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Abstract. We define and investigate the scale independent aggregation functions
that are meaningful to aggregate finite ordinal numerical scales. Here scale inde-
pendence means that the functions always have discrete representatives when the
ordinal scales are considered as totally ordered finite sets. We also show that those
scale independent functions identify with the so-called order invariant functions,
which have been described recently. In particular, this identification allows us to
justify the continuity property for certain order invariant functions in a natural
way.
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1. Introduction

Let A be a finite set of alternatives and consider a real interval E ⊆ R.
A scale of measurement is a mapping h : A → E that assigns real
numbers to elements of A according to some criterion. The scale type of
a scale is defined by giving a class of admissible transformations, trans-
formations that lead from one scale to another acceptable version of it.
For instance, a scale is called an ordinal scale if the class of admissible
transformations consists of the increasing bijections (automorphisms)
φ : E → E. This means that the scale values are determined only up
to order. For a general discussion of the theory of scale type and for
the definitions of other scale types, see e.g. [10, 11, 20].

It is a common practice to simplify the definition of an ordinal scale
by merely giving the sequence of ordered values of the image h(A) ⊆ E
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of A under h. Being of ordinal nature, this sequence is defined up to
order, that is, within an automorphism φ : E → E.

EXAMPLE 1.1 ([6, 7]). Suppose we want to evaluate a commodity, e.g.
a car, according to a certain ordinal criterion, e.g. comfort, by means
of a 5-value ordinal performance scale in R. We can assign the number
1 to a bad comfort, 2 to an acceptable one, 3 to a good one, 4 to a very
good one, and 5 to an excellent one. Clearly, we could just as well use
the numbers 4, 5, 7, 8, 10, or the numbers −3, 1.5, 14.2, 58, 263, or any
numbers that preserve the order.

By adopting this approach, it is easy to see that a finite ordinal scale
can be defined in two equivalent ways; one is numerical and the other
is symbolical.

Numerically, a finite ordinal scale is a finite and strictly increasing
sequence of E determined up to order and representing the possible
rating benchmarks defined along some ordinal criterion; see e.g. [20].
For example, the sequences

(4, 5, 7, 8, 10) and (−3, 1.5, 14.2, 58, 263)

represent two equivalent versions of the evaluation scale defined in
Example 1.1.

Symbolically, a finite ordinal scale is a finite chain (S, 4), that is a
totally ordered finite set, whose elements are ranked according to some
ordinal criterion. For example the scale of evaluation of a commodity
by a consumer such as

S = {B ≺ A ≺ G ≺ V G ≺ E}
is a finite ordinal scale, whose elements might refer to the following
linguistic terms: bad, acceptable, good, very good, excellent.

The equivalence between these numerical and symbolical definitions
follows immediately from the fact that the total order 4 defined on
S can always be numerically represented in E by means of an order
preserving isomorphism f : S → E such that

si 4 sj ⇔ f(si) 6 f(sj) (si, sj ∈ S),

see [10, Chapter 1]. Such an isomorphism is defined up to an automor-
phism φ : E → E; that is, with f all functions f ′ = φ ◦ f (and only
these) represent the same order on S.

Thus, the elements of a finite set A of alternatives can be ordinally
evaluated either by means of a numerical mapping h : A → E, defined
up to an automorphism φ : E → E or, equivalently, by a symbolical
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mapping h′ : A → S. When |S| = |h(A)|, both mappings h and h′
are connected to each other through the identity h = f ◦ h′, where
f : S → E is an isomorphism. The following diagram illustrates this
connection.

A
h //

h′ ÂÂ@
@@

@@
@@

E

S

f

OO

Now, suppose that we have n evaluations expressed in a given ordinal
scale (S, 4) of cardinality k = |S| and suppose we want to aggregate
these evaluations and obtain a representative overall evaluation in the
same ordinal scale. Of course, we can use a discrete aggregation function
G : Sn → S, which is nothing else than a ranking function sorting kn

n-tuples into k classes. (Here, “discrete” means that the domain of the
function G is a discrete set.) Alternatively, we can use a universal n-
variable aggregation function that is independent of the ordinal scale
used. In this latter case, since no scale can be specified, the aggregation
function must be a numerical function M : En → E. For instance,
the classical median function, which gives the middle value of an odd-
length sequence of ordered values, is a scale independent function able
to aggregate numerical values expressed on any ordinal scale.

More exactly, we say that a function M : En → E is scale inde-
pendent whenever it can be represented in any finite chain (S, 4) by a
symbolical analog G : Sn → S fulfilling

M(x1, . . . , xn) = f(G[f−1(x1), . . . , f−1(xn)]) (x ∈ En)

for all isomorphism f : S → E. As we will show, those functions are
exactly the solutions of the functional equation

M [φ(x1), . . . , φ(xn)] = φ[M(x1, . . . , xn)] (x ∈ En, φ ∈ A(E)),

which has been completely solved recently.
In this paper we define and investigate three types of scale inde-

pendent functions for the aggregation on finite ordinal scales. First,
we consider the functions mapping n copies of the same ordinal scale
into itself (see Definition 4.1), then the functions mapping n copies
of the same ordinal scale into an ordinal scale (see Definition 4.3),
and finally the functions mapping n independent ordinal scales into an
ordinal scale (see Definition 4.5). We show that these functions identify
with the so-called order invariant functions, which have already been
investigated and completely described in a pure numerical setting [13]
(see also [1, 12, 15]). Thus, our main contribution here is to interpret
the order invariant functions as scale independent functions, that is,

ScaleIndependentFunctions.tex; 30/11/2006; 11:33; p.3



4 Jean-Luc MARICHAL and Radko MESIAR

numerical functions that always have symbolical representatives when
acting upon specified ordinal scales.

We also show that, even though at first glance it seems unappro-
priate to ask any scale independent function to be continuous, the
continuity property can be interpreted in a very natural way for those
scale independent functions of the first type.

The organization of the paper is as follows. In §2 we introduce the
notation and the assumptions that we adopt in this work. In §3 we
recall the concept of invariant subsets, which is necessary to describe
the scale independent functions. In §4, we present separately the three
types of scale independent functions mentioned above. Finally, in §5 we
investigate the continuity property for those functions.

2. Preliminaries and notation

Let E be any real interval, bounded or not. We denote by B(E) the
set of included boundaries of E, that is

B(E) := {inf E, supE} ∩ E.

The automorphism group of E, that is the group of all increasing bijec-
tions φ of E onto itself, is denoted by A(E). For the sake of simplicity,
we also denote the index set {1, . . . , n} by [n] and the minimum and
maximum operations by ∧ and ∨, respectively.

For any k > 2, a k-point ordinal scale (S, 4) will be denoted by

S = {s1 ≺ s2 ≺ · · · ≺ sk}
where s∗ = s1 (resp. s∗ = sk) is the bottom element (resp. top element)
of the scale and ≺ represents the asymmetric part of 4.

