n), and let m =
∑n
i=1mi. We will

show that f ∗ (g1, . . . , gn) ∈ F . Let Γ ∈ M, and let M := [M1|M2|M3] ∈ Γ
such that M2 has m columns. Let [M2,1|M2,2| · · · |M2,n] := M2 such that M2,i

has mi columns (1 ≤ i ≤ n); thus M = [M1|M2,1|M2,2| · · · |M2,n|M3]. By our
assumption that gi B Γ for 1 ≤ i ≤ n, a simple inductive proof shows that
[M1|g1M2,1|g2M2,2| · · · |gnM2,n|M3] ∈ Γ. Since f B Γ, we have that

[M1|f ∗ (g1, . . . , gn)M2|M3] = [M1|f [g1M2,1| · · · |gnM2,n]|M3] ∈ Γ.

It remains to show that F is locally closed. Suppose on the contrary that there
is a f ∈ OA \ F , say n-ary, such that for all finite subsets F ⊆ An there exists a
g ∈ F satisfying g|F = f |F . Since f /∈ F , there is a matrix collection Γ ∈M and a
matrix [M1|M2|M3] ∈ Γ such that [M1|fM2|M3] /∈ Γ. Let F be the finite set of
rows of M2. By our assumption, there exists a function g ∈ F such that g|F = f |F ,
and so we have that gM2 = g|FM2 = f |FM2 = fM2. Hence [M1|gM2|M3] /∈ Γ,
which contradicts the fact that g B Γ.

(ii)⇒ (i): Assume that F is a locally closed preclone. We will show that for each
g /∈ F , there is a matrix collection Γ such that g 7 Γ but for every f ∈ F , f B Γ.
The set of all such “separating” matrix collections for every g /∈ F characterizes F .

Assume that g /∈ F is m-ary. Since F is locally closed, there is a finite subset
S ⊆ Am such that g|S 6= f |S for every m-ary f ∈ F . Clearly S is nonempty. Let
M∗ be an |S| ×m matrix whose rows are the elements of S in some fixed order.
Let

Γ :=
{

[h1M1| · · · |hrMr]
∣∣M∗ = [M1| · · · |Mr], r ≥ 1, h1, . . . , hr ∈ F

}
,

where the number of columns of each Mi equals the arity of hi (1 ≤ i ≤ r). (Note

that Γ contains the matrix M∗, because x
(1)
1 ∈ F by the assumption that F is the

universe of a preclone.)
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By the definition of M∗, gM∗ 6= fM∗ for every (m-ary) f ∈ F , and hence
gM∗ /∈ Γ; thus g 7 Γ. We still need to show that f B Γ for all f ∈ F . Let
f ∈ F be n-ary and M ∈ Γ. Then there exist r ≥ 1 and h1, . . . , hr ∈ F such that
M = [h1M1| · · · |hrMr] where [M1| · · · |Mr] = M∗. Let [M′1|M′2|M′3] := M where
M′2 has n columns. Then

[M′1|fM′2|M′3]

= [h1M1| · · · |hpMp|f [hp+1Mp+1| · · · |hp+nMp+n]|hp+n+1Mp+n+1| · · · |hrMr]

= [h1M1| · · · |hpMp|
f ∗ (hp+1, . . . , hp+n)[Mp+1| · · · |Mp+n]|hp+n+1Mp+n+1| · · · |hrMr]

for some p ≥ 0. We have that f ∗ (hp+1, . . . , hp+n) ∈ F by the assumption that F
is the universe of a preclone, and hence the matrix in the last line of the displayed
chain of equalities is in Γ by the definition of Γ. �

4. Closure conditions for matrix collections

In this section, we will establish explicit closure conditions for sets of matrix
collections that are characterized by sets of operations. We will introduce a number
of operations on the set MA of matrix collections on A, and we will show that
the closed subsets of MA are precisely the subsets that are closed under these
operations. Our methods and proofs follow closely those employed in [12], which
in turn are adaptations of those by Couceiro and Foldes [3].

