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Abstract

Two emergent properties in aggregation theory are investigated, namely horizontal
maxitivity and comonotonic maxitivity (as well as their dual counterparts) which are
commonly defined by means of certain functional equations. We completely describe
the function classes axiomatized by each of these properties, up to weak versions of
monotonicity in the cases of horizontal maxitivity and minitivity. While studying the
classes axiomatized by combinations of these properties, we introduce the concept of
quasi-polynomial function which appears as a natural extension of the well-established
notion of polynomial function. We give further axiomatizations for this class both
in terms of functional equations and natural relaxations of homogeneity and median
decomposability. As noteworthy particular cases, we investigate those subclasses of
quasi-term functions and quasi-weighted maximum and minimum functions, and pro-
vide characterizations accordingly.

Keywords: Aggregation function, discrete Sugeno integral, polynomial function, quasi-
polynomial function, horizontal maxitivity and minitivity, comonotonic maxitivity and
minitivity, functional equation.
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1 Introduction

Aggregation functions arise wherever aggregating information is important: applied and
pure mathematics (probability, statistics, decision theory, functional equations), operations
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research, computer science, and many applied fields (economics and finance, pattern recog-
nition and image processing, data fusion, etc.). For recent references, see Beliakov et al. [1]
and Grabisch et al. [10].

A noteworthy aggregation function is the so-called discrete Sugeno integral, which was
introduced by Sugeno [15, 16] and which has been widely investigated in aggregation theory,
due to its many applications for instance in fuzzy set theory, decision making, and image
analysis. For general background, see also the edited book [11].

A convenient way to introduce the discrete Sugeno integral is via the concept of (lattice)
polynomial functions, i.e., functions which can be expressed as combinations of variables
and constants using the lattice operations ∧ and ∨. As shown in [13], the discrete Sugeno
integrals are exactly those polynomial functions f : Ln → L which are idempotent, that is,
satisfying f(x, . . . , x) = x. Several axiomatizations of the class of discrete Sugeno integrals
(as idempotent polynomial functions) have been recently given; see [4].

Of particular interest in aggregation theory are the so-called horizontal maxitivity and
comonotonic maxitivity (as well as their dual counterparts), usually expressed in terms of
certain functional equations, and which we now informally describe.

Let L be a bounded chain. For every x ∈ Ln and every c ∈ L, consider the horizontal
maxitive decomposition of x obtained by “cutting” it with c, namely x = (x ∧ c) ∨ [x]c,
where [x]c is the n-tuple whose ith component is 0, if xi 6 c, and xi, otherwise. A function
f : Ln → L is said to be horizontally maxitive if

f(x) = f(x ∧ c) ∨ f([x]c)

for every x ∈ Ln and every c ∈ L.
A function f : Ln → L is said to be comonotonic maxitive if, for any two vectors x and

x′ in the same standard simplex of Ln, we have

f(x ∨ x′) = f(x) ∨ f(x′).

As we are going to see (Lemma 7 below), these properties (as well as their duals) are
closely related and constitute properties shared by discrete Sugeno integrals. Still, and
as it will become evident, no combination of these with their dual forms suffices to fully
describe the class of Sugeno integrals. Thus, and given their emergence in aggregation
theory, it is natural to ask which classes of functions are axiomatized by combinations of
these properties or, in fact, by each of these properties.

In this paper, we answer this question for both the maxitive and minitive comonotonic
properties, and for horizontal maxitivity and minitivity properties, up to certain weak
variants of monotonicity. While looking at combinations of the latter properties, we reach
a natural generalization of polynomial functions, which we call quasi-polynomial functions
and which are best described by the following equation

f(x1, . . . , xn) = p(ϕ(x1), . . . , ϕ(xn)),

where p is a polynomial function and ϕ a nondecreasing function (see Theorem 11 below).
Searching for alternative descriptions, we introduce weaker versions of well-established prop-
erties, such as homogeneity and median decomposability, to provide further axiomatizations
of the class of quasi-polynomial functions, accordingly.

This paper is organized as follows. We start by recalling basic notions and terminology
in lattice function theory, as well as present some known results, needed throughout this
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paper (Section 2). In Section 3, we study the properties of horizontal maxitivity and
comonotonic maxitivity, as well as their dual forms, and determine those function classes
axiomatized by each of these properties. Combinations of the latter are then considered in
Section 4.1, where the notion of quasi-polynomial function is introduced. In Section 4.2, we
propose weaker versions of homogeneity and median decomposability, and provide further
characterizations of quasi-polynomial functions, accordingly. In Section 5, we introduce
and axiomatize few noteworthy subclasses of quasi-polynomial functions, namely, those of
quasi-term functions and those quasi-weighted maximum and minimum functions.