As we have already mentioned in the introduction, the total order
4 defined on S can always be represented in E by means of an isomor-
phism f : S → E, which is defined within an automorphism φ ∈ A(E).
Throughout, we will assume that f is endpoint preserving, that is, if
inf E ∈ E (resp. supE ∈ E) then f(s∗) = inf E (resp. f(s∗) = supE)
for all ordinal scale (S, 4). This amounts to assuming that the ordinal
scales all have a common bottom element s∗ (resp. a common top
element s∗) whose numerical representation is inf E (resp. supE). This
assumption clarifies why we consider numerical representations in a
subset E of R, possibly nonopen, rather than R itself. For example, if
E = [0, 1], all the ordinal scales we can consider have fixed endpoints.

To avoid a heavy notation, we will write φ(x) and f(a) instead of

(φ(x1), . . . , φ(xn)) and (f(a1), . . . , f(an)),
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respectively. We will also write ~φ(x) and ~f(a) instead of

(φ1(x1), . . . , φn(xn)) and (f1(a1), . . . , fn(an)),

respectively.
Finally, the range of any function f will be denoted by ran(f).

3. Background on invariant subsets

In this section we recall the concept of invariant subset, which will
be useful throughout this paper. For theoretical developments, see e.g.
[1, 13, 15].

DEFINITION 3.1. A nonempty subset I ⊆ En is said to be invariant
if

x ∈ I ⇒ φ(x) ∈ I (φ ∈ A(E)).

An invariant set I is said to be minimal if it has no proper invariant
subset.

The family I(En) of all minimal invariant subsets of En, which
consists exactly of the orbits of the elements of En under the group

{(φ, . . . , φ︸ ︷︷ ︸
n

) | φ ∈ A(E)},

provides a partition of En into equivalence classes, where x, y ∈ En are
equivalent if there exists φ ∈ A(E) such that y = φ(x). A complete
description of elements of I(En) is given in the following proposition
[1, 15].

PROPOSITION 3.1. We have I ∈ I(En) if and only if there exists a
permutation π on [n] and a sequence {�i}n

i=0 of symbols �i ∈ {<,=},
containing at least one symbol < if inf E ∈ E and supE ∈ E, such that

I = {x ∈ En | inf E �0 xπ(1) �1 · · · �n−1 xπ(n) �n supE},
where �0 is < if inf E /∈ E and �n is < if supE /∈ E.

EXAMPLE 3.1. The unit square [0, 1]2 contains exactly eleven mini-
mal invariant subsets, namely the open triangles {(x1, x2) | 0 < x1 <
x2 < 1} and {(x1, x2) | 0 < x2 < x1 < 1}, the open diagonal {(x1, x2) |
0 < x1 = x2 < 1}, the four square vertices, and the four open line
segments joining neighboring vertices.
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Now we introduce another type of invariance.

DEFINITION 3.2. A nonempty subset I ⊆ En is said to be strongly
invariant if

x ∈ I ⇒ ~φ(x) ∈ I (~φ ∈ A(E)n).

A strongly invariant set I is said to be minimal if it has no proper
strongly invariant subset.

The family I∗(En) of all minimal strongly invariant subsets of En,
which consists of the orbits of the elements of En under the group
A(E)n, provides a partition of En into equivalence classes, where x, y ∈
En are equivalent if there exists ~φ ∈ A(E)n such that y = ~φ(x). A
complete description of elements of I∗(En) is given in the following
proposition [13].

PROPOSITION 3.2. We have

I∗(En) =
{ n×

i=1
Ii

∣∣∣ Ii ∈ I(E)
}

= [I(E)]n.

EXAMPLE 3.2. The unit square [0, 1]2 contains exactly nine minimal
strongly invariant subsets, namely the open square (0, 1)2, the four
square vertices, and the four open line segments joining neighboring
vertices.

Observe that strong invariance is linked to invariance as follows. Two
minimal invariant subsets I and J are said to be equivalent, I ∼ J , if
and only if for any x ∈ I and any u ∈ J there are y, z ∈ I and v, w ∈ J
such that y 6 u 6 z and v 6 x 6 w, where here 6 represents the
standard Cartesian partial order.

For any minimal invariant subset I, set

I∗ =
⋃

J∈I(En)
J∼I

J

Then (and only then) I∗ is a minimal strongly invariant subset; see
[13].

4. Scale independent functions

In the present section we investigate the three kinds of scale indepen-
dent functions we have mentioned in the introduction. Actually, we will
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show that these functions are nothing else than the so-called order in-
variant functions, namely: invariant functions, comparison meaningful
functions, and strongly comparison meaningful functions.

4.1. Uniscale independent functions

The first scale independent functions we investigate are n-variable nu-
merical aggregation functions whose input and output values are ex-
pressed in the same ordinal scale. We call them uniscale independent
functions.

DEFINITION 4.1. A function M : En → E is said to be uniscale
independent if, for any finite ordinal scale (S, 4), there exists an ag-
gregation function G : Sn → S such that, for any endpoint preserving
isomorphism f : S → E, we have

M [f(a)] = f [G(a)] (a ∈ Sn). (1)

We then say that G represents M in (S, 4).

It is informative to represent Eq. (1) by the following commutative
diagram

En M // E

Sn
G

//

f

OO

S

f

OO

As any admissible scale transformation of the input values must
lead to the same transformation of the output values, it seems that the
uniscale independent functions are invariant functions in the following
sense.

DEFINITION 4.2. M : En → E is said to be an invariant function if

M [φ(x)] = φ[M(x)]

for all x ∈ En and all φ ∈ A(E).

The invariant functions have been investigated extensively by several
authors; see e.g. [12, 14, 15, 19]. Moreover, a full description of those
functions has been given very recently as follows [1, 13, 15].

THEOREM 4.1. M : En → E is an invariant function if and only if,
for any I ∈ I(En) either M |I ≡ c ∈ B(E) (if this constant exists) or
there exists i ∈ [n] such that M |I = Pi|I is the projection onto the ith
coordinate.
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Thus, an invariant function M : En → E reduces to a constant or
a coordinate projection on every minimal invariant subset of En. In
particular, we have

M(x) ∈ {x1, . . . , xn} ∪B(E) (x ∈ En). (2)

We now show that the uniscale independent functions coincide with
the invariant functions.

PROPOSITION 4.1. The function M : En → E is uniscale indepen-
dent if and only if it is invariant.

Proof. (Necessity) Let M : En → E be a uniscale independent
function, let x ∈ En, let φ ∈ A(E), and let (S, 4) be any finite ordinal
scale with at least n + |B(E)| elements. Then there exists a ∈ Sn and
an endpoint preserving isomorphism f : S → E such that x = f(a).
There exists also a function G : Sn → S such that

M [f(a)] = f [G(a)]

and

M [φ(x)] = M [(φ ◦ f)(a)] = (φ ◦ f)[G(a)] = φ(M [f(a)])
= φ[M(x)].