For maps f : A → B and g : C → D, the composition g ◦ f is defined only if
the codomain B of f coincides with the domain C of g. Removing this restriction,
the concatenation of f and g is defined to be the map gf : f−1[B ∩ C] → D given
by the rule (gf)(a) := g(f(a)) for all a ∈ f−1[B ∩ C]. Clearly, if B = C, then
gf = g◦f ; thus functional composition is subsumed and extended by concatenation.
Concatenation is associative, i.e., for any maps f , g, h, we have h(gf) = (hg)f .

For a family (gi)i∈I of maps gi : Ai → Bi such that Ai∩Aj = ∅ whenever i 6= j, we
define the (piecewise) sum of the family (gi)i∈I to be the map

∑
i∈I gi :

⋃
i∈I Ai →⋃

i∈I Bi whose restriction to each Ai coincides with gi. If I is a two-element set,
say I := {1, 2}, then we write g1 + g2. Clearly, this partial operation is associative
and commutative.

Concatenation is distributive over summation, i.e., for any family (gi)i∈I of maps
on disjoint domains and any map f ,(∑

i∈I
gi

)
f =

∑
i∈I

(gif) and f
(∑
i∈I

gi

)
=
∑
i∈I

(fgi).

In particular, if g1 and g2 are maps with disjoint domains, then

(g1 + g2)f = (g1f) + (g2f) and f(g1 + g2) = (fg1) + (fg2).

Let m and n be positive integers (viewed as ordinals, i.e., m := {0, . . . ,m− 1}).
Let h : n→ m∪V where V is an arbitrary set of symbols disjoint from the ordinals,
called existentially quantified indeterminate indices, or simply indeterminates, and
let σ : V → A be any map, called a Skolem map. Then each m-tuple a ∈ Am, being
a map a : m→ A, gives rise to an n-tuple (a + σ)h =: (b0, . . . , bn−1) ∈ An, where

bi :=

{
ah(i), if h(i) ∈ {0, 1, . . . ,m− 1},
σ(h(i)), if h(i) ∈ V .



CHARACTERIZATION OF PRECLONES BY MATRIX COLLECTIONS 9

Let H = (hj)j∈J be a nonempty family of maps hj : nj → m∪V , where each nj
is a positive integer. Then H is called a minor formation scheme with target m,
indeterminate set V , and source family (nj)j∈J . Let (Γj)j∈J be a family of matrix
collections on A, each Γj of arity nj , and let Γ be an m-ary matrix collection on
A. We say that Γ is a conjunctive minor of the family (Γj)j∈J via H, if, for every
m× n matrix M := (a∗1, . . . ,a∗n) ∈ Am×n,

M ∈ Γ⇐⇒
[
∃σ1, . . . , σn ∈ AV ∀j ∈ J :

(
(a∗1 + σ1)hj , . . . , (a∗n + σn)hj

)
∈ Γj

]
.

In the case that the minor formation scheme H := (hj)j∈J and the family (Γj)j∈J
are indexed by a singleton J := {0}, a conjunctive minor Γ of a family consisting
of a single matrix collection Γ0 is called a simple minor of Γ0.

The formation of conjunctive minors subsumes the formation of simple minors
and the intersection of collections of matrices. Simple minors in turn subsume
permutation of rows, projection, identification of rows, and addition of inessential
rows, operations which can be defined for matrix collections in an analogous way
as for generalized constraints (cf. [10, 12]).

Lemma 4.1. Let Γ be a conjunctive minor of a nonempty family (Γj)j∈J of matrix
collections on A. If f : An → A preserves Γj for all j ∈ J , then f preserves Γ.