2 Basic notions and preliminary results

In this section we recall basic terminology as well as some results needed in the current
paper. For general background we refer the reader to, e.g., Burris and Sankappanavar [3]
and Rudeanu [14].

2.1 General background

Throughout this paper, let L be a bounded chain with operations ∧ and ∨, and with least
and greatest elements 0 and 1, respectively. A subset S of a chain L is said to be convex if
for every a, b ∈ S and every c ∈ L such that a 6 c 6 b, we have c ∈ S. For any subset S ⊆ L,
we denote by S the convex hull of S, that is, the smallest convex subset of L containing S.
For every a, b ∈ S such that a 6 b, the interval [a, b] is the set [a, b] = {c ∈ L : a 6 c 6 b}.
For any integer n > 1, let [n] = {1, . . . , n}.

For any bounded chain L, we regard the Cartesian product Ln, n > 1, as a distributive
lattice endowed with the operations ∧ and ∨ given by

(a1, . . . , an) ∧ (b1, . . . , bn) = (a1 ∧ b1, . . . , an ∧ bn),

(a1, . . . , an) ∨ (b1, . . . , bn) = (a1 ∨ b1, . . . , an ∨ bn).

The elements of L are denoted by lower case letters a, b, c, . . ., and the elements of Ln,
n > 1, by bold face letters a,b, c, . . .. We also use 0 and 1 to denote the least element and
greatest element, respectively, of Ln. For c ∈ L and x = (x1, . . . , xn) ∈ Ln, set

x ∧ c = (x1 ∧ c, . . . , xn ∧ c) and x ∨ c = (x1 ∨ c, . . . , xn ∨ c).

The range of a function f : Ln → L is defined by Rf = {f(x) : x ∈ Ln}. A function
f : Ln → L is said to be nondecreasing (in each variable) if, for every a,b ∈ Ln such that
a 6 b, we have f(a) 6 f(b). The diagonal section of f , denoted δf , is defined as the
unary function given by δf (x) = f(x, . . . , x). Note that if f is nondecreasing, then δf is
nondecreasing and Rδf

= Rf = [f(0), f(1)].

2.2 Polynomial functions and their representations

In this paper the so-called polynomial functions will play a fundamental role. Formally,
an n-ary polynomial function on L is any function f : Ln → L which can be obtained by
finitely many applications of the following rules:

(i) For each i ∈ [n] and each c ∈ L, the projection x 7→ xi and the constant function
x 7→ c are polynomial functions from Ln to L.
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(ii) If f and g are polynomial functions from Ln to L, then f ∨g and f ∧g are polynomial
functions from Ln to L.

Polynomial functions are also called lattice functions (Goodstein [9]), algebraic functions
(Burris and Sankappanavar [3]) or weighted lattice polynomial functions (Marichal [13]).
Idempotent polynomial functions (i.e., satisfying f(c, . . . , c) = c for every c ∈ L) are re-
ferred to by aggregation theorists as (discrete) Sugeno integrals, and those obtained from
projections by finitely many applications of (ii) are usually referred to as (lattice) term
functions. As an example, we have the ternary median function

med(x, y, z) = (x ∨ y) ∧ (y ∨ z) ∧ (z ∨ x)

= (x ∧ y) ∨ (y ∧ z) ∨ (z ∧ x).

As observed by Goodstein [9] (see also Rudeanu [14]), polynomial functions are exactly
those functions which can be represented by formulas in disjunctive and conjunctive normal
forms. In fact, each polynomial function f : Ln → L is uniquely determined by its restriction
to {0, 1}n. Due to their relevance in the sequel, we recall some known results concerning
normal form representations of polynomial functions in the special case where L is a chain.
The following result is due to Goodstein [9].

Proposition 1. (a) Every polynomial function is completely determined by its restriction
to {0, 1}n.

(b) A function g : {0, 1}n → L can be extended to a polynomial function f : Ln → L if
and only if it is nondecreasing. In this case, the extension is unique.

(c) For any f : Ln → L, the following are equivalent:

(i) f is a polynomial function.

(ii) There exists α : 2[n] → L such that

f(x) =
∨

I⊆[n]

(
α(I) ∧ ∧

i∈I

xi

)
. (1)

(iii) There exists β : 2[n] → L such that

f(x) =
∧

I⊆[n]

(
β(I) ∨ ∨

i∈I

xi

)
. (2)

The expressions given in (1) and (2) are usually referred to as the disjunctive nor-
mal form (DNF) representation and the conjunctive normal form (CNF) representation,
respectively, of the polynomial function f .

Remark 1. By requiring α and β to be nonconstant functions from 2[n] to {0, 1} and satis-
fying α(∅) = 0 and β(∅) = 1, respectively, we obtain the analogue of (c) of Proposition 1
for term functions.