Hence M is invariant.
(Sufficiency) Let M : En → E be an invariant function. Let (S, 4)

be any finite ordinal scale and let f∗ : S → E be any fixed endpoint
preserving isomorphism. Since M satisfies (2), the function

G(a) := f∗−1(M [f∗(a)]) (a ∈ Sn)

is well defined. Then, for any endpoint preserving isomorphism f : S →
E, there exists φ ∈ A(E) such that f = φ ◦ f∗ and hence we have

M [f(a)] = M [(φ ◦ f∗)(a)] = φ(M [f∗(a)]) = (φ ◦ f∗)[G(a)]
= f [G(a)]

for all a ∈ Sn. Hence M is uniscale independent. 2

According to Proposition 4.1, an invariant function M : En → E can
always be represented by a discrete aggregation function G : Sn → S
on any ordinal scale (S, 4), regardless of the cardinality of this scale.
Moreover, it is clear from Eq. (1) that G is uniquely determined and,
in some sense, it is isomorphic to the “restriction” of M to Sn.

EXAMPLE 4.1. Let n = 2 and let M(x) = x1 ∧ x2. Then, the unique
representative G of M is defined by G(a) = a1 ∧ a2 for all a ∈ S2.
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In fact, for a given ordinal scale (S, 4), the set of functions G : Sn →
S representing invariant functions in (S, 4) is described exactly as the
discrete version of Theorem 4.1, where E is replaced with S and the
family of “discrete” minimal invariant subsets of Sn is simply defined
either as

{f−1(I) | I ∈ I(En)},
for any fixed f , or independently of any f , by means of Proposition 3.1.
Clearly, to have a one-to-one correspondence between M and G we need
that f−1(I) 6= ∅ for all I ∈ I(En), a condition that holds if and only
if

|S| > n + |B(E)|.
In this case, given I ∈ I(En) and i ∈ [n], we have M |I = Pi|I (resp.
M |I ≡ inf E, M |I ≡ supE) if and only if G(a) = ai (resp. G(a) = s∗,
G(a) = s∗) for all a ∈ f−1(I), f being fixed. On the other hand, if
|S| < n + |B(E)|, several M ’s may lead to the same G. For example, if
n = 2, |S| = 3, E = [0, 1], and I ∈ I([0, 1]2) is either of the two open
triangles, then f−1(I) = ∅ and, for a given G, the invariant function
M can take on any value in I.

Remark. That every invariant function M : En → E satisfies (2) is
in accordance with the assumption that the input and output values
are expressed in the same scale. Property (2) is also in agreement with
the fact that, since no scale can be specified, the aggregated value must
necessarily be one of the input values (or an endpoint of the scale if it
is common to all the scales considered).

4.2. Input-uniscale independent functions

We now investigate scale independent functions whose input values are
expressed in the same ordinal scale and the output values in an ordinal
scale. We call these functions input-uniscale independent functions.

DEFINITION 4.3. A function M : En → R is said to be input-uniscale
independent if, for any finite ordinal scale (S, 4S), there exists a finite
ordinal scale (T, 4T ) and a surjective aggregation function G : Sn → T
such that, for any endpoint preserving isomorphism f : S → E, there
is an isomorphism gf : T → R such that

M [f(a)] = gf [G(a)] (a ∈ Sn). (3)

We then say that G represents M in (S, 4S).
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Eq. (3) can be graphically represented by the following commutative
diagram

En M // R

Sn
G

//

f

OO

T

gf

OO

Just as we have shown that the uniscale independent functions are
exactly the invariant functions, we will show in this subsection that
the input-uniscale independent functions are exactly the comparison
meaningful functions.

DEFINITION 4.4. M : En → R is said to be a comparison meaningful
function (from an ordinal scale) if

M(x)
{ <

=

}
M(x′) ⇒ M [φ(x)]

{ <
=

}
M [φ(x′)]

for any x, x′ ∈ En and any φ ∈ A(E).

The comparison meaningful functions have been studied by various
authors; see e.g. [12, 13, 17, 18, 21]. Moreover, the full description of
those functions has been given very recently as follows [13].

THEOREM 4.2. M : En → R is a comparison meaningful function if
and only if, for any I ∈ I(En), there exists an index iI ∈ [n] and a
constant or strictly monotonic function gI : PiI (I) → R such that

M |I = gI ◦ PiI |I ,
where, for any I, J ∈ I(En), either gI = gJ , or ran(gI) = ran(gJ) is
a singleton, or ran(gI) < ran(gJ), or ran(gI) > ran(gJ). (Note that
ran(gI) < ran(gJ) means that for all r ∈ ran(gI) and all s ∈ ran(gJ),
we have r < s.)

Thus, a comparison meaningful function M : En → R reduces to
a constant or a transformed coordinate projection on every minimal
invariant subset of En.

The following result clearly shows that comparison meaningfulness
generalizes invariance.

PROPOSITION 4.2. M : En → R is a comparison meaningful func-
tion if and only if, for any φ ∈ A(E), there is a strictly increasing
mapping ψφ : ran(M) → ran(M) such that

M [φ(x)] = ψφ[M(x)] (x ∈ En). (4)
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Proof. (Sufficiency) Trivial.
(Necessity) Let φ ∈ A(E) and assume that M is comparison mean-

ingful in En. For all u ∈ ran(M), there exists x ∈ En such that
M(x) = u. We then define ψφ(u) = M [φ(x)]. This function is strictly
increasing since if u, u′ ∈ ran(M), there exist x, x′ ∈ En such that
u = M(x) and u′ = M(x′), and hence

u < u′ ⇔ M(x) < M(x′)
⇔ M [φ(x)] < M [φ(x′)]
⇔ ψφ(u) < ψφ(u′)

which completes the proof. 2

The previous result is in agreement with Definition 4.3 since any
admissible transformation of the input values may lead to an admissible
transformation of the output values. Moreover, it is clear from Eq. (4)
that the function ψφ is uniquely determined.

We now show that the input-uniscale independent functions coincide
with the comparison meaningful functions.

PROPOSITION 4.3. The function M : En → R is input-uniscale
independent if and only if it is comparison meaningful.

Proof. (Necessity) Let M : En → R be an input-uniscale indepen-
dent function, let x ∈ En, let φ ∈ A(E), and let (S, 4S) be any finite
ordinal scale with at least n+|B(E)| elements. Then there exists a ∈ Sn

and an endpoint preserving isomorphism f : S → E such that x = f(a).
There exists also a finite ordinal scale (T, 4T ), a surjective aggregation
function G : Sn → T , and isomorphisms gf : T → R and gφ◦f : T → R
such that

M [f(a)] = gf [G(a)]

and
M [(φ ◦ f)(a)] = gφ◦f [G(a)].

Since there is an automorphism ψφ of R such that gφ◦f = ψφ ◦ gf , we
have

M [φ(x)] = M [(φ ◦ f)(a)] = (ψφ ◦ gf )[G(a)] = ψφ(M [f(a)])
= ψφ[M(x)].