Proof. Let Γ be an m-ary conjunctive minor of the family (Γj)j∈J via the scheme
H := (hj)j∈J , hj : nj → m∪V . Let M := (a∗1, . . . ,a∗p) be an m×p matrix (p ≥ n)
such that M ∈ Γ and denote M1 := (a∗1, . . . ,a∗q), M2 := (a∗(q+1), . . . ,a∗(q+n)),
M3 := (a∗(q+n+1), . . . ,a∗p), for some 0 ≤ q ≤ p − n, so M = [M1|M2|M3]. We
need to prove that [M1|fM2|M3] ∈ Γ.

Since Γ is a conjunctive minor of (Γj)j∈J via H = (hj)j∈J , there are Skolem
maps σi : V → A (1 ≤ i ≤ p) such that for every j ∈ J , we have(

(a∗1 + σ1)hj , . . . , (a∗p + σp)hj
)
∈ Γj .

For each j ∈ J , denote

Mj
1 :=

(
(a∗1 + σ1)hj , . . . , (a∗q + σq)hj

)
,

Mj
2 :=

(
(a∗(q+1) + σq+1)hj , . . . , (a∗(q+n) + σq+n)hj

)
,

Mj
3 :=

(
(a∗(q+n+1) + σq+n+1)hj , . . . , (a∗p + σp)hj

)
.

Let σ := f(σq+1, . . . , σq+n). By the distributivity of concatenation over piecewise
sum of mappings and by the associativity of concatenation, we have that, for each
j ∈ J ,

(fM2 + σ)hj =
(
(f(a∗(q+1), . . . ,a∗(q+n)) + f(σq+1, . . . , σq+n)

)
hj

=
(
f(a∗(q+1) + σq+1, . . . ,a∗(q+n) + σq+n)

)
hj

= f
(
(a∗(q+1) + σq+1)hj , . . . , (a∗(q+n) + σq+n)hj

)
= fMj

2.

Since f is assumed to preserve Γj , we have that [Mj
1|fM

j
2|M

j
3] ∈ Γj for each

j ∈ J . Since Γ is a conjunctive minor of (Γj)j∈J via H = (hj)j∈J , this implies that
[M1|fM2|M3] ∈ Γ. Thus, f B Γ. �

Lemma 4.2. Let (Γj)j∈J be a nonempty family of m-ary matrix collections on A.
If f : An → A preserves Γj for all j ∈ J , then f preserves

⋃
j∈J Γj.
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Proof. Let M = [M1|M2|M3] ∈
⋃
j∈J Γj be such that M2 has n columns. Then

there is an i ∈ J such that M ∈ Γi. By the assumption that f B Γi, we have that
[M1|fM2|M3] ∈ Γi, and hence [M1|fM2|M3] ∈

⋃
j∈J Γj . �

The right quotient of an m-ary matrix collection Γ on A by an m× n matrix N
is defined by

Γ/N := {M | [M|N] ∈ Γ}.
The left quotient of Γ by N is defined similarly:

N\Γ := {M | [N|M] ∈ Γ}.

Lemma 4.3. Let Γ,Γ′ ∈M(m)
A and N ∈ Am×n, N′ ∈ Am×n′ .

(i) M ∈ Γ/N if and only if [M|N] ∈ Γ.
(ii) M ∈ N\Γ if and only if [N|M] ∈ Γ.

(iii) (N\Γ)/N′ = N\(Γ/N′).
(iv) N\(Γ ∪ Γ′)/N′ = (N\Γ/N′) ∪ (N\Γ′/N′).

Proof. (i), (ii): Immediate from the definition of right and left quotients.
(iii): By parts (i) and (ii), we have

M ∈ (N\Γ)/N′ ⇐⇒ [M|N′] ∈ N\Γ⇐⇒ [N|M|N′] ∈ Γ

⇐⇒ [N|M] ∈ Γ/N′ ⇐⇒ [N|M|N′] ∈ N\(Γ/N′),
and the claim follows.