As observed in [13], the DNF and CNF representations of polynomial functions f : Ln →
L are not necessarily unique. For instance, we have

x1 ∨ (x1 ∧ x2) = x1 = x1 ∧ (x1 ∨ x2).
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However, from among all the possible set functions α (resp. β) defining the DNF (resp. CNF)
representation of f , only one is isotone (resp. antitone), namely the function αf : 2[n] → L
(resp. βf : 2[n] → L) defined by

αf (I) = f(eI) (resp. βf (I) = f(e[n]\I)), (3)

where eI denotes the element of {0, 1}n whose ith component is 1 if and only if i ∈ I.
In the case when L is a chain, it was shown in [4] that the DNF and CNF representations

of polynomial functions f : Ln → L can be refined and given in terms of standard simplices
of Ln. Let σ be a permutation on [n]. The standard simplex of Ln associated with σ is the
subset Ln

σ ⊂ Ln defined by

Ln
σ = {(x1, . . . , xn) ∈ Ln : xσ(1) 6 xσ(2) 6 · · · 6 xσ(n)}.

For each i ∈ [n], define S↑σ(i) = {σ(i), . . . , σ(n)} and S↓σ(i) = {σ(1), . . . , σ(i)}. As a matter
of convenience, set S↑σ(n + 1) = S↓σ(0) = ∅.

Proposition 2. For any function f : Ln → L, the following conditions are equivalent:

(i) f is a polynomial function.

(ii) For any permutation σ on [n] and every x ∈ Ln
σ, we have

f(x) =
n+1∨

i=1

(
αf (S

↑
σ(i)) ∧ xσ(i)

)
,

where xσ(n+1) = 1.

(iii) For any permutation σ on [n] and every x ∈ Ln
σ, we have

f(x) =
n∧

i=0

(
βf (S

↓
σ(i)) ∧ xσ(i)

)
,

where xσ(0) = 0.

3 Motivating characterizations

Even though horizontal maxitivity and comonotonic maxitivity, as well as their dual coun-
terparts, play an important role in aggregation theory (as properties shared by noteworthy
classes of aggregation functions), they have not yet been described independently. In this
section we investigate each of these properties and determine their corresponding function
classes (up to weak versions of monotonicity, in the cases of horizontal maxitivity and
minitivity).

3.1 Horizontal maxitivity and minitivity

Recall that a function f : Ln → L is said to be

• horizontally maxitive if, for every x ∈ Ln and every c ∈ L, we have

f(x) = f(x ∧ c) ∨ f([x]c),

where [x]c is the n-tuple whose ith component is 0, if xi 6 c, and xi, otherwise.
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• horizontally minitive if, for every x ∈ Ln and every c ∈ L, we have

f(x) = f(x ∨ c) ∧ f([x]c),

where [x]c is the n-tuple whose ith component is 1, if xi > c, and xi, otherwise.

Let us consider the following weak forms of nondecreasing monotonicity:

(P1) f(e ∧ c) 6 f(e′ ∧ c) for every e, e′ ∈ {0, 1}n such that e 6 e′ and every c ∈ L.

(D1) f(e ∨ c) 6 f(e′ ∨ c) for every e, e′ ∈ {0, 1}n such that e 6 e′ and every c ∈ L.

(P2) f(e ∧ c) 6 f(e ∧ c′) for every e ∈ {0, 1}n and every c, c′ ∈ L such that c 6 c′.

(D2) f(e ∨ c) 6 f(e ∨ c′) for every e ∈ {0, 1}n and every c, c′ ∈ L such that c 6 c′.

Theorem 3. A function f : Ln → L is horizontally maxitive and satisfies P1 if and only
if there exists g : Ln → L satisfying P2 such that

f(x) =
∨

I⊆[n]

g
(
eI ∧

∧

i∈I

xi

)
. (4)

In this case, we can choose g = f .

To prove Theorem 3, we make use of the following lemma.

Lemma 4. A function f : Ln → L satisfying P1 is of the form (4) if and only if, for every
permutation σ on [n] and every x ∈ Ln

σ, we have

f(x) =
n+1∨

i=1

g
(
eS↑σ(i) ∧ xσ(i)

)
.

Proof of Lemma 4. For every permutation σ on [n] and every x ∈ Ln
σ, we have

∨

I⊆[n]

g
(
eI ∧

∧

i∈I

xi

)
= g(e∅) ∨ ∨

i∈[n]

∨

I⊆S↑σ(i)
σ(i)∈I

g
(
eI ∧ xσ(i)

)

= g(e∅) ∨ ∨

i∈[n]

g
(
eS↑σ(i) ∧ xσ(i)

)

=
n+1∨

i=1

g
(
eS↑σ(i) ∧ xσ(i)

)
.