It follows from Proposition 4.2 that M is comparison meaningful.
(Sufficiency) Let M : En → R be a comparison meaningful function.

Let (S, 4S) be any finite ordinal scale and let f∗ : S → E be any fixed
endpoint preserving isomorphism. Then the set

R := {M [f∗(a)] | a ∈ Sn}
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is a finite scale {r1 < · · · < r|R|} in R.
Define T = {t1 ≺ · · · ≺ t|R|}, then σ : T → R, with σ(ti) = ri for all

i = 1, . . . , |R|, and finally G : Sn → T as

G(a) = σ−1(M [f∗(a)]) (a ∈ Sn).

Then, G is clearly surjective. Moreover, for any endpoint preserving
isomorphism f : S → E, there exists φ ∈ A(E) such that f = φ ◦ f∗
and, by Proposition 4.2, there exists a strictly increasing mapping ψφ :
ran(M) → ran(M) such that

M [f(a)] = M [(φ ◦ f∗)(a)] = ψφ(M [f∗(a)])
= (ψφ ◦ σ)[G(a)]

for all a ∈ Sn. Hence, it suffices to define gf : T → R as gf = ψφ ◦ σ,
where φ = f ◦ f∗−1, and M is input-uniscale independent. 2

According to Proposition 4.3, a comparison meaningful function
M : En → R can always be represented by a discrete aggregation
function G : Sn → T on any ordinal scale (S, 4S), regardless of the
cardinality of this scale. Moreover, the sufficiency part of the proof
yields the necessary steps to determine the output scale T and the
functions G : Sn → T and gf : T → R. These are:

Step 1. Fix a particular endpoint preserving isomorphism f∗ :
S → E.

Step 2. We have T = {t1 ≺ · · · ≺ t|R|}, where

R := {M [f∗(a)] | a ∈ Sn} = {r1 < · · · < r|R|}.

Step 3. We have G(a) = σ−1(M [f∗(a)]), where σ : T → R is
defined as σ(ti) = ri for all 1 6 i 6 |R|.

Step 4. Determine the unique function ψφ : ran(M) → ran(M) of
Proposition 4.2.

Step 5. We have gf = ψf◦f∗−1 ◦ σ.

We clearly observe that, given M : En → R and (S, 4S), the scale T
and the functions G : Sn → T and gf : T → R are uniquely determined
and do not depend upon the choice of f∗.

EXAMPLE 4.2. Let M : E2 → R be defined by

M(x) = g(x1 ∧ x2),
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where g : E → R is strictly decreasing. Then, given a k-point ordinal
scale (S, 4S) and an endpoint preserving isomorphism f∗ : S → E, we
have

R = {g[f∗(sk)] < · · · < g[f∗(s1)]}.
Then we have |T | = k and the function G : Sn → T is given by

G(a) = (σ−1 ◦ g ◦ f∗)(a1 ∧ a2) (a ∈ S2),

or equivalently by the following table

a2\a1 s1 s2 · · · sk

s1 tk tk · · · tk
s2 tk tk−1 · · · tk−1
...

...
...

...
sk tk tk−1 · · · t1

Finally, we have ψφ = g ◦ φ ◦ g−1 and

gf (ti) = (g ◦ f ◦ f∗−1 ◦ g−1 ◦ σ)(ti) = (g ◦ f)(sk+1−i)

for i = 1, . . . , k.

EXAMPLE 4.3. Let M : [0, 1]2 → R be defined by

M(x) = x1 ∧ x2 + 2 sign(x2 − x1).

Then, given a 3-point ordinal scale (S, 4S) and an endpoint preserving
isomorphism f∗ : S → E, we have

R = {−2 < z − 2 < 0 < z < 1 < 2 < z + 2},
where z = f∗(s2). Then we have |T | = 7 and the function G : Sn → T
is given by

G(a) = σ−1[f∗(a1 ∧ a2) + 2 sign(a2 − a1)] (a ∈ S2),

or equivalently by the following table

a2\a1 s1 s2 s3

s1 t3 t1 t1
s2 t6 t4 t2
s3 t6 t7 t5

Finally, we have

ψφ(x) =





φ(x), if x ∈ [0, 1],
φ(x− 2) + 2, if x ∈ [2, 3),
φ(x + 2)− 2, if x ∈ [−2,−1).
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14 Jean-Luc MARICHAL and Radko MESIAR

and

gf (ti) =





(f ◦ f∗−1)[σ(ti)], if i = 3, 4, 5,
(f ◦ f∗−1)[σ(ti)− 2] + 2, if i = 6, 7,
(f ◦ f∗−1)[σ(ti) + 2]− 2, if i = 1, 2.

Notice that the relationship between M and G is not as clear as in
the case of uniscale independent functions. Particularly, reconstructing
M from G (or characterizing G arising from the M ’s) seems a difficult
task. We then propose the following interesting problem.

Open Problem 1. Describe all the comparison meaningful functions
having the same discrete representative.

Notice also that, from Eq. (3), we immediately have the following
result, which will be very useful in the next section.

PROPOSITION 4.4. Let M : En → R be an input-uniscale indepen-
dent function, with discrete representative G : Sn → T . Then, for any
strictly increasing (resp. strictly decreasing) function g : ran(M) → R,
the discrete representative of g ◦ M is η ◦ G : Sn → T ′, where T ′ is
order isomorphic to T and η : T → T ′ is defined by η(ti) = t′i (resp.
η(ti) = t′|T |−i+1) for all i = 1, . . . , |T |.

4.3. Input-multiscale independent functions

The last functions we focus on are scale independent functions whose
input values are expressed in independent ordinal scales and the output
values in an ordinal scale. We call this third type of functions input-
multiscale independent functions.

DEFINITION 4.5. A function M : En → R is said to be input-
multiscale independent if, for any finite ordinal scales (S(i),4S(i)) (i ∈
[n]), there exists a finite ordinal scale (T, 4T ) and a surjective aggrega-
tion function G :×n

i=1 S(i) → T such that, for any endpoint preserving
isomorphisms fi : S(i) → E (i ∈ [n]), there is an isomorphism g~f

: T →
R such that

M [~f(a)] = g~f
[G(a)] (a ∈

n×
i=1

S(i)).

We then say that G represents M in×n
i=1(S

(i), 4S(i)).

Here the commutative diagram is given by

En M // R

×n
i=1 S(i)

G
//

~f

OO

T

g~f

OO
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Aggregation on Finite Ordinal Scales by Scale Independent Functions 15

We will show in this subsection that the input-multiscale indepen-
dent functions are exactly the strongly comparison meaningful func-
tions.

DEFINITION 4.6. M : En → R is said to be a strongly comparison
meaningful function (from independent ordinal scales) if

M(x)
{ <

=

}
M(x′) ⇒ M [~φ(x)]

{ <
=

}
M [~φ(x′)]

for any x, x′ ∈ En and any ~φ ∈ A(E)n.