(iv): By parts (i) and (ii) and by the definition of union, we have

M ∈ N\(Γ ∪ Γ′)/N′ ⇐⇒ [N|M|N′] ∈ Γ ∪ Γ′

⇐⇒ [N|M|N′] ∈ Γ ∨ [N|M|N′] ∈ Γ′

⇐⇒M ∈ N\Γ/N′ ∨M ∈ N\Γ′/N′

⇐⇒M ∈ (N\Γ/N′) ∪ (N\Γ′/N′),
and the claim follows. �

Remark 4.4. By Lemma 4.3, (N\Γ)/N′ = N\(Γ/N′) and hence we can write
N\Γ/N′ without ambiguity. By parts (i) and (ii), we also have that M ∈ N\Γ/N′
if and only if [N|M|N′] ∈ Γ.

Lemma 4.5. Let Γ be an m-ary matrix collection on A. If f preserves Γ, then f
preserves N\Γ and Γ/N for all m-row matrices N.

Proof. Assume that f ∈ O(n)
A preserves Γ. Let [M1|M2|M3] ∈ N\Γ such that M2

has n columns. By Lemma 4.3, [N|M1|M2|M3] ∈ Γ, and by the assumption that
f B Γ we have that [N|M1|fM2|M3] ∈ Γ. Again, by Lemma 4.3, [M1|fM2|M3] ∈
N\Γ, and we conclude that f B N\Γ. The statement f B Γ/N is proved in a
similar way. �

Lemma 4.6. Assume that Γ ∈ M(m)
A contains all m-row matrices on A with at

most p columns, for some p ≥ 0. If f preserves N1\Γ/N2 for all matrices N1, N2

such that [N1|N2] has at least p columns, then f preserves Γ.

Proof. Assume that f ∈ O(n)
A satisfies the hypotheses of the lemma. Let M :=

[M1|M2|M3] ∈ Γ where Mi has ni columns (i = 1, 2, 3) and n2 = n. If n1 +n3 < p,
then [M1|fM2|M3] has n1 + n3 + 1 ≤ p columns and is obviously a member of Γ.
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We can thus assume that n1 + n3 ≥ p. By Lemma 4.3, M2 ∈ M1\Γ/M3, and so
fM2 ∈M1\Γ/M3 by our assumptions. Using Lemma 4.3 again, we conclude that
[M1|fM2|M3] ∈ Γ. �

For p ≥ 0, the m-ary trivial matrix collection of breadth p, denoted Ω
(p)
m , is the

set of all m-row matrices on A with at most p columns. The empty matrix collection

(of any arity) is the empty set ∅. Note that Ω
(0)
m 6= ∅, because the empty matrix

is the unique member of Ω
(0)
m . The binary equality matrix collection, denoted E2,

is the set of all two-row matrices with any finite number of columns such that the
two rows are identical.

For p ≥ 0, we say that the matrix collection Γ(p) := Γ ∩ Ω
(p)
m is obtained from

the m-ary matrix collection Γ by restricting the breadth to p.

Lemma 4.7. Let Γ be an m-ary matrix collection on A. Then f preserves Γ if and
only if f preserves Γ(p) for all p ≥ 0.

Proof. Assume first that f B Γ. Let [M1|M2|M3] ∈ Γ(p) for some p ≥ 0. Since
Γ(p) ⊆ Γ, we have that [M1|M2|M3] ∈ Γ and hence [M1|fM2|M3] ∈ Γ by our
assumption. The number of columns in [M1|fM2|M3] is at most p, so we have
that [M1|fM2|M3] ∈ Γ(p). Thus f B Γ(p) for all p ≥ 0.