Proof of Theorem 3. Let us first show that the condition is sufficient. Let σ be a permuta-
tion on [n], let x ∈ Ln

σ, c ∈ L, and set k = sup{i ∈ [n + 1] : xσ(i) 6 c}. By Lemma 4, we
have

f(x ∧ c) =
k∨

i=1

g
(
eS↑σ(i) ∧ xσ(i)

)
∨

n+1∨

i=k+1

g
(
eS↑σ(i) ∧ c

)

and

f([x]c) =
n+1∨

i=k+1

g
(
eS↑σ(i) ∧ xσ(i)

)
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and, since g satisfies P2, f is horizontal maxitive.
Let us now show that the condition is necessary. Let σ be a permutation on [n] and

let x ∈ Ln
σ. By repeatedly applying the horizontal maxitivity with the successive cut levels

xσ(1), . . . , xσ(n), we obtain

f(x) = f(e{1,...,n} ∧ xσ(1)) ∨ f(0, xσ(2), . . . , xσ(n))

= f(e{1,...,n} ∧ xσ(1)) ∨ f(e{2,...,n} ∧ xσ(2)) ∨ f(0, 0, xσ(3), . . . , xσ(n))

= · · ·
=

n+1∨

i=1

f
(
eS↑σ(i) ∧ xσ(i)

)
.

Indeed, if for instance xσ(1) = xσ(2) < xσ(3), then

f(x1, x2, x3) = f(e{1,2,3} ∧ xσ(1)) ∨ f(0, 0, xσ(3)) = f(e{1,2,3} ∧ xσ(1)) ∨ f(e{3} ∧ xσ(3))

but, since f satisfies P1, we have that

f(x1, x2, x3) = f(e{1,2,3} ∧ xσ(1)) ∨ f(e{2,3} ∧ xσ(2)) ∨ f(e{3} ∧ xσ(3)).

Therefore, by Lemma 4, (4) holds with g = f . To complete the proof, let us show that f
satisfies P2. Let e ∈ {0, 1}n and let c, c′ ∈ L such that c 6 c′. Then

f(e ∧ c) = f((e ∧ c′) ∧ c) 6 f((e ∧ c′) ∧ c) ∨ f([e ∧ c′]c) = f(e ∧ c′).

Similarly, we obtain the following dual characterization:

Theorem 5. A function f : Ln → L is horizontally minitive and satisfies D1 if and only
if there exists g : Ln → L satisfying D2 such that

f(x) =
∧

I⊆[n]

g
(
e[n]\I ∨

∨

i∈I

xi

)
.

In this case, we can choose g = f .

From Theorems 3 and 5 we have the following corollary.

Corollary 6. A function f : Ln → L is horizontally maxitive (resp. horizontally minitive)
and satisfies P1 (resp. D1) if and only if there are unary nondecreasing functions ϕI : L →
L, for I ⊆ [n], such that

f(x) =
∨

I⊆[n]

ϕI

( ∧

i∈I

xi

)
(resp. f(x) =

∧

I⊆[n]

ϕI

( ∨

i∈I

xi

)
). (5)

In this case, we can choose ϕI(x) = f(eI ∧x) (resp. ϕI(x) = f(e[n]\I ∨x)) for every I ⊆ [n].

Observe that, by choosing every function ϕI in Corollary 6 as ϕI(x) = f(eI)∧ f(eI ∧x)
(resp. ϕI(x) = f(e[n]\I) ∨ f(e[n]\I ∨ x)), equation (5) becomes

f(x) =
∨

I⊆[n]

(
αf (I) ∧ ∧

i∈I

ϕI(xi)
)

(resp. f(x) =
∧

I⊆[n]

(
βf (I) ∨ ∨

i∈I

ϕI(xi)
)
),

where the set function αf (resp. βf ) is defined in (3).
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Remark 2. (i) Theorem 3 (resp. Theorem 5) and Corollary 6 provide descriptions of those
horizontally maxitive (resp. horizontally minitive) functions which are nondecreasing.

(ii) Every Boolean function f : {0, 1}n → {0, 1} satisfying f(0) 6 f(x) (resp. f(x) 6
f(1)) is horizontally maxitive (resp. horizontally minitive). Moreover, not all such
functions are nondecreasing, thus showing that condition P1 (resp. D1) is necessary
in Theorem 3 (resp. Theorem 5) and Corollary 6.

(iii) As shown in [4], polynomial functions f : Ln → L are exactly those Rf -idempotent
(i.e., satisfying f(c, . . . , c) = c for every c ∈ Rf ) which are nondecreasing, horizontally
maxitive, and horizontally minitive.

(iv) The concept of horizontal maxitivity was introduced, in the case when L is the real
interval [0, 1], by Benvenuti et al. [2] as a general property of the Sugeno integral.