The strongly comparison meaningful functions have been studied by
some authors; see e.g. [8, 12, 13]. Moreover, the full description of those
functions has been given as follows [13].

THEOREM 4.3. M : En → R is a strongly comparison meaningful
function if and only if, for any I ∈ I∗(En), there exists an index iI ∈ [n]
and a constant or strictly monotonic function gI : PiI (I) → R such that

M |I = gI ◦ PiI |I ,
where, for any I, J ∈ I∗(En), either gI = gJ , or ran(gI) = ran(gJ) is
a singleton, or ran(gI) < ran(gJ), or ran(gI) > ran(gJ).

Thus, a strongly comparison meaningful function M : En → R
reduces to a constant or a transformed coordinate projection on every
minimal strongly invariant subset of En.

PROPOSITION 4.5. M : En → R is a strongly comparison mean-
ingful function if and only if, for any ~φ ∈ A(E)n, there is a strictly
increasing mapping ψ~φ

: ran(M) → ran(M) such that

M [~φ(x)] = ψ~φ
[M(x)] (x ∈ En).

Proof. The proof is almost identical to that of Proposition 4.2. 2

PROPOSITION 4.6. The function M : En → R is input-multiscale
independent if and only if it is strongly comparison meaningful.

Proof. The proof can be easily adapted from that of Proposition 4.3.2

According to Proposition 4.6, a strongly comparison meaningful
function M : En → R can always be represented by a discrete ag-
gregation function G : ×n

i=1 S(i) → T on independent ordinal scales
(S(i), 4S(i)) (i ∈ [n]), regardless of the cardinalities of these scales.
Moreover, the necessary steps to determine the output scale T and the
functions G :×n

i=1 S(i) → T and g~f
: T → R are:
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16 Jean-Luc MARICHAL and Radko MESIAR

Step 1. Fix a particular endpoint preserving isomorphism f∗i :
S(i) → E for all i ∈ [n].

Step 2. We have T = {t1 ≺ · · · ≺ t|R|}, where

R := {M [~f∗(a)] | a ∈×n
i=1 S(i)} = {r1 < · · · < r|R|}.

Step 3. We have G(a) = σ−1(M [~f∗(a)]), where σ : T → R is
defined as σ(ti) = ri for all 1 6 i 6 |R|.

Step 4. Determine the unique function ψ~φ
: ran(M) → ran(M) of

Proposition 4.5.
Step 5. We have g~f

= ψ~f◦~f∗−1 ◦ σ.

EXAMPLE 4.4. Let M : E2 → R be defined by M(x) = g(x1), where
g : E → R is strictly decreasing. Then, given ki-point ordinal scales
(S(i), 4S(i)) (i ∈ [n]) and endpoint preserving isomorphisms f∗i : S(i) →
E (i ∈ [n]), we have

R = {g[f∗1 (s(1)
k1

)] < · · · < g[f∗1 (s(1)
1 )]}.

Then we have |T | = k and G(a) = (σ−1 ◦ g ◦ f∗1 )(a1) for all a ∈
S(1) × S(2). Finally, ψ~φ

= g ◦ φ1 ◦ g−1 and

g~f
(ti) = (g ◦ f1 ◦ f∗−1

1 ◦ g−1 ◦ σ)(ti) = (g ◦ f1)(sk1+1−i)

for i = 1, . . . , k1.

5. Continuous order invariant functions

In this final section we examine the case of continuous order invariant
functions, namely: continuous invariant functions, continuous compar-
ison meaningful functions, and continuous strongly comparison mean-
ingful functions.

One could think that coupling continuity with any order invariance
property is somewhat awkward since the classical definition of continu-
ity uses distance between numerical values and hence makes use of the
cardinal properties of these values while any order invariance implies
that the cardinal properties of the numerical values should not be used.

In fact, continuity is a topological concept which can be introduced
for ordered sets and, as we will now show, it makes sense for invariant
functions and can even be interpreted in a very natural way. In the
first subsection, we yield an interpretation of continuity for invariant
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Aggregation on Finite Ordinal Scales by Scale Independent Functions 17

functions by imposing a smoothness property on their discrete repre-
sentatives. In the second subsection, we provide another interpretation
by imposing the admissible scale transformations to be nondecreasing
(instead of being increasing bijections).

We also show that such interpretations fail to hold for comparison
meaningful functions and strongly comparison meaningful functions
and that continuity is a rather restrictive condition for those functions.

First, let us describe the continuous order invariant functions, a
typical example of whose is given by a lattice polynomial [2].

DEFINITION 5.1. An n-variable lattice polynomial is any expression
involving n variables x1, . . . , xn linked by the lattice operations ∧ = min
and ∨ = max in an arbitrary combination of parentheses.

It can be shown (see e.g. [2, Chapter 2, §5]) that any n-variable
lattice polynomial in Rn can be put in the following disjunctive normal
form

Lγ(x) =
∨

A⊆[n]
γ(A)=1

∧

i∈A

xi (x ∈ Rn),

where γ : 2[n] → {0, 1} is a nonconstant nondecreasing set function. We
will denote by Γn the family of those set functions.

The complete descriptions of continuous order invariant functions
are given in the following three theorems [12, 13].

THEOREM 5.1. M : En → E is a continuous invariant function if
and only if M ≡ c ∈ B(E) (if this constant exists) or there exists
γ ∈ Γn such that M = Lγ.

THEOREM 5.2. M : En → R is a continuous comparison meaningful
function if and only if there exists γ ∈ Γn and a continuous strictly
monotonic or constant function g : E → R such that M = g ◦ Lγ.

THEOREM 5.3. M : En → R is a continuous and strongly comparison
meaningful function if and only if there exists k ∈ N and a continuous
strictly monotonic or constant function g : E → R such that M = g◦Pk.

5.1. Order invariant functions with smooth discrete
representatives

We will now give an interpretation of the continuity property for invari-
ant functions through their discrete representatives. For this purpose
we use the concept of smoothness [5] for discrete functions.
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18 Jean-Luc MARICHAL and Radko MESIAR

Let (S, 4) = {s1 ≺ · · · ≺ sk} be a k-point ordinal scale and let
a ∈ S. In order to locate a in S we define an index mapping

ind : S → {1, . . . , k}
as

ind(a) = r ⇔ a = sr (1 6 r 6 k).

DEFINITION 5.2. A discrete function G :×n
i=1 S(i) → T is said to

be smooth if, for any a, b ∈×n
i=1 S(i), we have

n∑

i=1

|ind(ai)− ind(bi)| 6 1 ⇒ |ind[G(a)]− ind[G(b)]| 6 1.

The smoothness property, which was initially introduced only for
nondecreasing discrete functions (see [5]), clearly represents the dis-
crete counterpart of continuity. Moreover, it was proved in a particular
case [4, Theorem 2] that this property is equivalent to the discrete
counterpart of the intermediate value property. A complete proof of
this equivalence is presented in the appendix.