Assume then that f B Γ(p) for all p ≥ 0. Let M := [M1|M2|M3] ∈ Γ, and let q
be the number of columns in M. Then M ∈ Γ(q) and hence [M1|fM2|M3] ∈ Γ(q)

by our assumption. Since Γ(q) ⊆ Γ, we have that [M1|fM2|M3] ∈ Γ, and we
conclude that f B Γ. �

We say that a set M ⊆ MA of matrix collections is closed under quotients, if
for any Γ ∈ M, every left and right quotient N\Γ and Γ/N is also in M. We say
thatM is closed under dividends, if for every Γ ∈MA, say of arity m, it holds that

Γ ∈ M whenever there is an integer p ≥ 0 such that Ω
(p)
m ⊆ Γ and N1\Γ/N2 ∈ M

for all m-row matrices [N1|N2] with at least p columns. We say that M is locally
closed, if Γ ∈ M whenever Γ(p) ∈ M for all p ≥ 0. We say that M is closed under
unions, if

⋃
j∈J Γj ∈ M whenever (Γj)j∈J is a family of m-ary matrix collections

from M. We say that M is closed under formation of conjunctive minors, if all
conjunctive minors of nonempty families of members of M are members of M.

Theorem 4.8. Let A be an arbitrary nonempty set. For any set M of matrix
collections on A, the following two conditions are equivalent:

(i) M is locally closed and contains the binary equality matrix collection, the
unary empty matrix collection, and all unary trivial matrix collections of
breadth p ≥ 0, and it is closed under formation of conjunctive minors, unions,
quotients, and dividends.

(ii) M is characterized by some set of operations on A.

We need to extend the notions of an n-tuple and a matrix and allow them to have
infinite length or an infinite number of rows, as will be explained below. Operations
remain finitary. These extended notions have no bearing on Theorem 4.8 itself; they
are only needed as a tool in its proof.

For any non-zero, possibly infinite ordinal m (an ordinal m is the set of lesser
ordinals), an m-tuple of elements of A is a map m→ A. Matrices can have infinitely
many rows but only a finite number of columns: an m × n matrix M, where n is
finite but m may be finite or infinite, is an n-tuple of m-tuples M := (a∗1, . . . ,a∗n).
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The arities of matrix collections are allowed to be arbitrary non-zero, possibly
infinite ordinals m accordingly. In minor formations schemes, the target m and the
members nj of the source family are also allowed to be arbitrary non-zero, possibly
infinite ordinals. We use the terms conjunctive ∞-minor and simple ∞-minor to
refer to conjunctive minors and simple minors via a scheme whose target and source
ordinals may be finite or infinite. The use of the term “minor” without the prefix
“∞” continues to mean the respective minor via a scheme whose target and source
ordinals are all finite.

For a set M of matrix collections on A of arbitrary, possibly infinite arities,
we denote by M∞ the set of those matrix collections which are conjunctive ∞-
minors of families of members of M. This set M∞ is the smallest set of matrix
collections containingM which is closed under formation of conjunctive∞-minors,
and it is called the conjunctive ∞-minor closure of M. Analogously to the proof
of Lemma 4.7 and Corollary 4.8 in [12], considering the formation of repeated
conjunctive ∞-minors, we can show that the following holds:

Corollary 4.9. Let M be a set of finitary matrix collections on A, and let M∞
be its conjunctive ∞-minor closure. If M is closed under formation of conjunctive
minors, then M is the set of all finitary matrix collections belonging to M∞.

Lemma 4.10. Let A be an arbitrary, possibly infinite nonempty set. Let M be a
locally closed set of finitary matrix collections on A that contains the binary equality
matrix collection, the unary empty matrix collection, and all unary trivial matrix
collections of breadth p ≥ 0, and is closed under formation of conjunctive minors,
unions, quotients, and dividends. Let M∞ be the conjuctive ∞-minor closure of
M. Let Γ ∈ MA \ M be finitary. Then there exists an operation g ∈ OA that
preserves every member of M∞ but does not preserve Γ.

Proof. Let Γ be a finitary matrix collection on A that is not in M. Note that, by
Corollary 4.9, Γ cannot be inM∞. Letm be the arity of Γ. SinceM is locally closed

and Γ does not belong to M, there is an integer p such that Γ(p) = Γ ∩ Ω
(p)
m /∈M;

let n be the smallest such integer. Every operation that does not preserve Γ(n) does
not preserve Γ either, so we can consider Γ(n) instead of Γ. Due to the minimality
of n, the breadth of Γ(n) is n. Observe that Γ is not the trivial matrix collection
of breadth n nor the empty matrix collection, because these are members of M.
Thus, n ≥ 1.