3.2 Comonotonic maxitivity and minitivity

Two vectors x,x′ ∈ Ln are said to be comonotonic if there exists a permutation σ on [n]
such that x,x′ ∈ Ln

σ. A function f : Ln → L is said to be

• comonotonic maxitive if, for any two comonotonic vectors x,x′ ∈ Ln, we have

f(x ∨ x′) = f(x) ∨ f(x′).

• comonotonic minitive if, for any two comonotonic vectors x,x′ ∈ Ln, we have

f(x ∧ x′) = f(x) ∧ f(x′).

Note that for any x ∈ Ln and any c ∈ L, the vectors x∨c and [x]c are comonotonic. As a
consequence, if a function f : Ln → L is comonotonic maxitive (resp. comonotonic minitive),
then it is horizontally maxitive (resp. horizontally minitive). It was also observed in [4] that
if f is comonotonic maxitive or comonotonic minitive, then it is nondecreasing. Moreover,
by using Theorem 3 and Lemma 4, we obtain the following result.

Lemma 7. A function f : Ln → L is comonotonic maxitive (resp. comonotonic minitive)
if and only if it is horizontally maxitive (resp. horizontally minitive) and satisfies P1 (resp.
D1).

Proof. As observed, the conditions are necessary. We show the sufficiency for comonotonic
maxitive functions; the other case follows dually. Let f : Ln → L be a horizontally maxitive
function satisfying P1 and let x,x′ ∈ Ln

σ for some permutation σ on [n]. By Theorem 3
and Lemma 4, there exists g : Ln → L satisfying P2 such that

f(x ∨ x′) =
n+1∨

i=1

g
(
eS↑σ(i) ∧ (xσ(i) ∨ x′σ(i))

)
.

By distributivity and P2, we have

f(x ∨ x′) =
n+1∨

i=1

g
(
(eS↑σ(i) ∧ xσ(i)) ∨ (eS↑σ(i) ∧ x′σ(i))

)

=
n+1∨

i=1

(
g
(
eS↑σ(i) ∧ xσ(i)

)
∨ g

(
eS↑σ(i) ∧ x′σ(i)

))
= f(x) ∨ f(x′).
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Combining Theorems 3 and 5 with Lemma 7, we immediately obtain the descriptions
of the classes of comonotonic maxitive and comonotonic minitive functions.

Theorem 8. A function f : Ln → L is comonotonic maxitive if and only if there exists
g : Ln → L satisfying P2 such that

f(x) =
∨

I⊆[n]

g
(
eI ∧

∧

i∈I

xi

)
.

In this case, we can choose g = f .

Theorem 9. A function f : Ln → L is comonotonic minitive if and only if there exists
g : Ln → L satisfying D2 such that

f(x) =
∧

I⊆[n]

g
(
e[n]\I ∨

∨

i∈I

xi

)
.

In this case, we can choose g = f .

As before, we have the following corollary.

Corollary 10. A function f : Ln → L is comonotonic maxitive (resp. comonotonic mini-
tive) if and only if there are unary nondecreasing functions ϕI : L → L, for I ⊆ [n], such
that

f(x) =
∨

I⊆[n]

ϕI

( ∧

i∈I

xi

)
(resp. f(x) =

∧

I⊆[n]

ϕI

( ∨

i∈I

xi

)
).

In this case, we can choose ϕI(x) = f(eI ∧x) (resp. ϕI(x) = f(e[n]\I ∨x)) for every I ⊆ [n].

Remark 3. (i) An alternative description of comonotonic maxitive (resp. comonotonic
minitive) functions was obtained in Grabisch et al. [10, Chapter 2] in the case when
L is a real interval.

(ii) It was shown in [4] that polynomial functions f : Ln → L are exactly those Rf -
idempotent functions which are comonotonic maxitive and comonotonic minitive.

(ii) Comonotonic minitivity and maxitivity were introduced in the context of Sugeno
integrals in de Campos et al. [5].

4 Quasi-polynomial functions

Motivated by the results of Section 3 concerning horizontal maxitivity and comonotonic
maxitivity, as well as their dual counterparts, we now study combinations of these prop-
erties. This will lead to a relaxation of the notion of polynomial function, which we will
refer to as quasi-polynomial function. Accordingly, we introduce weaker variants of well-
established properties, such as homogeneity and median decomposability, which are then
used to provide further axiomatizations of the class of quasi-polynomial functions.
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4.1 Motivation and definition

We start by looking at combinations of those properties studied in Section 3. These are
considered in the following result.

Theorem 11. Let f : Ln → L be a function. The following assertions are equivalent:

(i) f is horizontally maxitive, horizontally minitive, and satisfies P1 or D1.

(ii) f is comonotonic maxitive and comonotonic minitive.

(iii) f is horizontally maxitive and comonotonic minitive.