We also have the following result that we will use in this subsection.

LEMMA 5.1. G :×n
i=1 S(i) → T is smooth if and only if

|ind[G(a)]− ind[G(b)]| 6
n∑

i=1

|ind(ai)− ind(bi)| (a, b ∈
n×

i=1
S(i)).

Proof. (Necessity) Let a, b ∈×n
i=1 S(i) and set

c(i) := (b1, . . . , bi, ai+1 . . . , an) (i = 0, . . . , n),

with c(0) = a and c(n) = b. The result then follows from the immediate
inequalities

|ind[G(c(i−1))]− ind[G(c(i))]| 6 |ind(ai)− ind(bi)| (i ∈ [n])

and the classical Minkowski inequality

|ind[G(a)]− ind[G(b)]| 6
n∑

i=1

|ind[G(c(i−1))]− ind[G(c(i))]|.

(Sufficiency) Trivial. 2

Observe that every lattice polynomial M = Lγ in En, being a com-
position of ∨, ∧, and coordinate projections, fulfills the so-called kernel
property [9], namely

|M(x)−M(y)| 6 max
i
|xi − yi| (x, y ∈ En),
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which is much stronger than simple continuity. This kernel property
can be naturally introduced also for discrete aggregation functions on
ordinal scales as (see [16])

|ind[G(a)]− ind[G(b)]| 6 max
i
|ind(ai)− ind(bi)| (a, b ∈

n×
i=1

S(i)),

which, according to Lemma 5.1, is a strengthening of the smooth-
ness property. Evidently, each discrete representative Lγ |Sn of a lattice
polynomial Lγ then necessarily satisfies this ordinal kernel property.

We now prove that any invariant function is continuous if and only
if it is represented only by smooth discrete aggregation functions. This
makes continuity sensible and even appealing for invariant functions.
We will also show that this result does not hold for comparison mean-
ingful functions and strongly comparison meaningful functions. More
precisely, we will prove that continuity is only a sufficient condition for
those functions to be represented only by smooth discrete functions.

PROPOSITION 5.1. An invariant function M : En → E is continu-
ous if and only if it is represented only by smooth discrete aggregation
functions.

Proof. (Necessity) Let M : En → E be a continuous invariant
function. Then, by Theorem 5.1, either M ≡ c ∈ B(E) or there exists
γ ∈ Γn such that M = Lγ . If M ≡ c ∈ B(E) then the unique discrete
representative G : Sn → S of M in (S, 4) is either G ≡ s∗ or G ≡ s∗,
which is clearly smooth. Otherwise, if there exists γ ∈ Γn such that
M = Lγ , then the unique discrete representative G : Sn → S of M in
(S, 4) is the “restriction” of Lγ to Sn, which is smooth.

(Sufficiency) Suppose that M is invariant but not continuous. We
will show that there exists a finite ordinal scale (S, 4) for which the
unique discrete representative G of M in (S, 4) is not smooth.

We can suppose without loss of generality that E is bounded (if
not, we apply any isomorphic transformation to some new bounded
E and all topological properties remain unchanged). Noncontinuity of
M means that there is x ∈ En and a sequence x(m) ∈ En so that
x = lim x(m), limM(x(m)) = y, but

|M(x)− y| = 3ε > 0.

Fix δ > 0 such that nδ < ε. Then there exists an integer m0 such that
for x∗ = x(m0) the following holds

|M(x)−M(x∗)| > 2ε and |xi − x∗i | < δ ∀i ∈ [n].

Now, define

Q := {M(x),M(x∗)} ∪ {xi, x
∗
i | i ∈ [n]},
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20 Jean-Luc MARICHAL and Radko MESIAR

u := min{M(x),M(x∗)},
v := max{M(x),M(x∗)}.

Clearly v−u = |M(x)−M(x∗)| > 2ε and hence the Lebesgue measure
of the set

U := (u, v) \
n⋃

i=1

(xi − δ, xi + δ)

is greater than 2ε − 2nδ > 0. Therefore, we can find 3n2 different
elements z1, . . . , z3n2 ∈ U . Then denote Z := {z1, . . . , z3n2},

P := Q ∪ Z ∪B(E) = {p1 < · · · < p|P |},
and define an ordinal scale S := {s1 ≺ · · · ≺ s|P |}. Introducing ρ : S →
P , with ρ(si) = pi for all 1 6 i 6 |P |, we can define G : Sn → S as

G(a) = ρ−1(M [ρ(a)]) (a ∈ Sn).

However, surely all elements of Z are between M(x) and M(x∗), i.e.,

|ind(G[ρ−1(x)])− ind(G[ρ−1(x∗)])| > 3n2.

On the other hand, for any i ∈ [n], between xi and x∗i can be only
elements from Q, so surely not more than 2n elements from P , and
thus

|ind[ρ−1(xi)]− ind[ρ−1(x∗i )]| 6 2n + 1.

However, then
n∑

i=1

|ind[ρ−1(xi)]− ind[ρ−1(x∗i )]| 6 n(2n + 1) 6 3n2.

Hence, by Lemma 5.1, G is not smooth. 2

COROLLARY 5.1. An invariant function M : En → E is continu-
ous if and only if it is represented only by kernel discrete aggregation
functions.

Let us now examine the case of continuous comparison meaningful
functions. By Proposition 4.4, we observe that any continuous invariant
function of the form Lγ and any nonconstant and continuous compari-
son meaningful function of the form g◦Lγ , where g is strictly increasing
(resp. strictly decreasing), both lead to the representatives Lγ : Sn → S
and η ◦ Lγ : Sn → T , respectively, where T is order isomorphic to S,
and η : S → T is the index-preserving (resp. index-reversing) mapping.
This observation will be the key point to prove the remaining results
of this subsection.

ScaleIndependentFunctions.tex; 30/11/2006; 11:33; p.20



Aggregation on Finite Ordinal Scales by Scale Independent Functions 21

PROPOSITION 5.2. A continuous comparison meaningful function
M : En → R is represented only by smooth discrete aggregation func-
tions.

Proof. Let M : En → R be a continuous comparison meaningful
function. Then, by Theorem 5.2, there exists γ ∈ Γn and a continuous
strictly monotonic or constant function g : E → R such that M = g◦Lγ .
If g ≡ c ∈ R then (see remark following Proposition 4.3) G ≡ σ−1(c) ≡
t1 is a constant, hence a smooth function. Otherwise, according to the
remark above, G is necessarily of the form η ◦ Lγ , where η : S → T is
the index-preserving or index-reversing mapping. Hence G is smooth. 2

COROLLARY 5.2. A continuous comparison meaningful function M :
En → R is represented only by kernel discrete aggregation functions.

Back to Example 4.3, we can immediately see from the table de-
scribing the function G that this function is not smooth. This is in
accordance with the noncontinuity of M .