We can assume that Γ is a minimal nonmember of M with respect to identifi-
cation of rows, i.e., every simple minor of Γ corresponding to identification of some
rows of Γ is a member ofM. If this is not the case, then we can identify some rows
of Γ to obtain a minimal nonmember Γ′ of M and consider the matrix collection
Γ′ instead of Γ. Note that by Lemma 4.1, every function not preserving Γ′ does
not preserve Γ either.

We can also assume that Γ is a minimal nonmember of M with respect to
quotients, i.e., whenever N is a nonempty m-row matrix, we have that N\Γ ∈ M
and Γ/N ∈ M. If this is not the case, then consider a minimal nonmember N\Γ
or Γ/N of M in place of Γ. By Lemma 4.5, every function not preserving N\Γ or
Γ/N does not preserve Γ either.

The fact that Γ is a minimal nonmember ofM with respect to quotients implies

that Ω
(1)
m 6⊆ Γ. For, suppose, on the contrary, that Ω

(1)
m ⊆ Γ. Since all matrix
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collections N1\Γ/N2 such that [N1|N2] is a nonempty m-row matrix are inM and
M is closed under dividends, we have that Γ ∈M, a contradiction.

Let Ψ :=
⋃
{Γ′ ∈ M | Γ′ ⊆ Γ}, i.e., Ψ is the largest matrix collection in M

such that Ψ ⊆ Γ. Note that this is not the empty union, because the empty matrix
collection is a member of M. Since Ψ ∈ M and Γ /∈ M, we obviously have that
Ψ 6= Γ. Since n was chosen to be the smallest integer satisfying Γ(n) /∈M, we have
that Γ(n−1) ∈ M and since Γ(n−1) ⊆ Γ(n), it holds that Γ(n−1) ⊆ Ψ. Thus there is
an m× n matrix D := (d∗1, . . . ,d∗n) such that D ∈ Γ but D /∈ Ψ.

The rows of D are pairwise distinct. For, suppose, for the sake of contradiction,
that rows i and j of D coincide. Since Γ is a minimal nonmember of M with
respect to identification of rows, by identifying rows i and j of Φ we obtain a
matrix collection Γ′ that is inM. By adding a dummy row in the place of the row
that got deleted when we identified rows i and j, and finally by intersecting with
the conjunctive minor of the binary equality matrix collection whose i-th and j-th
rows are equal (the overall effect of all these operations being the selection of those
matrices in Γ whose i-th and j-th rows coincide), we obtain a matrix collection in
M that contains D and is a subset of Γ. But this is impossible by the choice of D.

Let Υ :=
⋂
{Γ′ ∈M | D ∈ Γ′}, i.e., Υ is the smallest matrix collection inM that

contains D as an element. Note that this is not the empty intersection, because the

trivial matrix collection Ω
(n)
m is a member of M that contains D. By the choice of

D, Υ 6⊆ Γ.

Consider the matrix collection Γ̂ := Γ ∪ Ω
(1)
m . We claim that if [N1|N2] is a

nonempty m-row matrix, then N1\Γ̂/N2 = N1\Γ/N2 or N1\Γ̂/N2 = N1\Γ/N2 ∪
{()}. By Lemma 4.3, N1\Γ̂/N2 = (N1\Γ/N2) ∪ (N1\Ω(1)

m /N2). If [N1|N2] has

more than one column, then N1\Ω(1)
m /N2 = ∅; if [N1|N2] has precisely one column,

then N1\Ω(1)
m /N2 = {()}. The claim thus follows.