(iv) f is comonotonic maxitive and horizontally minitive.

(v) There exist a polynomial function p : Ln → L and a nondecreasing function ϕ : L → L
such that

f(x1, . . . , xn) = p(ϕ(x1), . . . , ϕ(xn)).

If these conditions hold then we can choose for p the unique polynomial function pf extending
f |{0,1}n and for ϕ the diagonal section δf of f .

Proof. The equivalences between assertions (i)–(iv) follow from Lemma 7. Note that only
one of the conditions P1 and D1 suffices in assertion (i) since the other one then follows from
Theorem 3 or Theorem 5, which ensure nondecreasing monotonicity. Also, P1 (resp. D1) is
not needed in assertion (iii) (resp. (iv)) since, as already observed, comonotonic minitivity
(resp. comonotonic maxitivity) ensures nondecreasing monotonicity. To see that (v) ⇒ (ii)
holds, just note that every polynomial function is comonotonic maxitive and comonotonic
minitive, and that if x,x′ ∈ Ln

σ for some permutation σ on [n] then ϕ(x), ϕ(x′) ∈ Ln
σ. To

conclude the proof of the theorem, it is enough to show that (iii) ⇒ (v). By Theorem 3
and Lemma 4, for every permutation σ on [n] and every x ∈ Ln

σ, we have

f(x) =
n+1∨

i=1

f
(
eS↑σ(i) ∧ xσ(i)

)
.

Since the vectors eS↑σ(i) and (xσ(i), . . . , xσ(i)) are comonotonic, we get

f(x) =
n+1∨

i=1

(
f

(
eS↑σ(i)

)
∧ δf (xσ(i))

)
= p(ϕ(x1), . . . , ϕ(xn)),

where p is the unique polynomial function pf extending f |{0,1}n (which exists due to P1)
and ϕ is the diagonal section δf of f .

Theorem 11 motivates the following definition.

Definition 12. We say that a function f : Ln → L is a quasi-polynomial function (resp. a
discrete quasi-Sugeno integral, a quasi-term function) if there exist a polynomial function
(resp. a discrete Sugeno integral, a term function) p : Ln → L and a nondecreasing function
ϕ : L → L such that f = p ◦ ϕ, that is,

f(x1, . . . , xn) = p(ϕ(x1), . . . , ϕ(xn)). (6)
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Remark 4. (i) Note that each quasi-polynomial function f : Ln → L can be represented
as a combination of constants and a nondecreasing unary function ϕ (applied to the
projections x 7→ xi) using the lattice operations ∨ and ∧.

(ii) In the setting of decision-making under uncertainty, the nondecreasing function ϕ in
(6) can be thought of as a utility function and the corresponding quasi-polynomial
function as a (qualitative) global preference functional ; see for instance Dubois et
al. [6].

Note that the functions p and ϕ in (6) are not necessarily unique. For instance, if f
is a constant c ∈ L, then we could choose p ≡ c and ϕ arbitrarily, or p idempotent and
ϕ ≡ c. To describe all possible choices for p and ϕ, we shall make use of the following result
implicit in [4]. For any integers m, n > 1, any vector x ∈ Lm, and any function f : Ln → L,
we define 〈x〉f ∈ Lm as the m-tuple

〈x〉f = med(f(0),x, f(1)),

where the right-hand side median is taken componentwise.

Lemma 13. Every polynomial function p : Ln → L satisfies

p(x ∨ c) = p(x) ∨ 〈c〉p and p(x ∧ c) = p(x) ∧ 〈c〉p
for every x ∈ Ln and every c ∈ L.

Proposition 14. Let f : Ln → L be a quasi-polynomial function and let pf : Ln → L be
the unique polynomial function extending f |{0,1}n. We have

{(p, ϕ) : f = p ◦ ϕ} = {(p, ϕ) : pf = 〈p〉f and δf = 〈ϕ〉p},
where p and ϕ stand for polynomial and unary nondecreasing functions, respectively. In
particular, we have f = pf ◦ δf .

Proof. (⊆) Let p and ϕ be such that f = p ◦ ϕ. First observe that, for any c ∈ L, we have
δf (c) = (δp ◦ϕ)(c) = 〈ϕ(c)〉p. By assertion (b) of Proposition 1, to complete the proof, it is
enough to show the equality pf = 〈p〉f restricted to {0, 1}n.

By Lemma 13, for any e ∈ {0, 1}nwe have

pf (e) = p
(
(ϕ(0) ∨ e) ∧ ϕ(1)

)
=

(
〈ϕ(0)〉p ∨ p(e)

)
∧ 〈ϕ(1)〉p

=
(
δf (0) ∨ p(e)

)
∧ δf (1) = 〈p(e)〉f .