Notice that, contrary to the case of invariant functions, the converse
of Proposition 5.2 is not true. There are noncontinuous comparison
meaningful functions having smooth representatives. Indeed, starting
from a strictly monotonic (but not necessarily continuous) g : R→ R,
we can always transform a continuous invariant function M : En →
R into the (not necessarily continuous) comparison meaningful func-
tion g ◦ M , which has a smooth representative similar to that of M
(cf. Proposition 4.4). More precisely, for any strictly increasing (resp.
strictly decreasing, constant) function g : R→ R, the unique represen-
tative in (S, 4S) of M = g ◦ Lγ is the smooth function G = η ◦ Lγ ,
where η : S → T = ran(G) is index-preserving (resp. index-reversing,
constant) and |T | = |S| (resp. |T | = |S|, |T | = 1).

The situation is similar for continuous strongly comparison mean-
ingful functions, except that here the functions Lγ reduce to coordinate
projections.

PROPOSITION 5.3. A continuous strongly comparison meaningful func-
tion M : En → R is represented only by smooth discrete aggregation
functions.

COROLLARY 5.3. A continuous strongly comparison meaningful func-
tion M : En → R is represented only by kernel discrete aggregation
functions.

Thus, we can see that the continuity property is very restrictive
for order invariant functions and imposes not only the smoothness
property to the discrete representatives but also the kernel property,
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thus restricting the cardinality of the output scale T to be not greater
than the cardinality of the input scale S.

The following interesting problem naturally arises from this analysis.

Open Problem 2. Describe (or characterize) all the comparison mean-
ingful functions and strongly comparison meaningful functions that are
represented only by smooth discrete aggregation functions.

5.2. Order invariant functions with nondecreasing
admissible transformations

We now propose an alternative interpretation of the continuity property
for invariant functions, which makes not use of discrete representatives.

Let A′(E) be the set of continuous nondecreasing surjections φ :
E → E. The following three results, inspired from [3, Proposition 2],
show that the conjunction of order invariance and continuity is, in some
sense, equivalent to requiring that the admissible scale transformations
belong to A′(E).

PROPOSITION 5.4. M : En → E is a continuous invariant function
if and only if

M [φ(x)] = φ[M(x)]

for all x ∈ En and all φ ∈ A′(E).
Proof. (Necessity) The result is immediate if M ≡ c ∈ B(E). Oth-

erwise, by Theorem 5.1, there exists γ ∈ Γn such that M = Lγ . Then,
for any x ∈ En and any φ ∈ A′(E), we have

M [φ(x)] = Lγ [φ(x)] = φ[Lγ(x)] = φ[M(x)].

(Sufficiency) Clearly, M is invariant. Suppose that it is not con-
tinuous. Then there exist distinct minimal invariant subsets I, J ∈
I(En) and a sequence z(m) ∈ I converging to an element z ∈ J such
that M(z(m)) does not converge to M(z). Because of Theorem 4.1,
this means that limM(z(m)) = zi and M(z) = zj for some i, j ∈
{0, 1, . . . , n, n + 1} so that zi 6= zj , with the convention that z0 = inf E
and zn+1 = supE if B(E) 6= ∅.

Denote by k1, k2, . . . , kl (l 6 n) the distinct values of {z1, . . . , zn}.
Suppose without loss of generality that

inf E = k0 6 k1 < k2 < · · · < kl 6 kl+1 = supE

and define
δ = min

j=1,...,l+1
kj−kj−1>0

(kj − kj−1).
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Since z(m) converges to z, we can find a natural integer p such that

|z(p)
i − zi| < δ/4 (i ∈ [n]).

Now, define a continuous nondecreasing surjection φ : E → E such
that, for any j ∈ {1, . . . , l}, we have φ(x) = kj whenever |x−kj | 6 δ/3.

It follows that φ ∈ A′(E) and φ(z(p)) = z. Finally, we have

zi = φ(z(p)
i ) = φ[M(z(p))] = M [φ(z(p))] = M(z) = zj ,

a contradiction. 2

PROPOSITION 5.5. Let M : En → R be any function. Consider the
following four assertions:

i) M is a continuous comparison meaningful function.

ii) For any φ ∈ A′(E), there is a continuous and nondecreasing map-
ping ψφ : ran(M) → ran(M) such that

M [φ(x)] = ψφ[M(x)] (x ∈ En).

iii) For any φ ∈ A′(E), there is a nondecreasing mapping ψφ : ran(M) →
ran(M) such that

M [φ(x)] = ψφ[M(x)] (x ∈ En).

iv) We have

M(x)
{ <

=

}
M(x′) ⇒ M [φ(x)]

{ 6
=

}
M [φ(x′)]

for any x, x′ ∈ En and any φ ∈ A′(E).

Then we have i) ⇔ ii), ii) ⇒ iii), iii) ⇔ iv), and iv); i).
Proof. i) ⇒ ii) The result is immediate if M is a constant function.

Otherwise, by Theorem 5.2, there exists γ ∈ Γn and a continuous
strictly monotonic function g : E → R such that M = g ◦Lγ . Then, for
any φ ∈ A′(E), we have

M [φ(x)] = (g ◦ Lγ)[φ(x)] = (g ◦ φ)[Lγ(x)] = ψφ[M(x)] (x ∈ En),

where ψφ = g ◦ φ ◦ g−1 is a continuous and nondecreasing mapping.
ii) ⇒ i) We can easily see that M is comparison meaningful. Sup-

pose that it is not continuous. Then there exists minimal invariant
subsets I, J ∈ I(En) and a sequence z(m) ∈ I converging to an element
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z ∈ J such that M(z(m)) does not converge to M(z). Contrary to the
sufficiency part of Proposition 5.4, we do not assume here that I and
J are distinct.

Let us first show that we can require without loss of generality that
z(m) is a nondecreasing or nonincreasing (in each coordinate) sequence.

By Theorem 4.2, M(z(m)) is of the form

M(z(m)) = gI(z
(m)
iI

).

Since the real sequence z
(m)
iI

converges to ziI , we can always choose a

monotone subsequence z
(km)
iI

converging to the same limit.
From the structure of minimal invariant subsets it follows that there

always exists a nondecreasing or nonincreasing sequence d(m) ∈ I con-
verging to z ∈ J . Choose d(m) to be nondecreasing or nonincreasing
depending on whether z

(km)
iI

is nondecreasing or nonincreasing. Define
the sequence c(m) ∈ I by

c
(m)
i =

{
z
(km)
iI

, if i = iI ,

d
(m)
i , otherwise.

Clearly, c(m) converges to z ∈ J and M(c(m)) = M(z(km)) does not
converge to M(z).

Therefore, replacing z(m) with c(m) if necessary, we can assume that
z(m) is monotone. Let us assume that it is nondecreasing. The other
case can be dealt with similarly.

Consider now the continuous surjection φ : E → E constructed in
the proof of Proposition 5.4 and define its pseudo-inverse

φ(−1)(t) := sup{x ∈ E | φ(x) < t},
which is nondecreasing and left-continuous, and define

y(m) := φ(−1)(z(m)).