Since Γ is a minimal nonmember of M with respect to quotients and since M
is closed under unions and {()} = Ω

(0)
m ∈ M, by the above claim we have that

N1\Γ̂/N2 ∈ M whenever [N1|N2] 6= (). Since M is closed under dividends, we

have that Γ̂ ∈ M, and hence Υ ⊆ Γ̂. Thus, there exists a m × 1 matrix s ∈ Am
such that s ∈ Υ \ Γ.

Let M := (m∗1, . . . ,m∗n) be a µ× n matrix whose first m rows are the rows of
D (i.e., mi∗ = di∗ for every i ∈ m) and whose other rows are the remaining distinct
n-tuples in An; every n-tuple in An is a row of M and there is no repetition of rows
in M. Note that m ≤ µ and µ is infinite if and only if A is infinite.

Let Θ :=
⋂
{Γ′ ∈M∞ |M ∈ Γ′}. There must exist a µ-tuple u := (ut | t ∈ µ) in

Aµ such that u(i) = s(i) for all i ∈ m and u ∈ Θ. For, if this is not the case, then
the projection of Θ to its first m coordinates would be a member of M containing
D but not containing s, contradicting the choice of s.

We can now define a function g : An → A by the rule gM = u. The definition
is valid, because every n-tuple in An occurs exactly once as a row of M. It is clear
that g does not preserve Γ, because D ∈ Γ but gD = s /∈ Γ.

We need to show that every matrix collection inM is preserved by g. Suppose, on
the contrary, that there is a ρ-ary matrix collection Γ0 ∈M which is not preserved
by g. Thus, for some ρ×r matrix N := [N1|N2|N3] ∈ Γ0 with N2 = (c∗1, . . . , c∗n),
we have [N1|gN2|N3] /∈ Γ0. Let Γ1 := N1\Γ0/N3. Since M is closed under
quotients, Γ1 ∈ M. We have that N1 ∈ Γ1 but gN1 /∈ Γ1, so g does not preserve
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Γ1 either. Define h : ρ→ µ to be any map such that(
c∗1(i), . . . , c∗n(i)

)
=
(
(m∗1h)(i), . . . , (m∗nh)(i)

)
for every i ∈ ρ, i.e., row i of N2 is the same as row h(i) of M, for each i ∈ ρ. Let
Γh be the µ-ary simple ∞-minor of Γ1 via H := {h}. Note that Γh ∈M∞.

We claim that M ∈ Γh. To prove this, it is enough to show that (m∗1h, . . . ,
m∗nh) ∈ Γ1. In fact, we have for 1 ≤ j ≤ n,

m∗jh = (m∗jh(i) | i ∈ ρ) = (c∗j(i) | i ∈ ρ) = c∗j ,

and (c∗1, . . . , c∗n) = N2 ∈ Γ1.
Next we claim that u /∈ Γh. For this, it is enough to show that uh /∈ Γ1. For

every i ∈ ρ, we have

(uh)(i) =
(
g(m∗1, . . . ,m∗n)h

)
(i)

= g
(
(m∗1h)(i), . . . , (m∗nh)(i)

)
= g
(
c∗1(i), . . . , c∗n(i)

)
.

Thus uh = gN1. Since gN1 /∈ Γ1, we conclude that u /∈ Γh.
Thus Γh is a matrix collection in M∞ that contains M but does not contain u.

By the choice of u, this is impossible. We conclude that g preserves every matrix
collection in M. �

Proof of Theorem 4.8. (ii)⇒ (i): It is clear that every operation on A preserves the
equality, empty, and trivial matrix collections. By Lemmas 4.1, 4.2, 4.5, and 4.6,M
is closed under formation of conjunctive minors, unions, quotients, and dividends.
M is locally closed by Lemma 4.7.

(i)⇒ (ii): LetM be a set of finitary matrix collections satisfying the conditions
of (i). By Lemma 4.10, for every matrix collection Γ ∈ MA \ M, there is an
operation g ∈ OA that preserves all matrix collections in M but does not preserve
Γ. Thus, the set of all these “separating” operations, for all Γ ∈MA\M, constitutes
a set characterizing M. �
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