(⊇) Let p and ϕ be such that pf = 〈p〉f and δf = 〈ϕ〉p. Again we have

pf (e) = 〈p(e)〉f =
(
δf (0) ∨ p(e)

)
∧ δf (1) =

(
〈ϕ(0)〉p ∨ p(e)

)
∧ 〈ϕ(1)〉p

=
〈
p
(
(ϕ(0) ∨ e) ∧ ϕ(1)

)〉
p

= (p ◦ ϕ)(e).

It was shown in [13] that every polynomial function p : Ln → L can be represented as
〈q〉p for some discrete Sugeno integral q : Ln → L. Combining this with Proposition 14, we
obtain the next result.

Corollary 15. The class of quasi-polynomial functions is exactly the class of discrete quasi-
Sugeno integrals.
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4.2 Further axiomatizations

We now recall some properties of polynomial functions, namely homogeneity and median
decomposability, and we propose weaker variants of these to provide alternative axiomati-
zations of the class of quasi-polynomial functions.

4.2.1 Quasi-homogeneity

Let S be a subset of L. A function f : Ln → L is said to be S-max homogeneous (resp.
S-min homogeneous) if for every x ∈ Ln and every c ∈ S, we have

f(x ∨ c) = f(x) ∨ c (resp. f(x ∧ c) = f(x) ∧ c).

Although polynomial functions p : Ln → L share both of these properties for any S ⊆ Rp,
this is not the case for quasi-polynomial functions. For instance, let f1, f2 : [0, 1] → [0, 1] be
respectively given by f1(x) = x2 and f2(x) =

√
x. Clearly, f1 and f2 are quasi-polynomial

functions but, e.g., for x = c ∈ ]0, 1[, we have

f1(x ∨ c) < f1(x) ∨ c and f2(x ∧ c) > f2(x) ∧ c.

This example motivates the following relaxations. We say that a function f : Ln → L is
quasi-max homogeneous (resp. quasi-min homogeneous) if for every x ∈ Ln and c ∈ L, we
have

f(x ∨ c) = f(x) ∨ δf (c) (resp. f(x ∧ c) = f(x) ∧ δf (c)).

Observe that if f is Rf -idempotent (i.e., satisfying f(c, . . . , c) = c for every c ∈ Rf ), then
Rf -min homogeneity (resp. Rf -max homogeneity) is equivalent to quasi-min homogeneity
(resp. quasi-max homogeneity).

Lemma 16. Let f : Ln → L be nondecreasing and quasi-min homogeneous (resp. quasi-max
homogeneous). Then f is quasi-max homogeneous (resp. quasi-min homogeneous) if and
only if it is horizontally maxitive (resp. horizontally minitive).

Proof. Let f : Ln → L be nondecreasing and quasi-min homogeneous and suppose first that
f is also quasi-max homogeneous. For any x ∈ Ln and any c ∈ L, we have

f(x ∧ c) ∨ f([x]c) =
(
f(x) ∧ δf (c)

)
∨ f([x]c) =

(
f(x) ∨ f([x]c)

)
∧

(
δf (c) ∨ f([x]c)

)

= f(x) ∧ f(c ∨ [x]c) = f(x).

Therefore, f is horizontally maxitive.
Now assume that f is horizontally maxitive. From horizontal maxitivity and quasi-min

homogeneity, it follows that for any x ∈ Ln and any c ∈ L, we have f(x∨c) = δf (c)∨f([x]c).
Thus,

f(x ∨ c) = f(x ∧ c) ∨ f(x ∨ c) = f(x ∧ c) ∨ f([x]c) ∨ δf (c) = f(x) ∨ δf (c)

and hence f is quasi-max homogeneous. The remaining claim can be verified dually.

Combining Theorem 11 and Lemma 16, we obtain a characterization of quasi-polynomial
functions in terms of quasi-min homogeneity and quasi-max homogeneity. However, we
provide a constructive proof.
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Theorem 17. A function f : Ln → L is a quasi-polynomial function if and only if it is
nondecreasing, quasi-max homogeneous, and quasi-min homogeneous.

Proof. The necessity of the conditions follows from Proposition 14 together with the facts
that Rδf

⊆ Rf ⊆ Rpf
and that pf is both Rpf

-max homogeneous and Rpf
-min homoge-

neous.
To verify the sufficiency, let x ∈ Ln. By nondecreasing monotonicity and quasi-min

homogeneity, for every I ⊆ [n] we have

f(x) > f
(
eI ∧

∧

i∈I

xi

)
= f(eI) ∧ δf

( ∧

i∈I

xi

)

and thus f(x) > ∨
I∈[n] f(eI) ∧ δf (

∧
i∈I xi). To complete the proof, it is enough to establish

the converse inequality since δf (
∧

i∈I xi) =
∧

i∈I δf (xi). Let I∗ ⊆ [n] be such that f(eI∗) ∧
δf (

∧
i∈I∗ xi) is maximum. Define

J =
{
j ∈ [n] : δf (xj) 6 f(eI∗) ∧ δf

( ∧

i∈I∗
xi

)}
.