Then, we have y := lim y(m) = φ(−1)(z) and

M(z(m)) = M [φ(y(m))] = ψφ[M(y(m))]

is a converging sequence whose limit is different from

M(z) = M [φ(y)] = ψφ[M(y)].

Since ψφ is continuous, M must be noncontinuous in y. Moreover, since
z(m) is nondecreasing, we have yi = zi − δ/3 for all i ∈ [n] and hence
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y ∈ J . However, exactly the same procedure can be repeated with
δ/α for any α ∈ [3,+∞), which implies that all the points of the
line segment joining y to z are discontinuities of M . If I = J , this
means that gI is a strictly monotone function having uncountably many
discontinuities, which is impossible. If I 6= J and gI = gJ , again gI has
uncountably many discontinuities, which is impossible. Finally, let us
consider the case where ran(gI) and ran(gJ) are disjoint. Clearly, there
always exists φ ∈ A′(E) such that φ(z(m)) ∈ J for some values of m
and φ(z(m)) ∈ I for the others. Then we have

M [φ(z(m))] = ψφ[M(z(m))] = ψφ[gI(z
(m)
iI

)],

that is
ψφ[gI(z

(m)
iI

)] ∈
{

ran(gJ), if φ(z(m)) ∈ J ,
ran(gI), if φ(z(m)) ∈ I.

Since ψφ is continuous, we get a contradiction.
ii) ⇒ iii) Trivial.
iii) ⇔ iv) Similar to the proof of Proposition 4.2.
iv) ; i) A counter-example can be given by any discontinuous and

strictly increasing one-variable function M : E → R. 2

PROPOSITION 5.6. Let M : En → R be any function. Consider the
following four assertions:

i) M is a continuous strongly comparison meaningful function.

ii) For any ~φ ∈ A′(E)n, there is a continuous and nondecreasing
mapping ψ~φ

: ran(M) → ran(M) such that

M [~φ(x)] = ψ~φ
[M(x)] (x ∈ En).

iii) For any ~φ ∈ A′(E)n, there is a nondecreasing mapping ψ~φ
:

ran(M) → ran(M) such that

M [~φ(x)] = ψ~φ
[M(x)] (x ∈ En).

iv) We have

M(x)
{ <

=

}
M(x′) ⇒ M [~φ(x)]

{ 6
=

}
M [~φ(x′)]

for any x, x′ ∈ En and any ~φ ∈ A′(E)n.

Then we have i) ⇔ ii), ii) ⇒ iii), iii) ⇔ iv), and iv); i).
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Proof. Similar to the proof of Proposition 5.5. 2

6. Concluding remarks

We have shed light on the meaning of invariant functions by interpret-
ing them as scale independent functions, that is, functions that have
discrete representatives on any finite ordinal scale.

In particular, this interpretation shows that considering a discrete
function G : Sn → S, where (S, 4) is a given ordinal scale, is not
equivalent to considering an invariant function M : En → E. Indeed,
the latter form is much more restrictive since M is independent of any
scale. For instance, if n = 2 and E is open, we see by Theorem 4.1 that
there are only 4 invariant functions (since E2 has only three minimal
invariant subsets and there is only one possibility on the diagonal) while
the number of discrete functions G : S2 → S is clearly |S||S|2 .

We have also interpreted the comparison meaningful functions and
the strongly comparison meaningful functions in a similar way. In this
case, describing all the order invariant functions leading to the same
discrete representative remains an interesting open problem.

Finally, we have observed that these interpretations make the con-
tinuity property very sensible for invariant functions and, however,
rather restrictive for comparison meaningful functions and strongly
comparison meaningful functions.

We believe that such interpretations can also be made on aggrega-
tion functions acting on other scale types, such as nominal scales.

Appendix

A. Discrete intermediate value theorem

Fodor [4, Theorem 2] showed that, for a nondecreasing discrete function
G : S2 → S, the smoothness condition is equivalent to a discrete analog
of the intermediate value property. Here we state and prove this result
in the general case.

PROPOSITION A.1. The smoothness property for G : ×n
i=1 S(i) →

T is equivalent to the following condition: For any j ∈ [n] and any
a, b ∈ ×n

i=1 S(i) differing only on coordinate j, the element t ∈ T
lies between G(a) and G(b) inclusive if and only if there exists c ∈×n

i=1 S(i), differing from a and b only on coordinate j, such that cj is
an element between aj and bj inclusive and t = G(c).
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Proof. (Necessity) Let G :×n
i=1 S(i) → T be a smooth function and

let a, b ∈×n
i=1 S(i) differ only on coordinate j. We can assume without

loss of generality that aj = sp and bj = sq, with p 6 q 6 |S(j)|. For any
integer 0 6 m 6 q− p, we define c(m) ∈×n

i=1 S(i) differing from a and
b only on coordinate j and such that c

(m)
j = sp+m. Since G is smooth,

we have
|ind[G(c(m))]− ind[G(c(m−1))]| 6 1

for all 1 6 m 6 q − p. Hence, for any t lying between G(a) and G(b),
there exists 0 6 m 6 q−p such that t = G(c(m)). Conversely, it is clear
that any G(c(m)) (0 6 m 6 q − p) lies between G(a) and G(b).

(Sufficiency) Suppose G :×n
i=1 S(i) → T is not smooth and however

fulfills the discrete intermediate value theorem. Then, there exists a ∈×n
i=1 S(i), j ∈ [n], 2 6 r 6 |S(j)|, and 1 6 p, q 6 |T | such that

tp = G(a | aj = sr)
tq = G(a | aj = sr−1)

where q < p− 1 or q > p+1. We can assume without loss of generality
that q < p− 1. Then we have

G(a | aj = sr−1) = tq ≺ tp−1 ≺ tp = G(a | aj = sr)

and there exists c ∈ S(j) fulfilling sr−1 4 c 4 sr such that

tp−1 = G(a | aj = c).

Hence, c = sr or c = sr−1, a contradiction. 2
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9. A. Kolesárová and J. Mordelová, 1-Lipschitz and kernel aggregation operators,
Proc. Int. Summer School on Aggregation Operators and their Applications
(AGOP 2001), Asturias, Spain, July 10-13, 2001, pp. 71–75.

10. D.H. Krantz, R.D. Luce, P. Suppes, and A. Tversky, Foundations of measure-
ment, volume I: Additive and polynomial representations (Academic Press, San
Diego, 1971).

11. R.D. Luce, D.H. Krantz, P. Suppes, and A. Tversky, Foundations of measure-
ment, volume III: Representation, axiomatization, and invariance (Academic
Press, San Diego, 1990).

12. J.-L. Marichal, On order invariant synthesizing functions, J. of Math. Psych.
46 (6) (2002) 661–676.

13. J.-L. Marichal, R. Mesiar, and T. Rückschlossová, A complete description of
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