We claim that J 6= ∅. For the sake of contradiction, suppose that δf (xj) > f(eI∗) ∧
δf (

∧
i∈I∗ xi) for every j ∈ [n]. Then, by nondecreasing monotonicity, we have f(e[n]) >

f(eI∗), and since f(e[n]) = δf (1) > δf (
∧

i∈[n] xi),

f(e[n]) ∧ δf

( ∧

i∈[n]

xi

)
> f(eI∗) ∧ δf

( ∧

i∈I∗
xi

)
,

which contradicts the definition of I∗. Thus J 6= ∅.
Now, let j ∈ J such that xj = sup{xk : k ∈ J}. By nondecreasing monotonicity and

quasi-max homogeneity, we have

f(x) 6 f(xj ∨ e[n]\J) = δf (xj) ∨ f(e[n]\J) 6
(
f(eI∗) ∧ δf

( ∧

i∈I∗
xi

))
∨ f(e[n]\J).

We claim that f(e[n]\J) 6 f(eI∗)∧δf (
∧

i∈I∗ xi). Otherwise, by definition of J we would have

f(e[n]\J) ∧ δf

( ∧

i∈[n]\J
xi

)
> f(eI∗) ∧ δf

( ∧

i∈I∗
xi

)
,

which would again contradict the choice of I∗. Thus,

f(x) 6 f(eI∗) ∧ δf

( ∧

i∈I∗
xi

)
=

∨

I∈[n]

(
f(eI) ∧ δf

( ∧

i∈I

xi

))
.

4.2.2 Quasi-median decomposability

A function f : Ln → L is said to be median decomposable if, for every x ∈ Ln and every
k ∈ [n], we have

f(x) = med
(
f(x0

k), xk, f(x1
k)

)
,

where xc
k = (x1, . . . , xk−1, c, xk+1, . . . , xn) for any c ∈ L. As shown in [13], the class of

polynomial functions are exactly those functions which are median decomposable.
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In complete analogy with the previous subsection we propose the following weaker vari-
ant of median decomposability. We say that a function f : Ln → L is quasi-median decom-
posable if, for every x ∈ Ln and every k ∈ [n], we have

f(x) = med
(
f(x0

k), δf (xk), f(x1
k)

)
.

Note that every nondecreasing unary function is quasi-median decomposable.
Observe that ∨ and ∧, as well as any nondecreasing function ϕ : L → L, are quasi-

median decomposable. Also, it is easy to see that any combination of constants and a
nondecreasing unary function ϕ using ∨ and ∧ is quasi-median decomposable and hence, by
Remark 4 (i), every quasi-polynomial function is quasi-median decomposable. Our following
result asserts that quasi-median decomposable functions f : Ln → L with a nondecreasing
diagonal section δf are exactly the quasi-polynomial functions.

Theorem 18. A function f : Ln → L is a quasi-polynomial function if and only if δf is
nondecreasing and f is quasi-median decomposable.

Proof. By the above observation, we only need to verify that the conditions are sufficient.
By Theorem 17, it is enough to show that if δf is nondecreasing and f is quasi-median
decomposable, then f is nondecreasing, quasi-max homogeneous, and quasi-min homoge-
neous. Since nondecreasing monotonicity can be verified on vectors differing only on a single
component, by assuming that δf is nondecreasing and f is quasi-median decomposable, it
follows that f is nondecreasing.

We show that f is quasi-min homogeneous. The dual property follows similarly. Let
x ∈ Ln and c ∈ L. Clearly, we have f(x ∧ c) = f(x) ∧ δf (c) whenever c <

∧
i∈[n] xi or

c >
∨

i∈[n] xi. So suppose that
∧

i∈[n] xi 6 c 6 ∨
i∈[n] xi and, without loss of generality,

assume that x1 6 · · · 6 xn.

Claim 1. If c 6 xj then f(x1, . . . , xj, 1, . . . , 1) ∧ δf (c) = f(x1, . . . , xj−1, 1, . . . , 1) ∧ δf (c).

Proof of Claim 1. By nondecreasing monotonicity and quasi-median decomposability,

f(x1, . . . , xj, 1, . . . , 1) =
(
f(x1, . . . , xj−1, 0, 1, . . . , 1) ∨ δf (xj)

)
∧ f(x1, . . . , xj−1, 1, . . . , 1).

Since δf (c) 6 δf (xj), the claim follows.

Let k = sup{i ∈ [n] : xi < c}. By repeated applications of Claim 1, it follows that

f(x) ∧ δf (c) = f(x1, . . . , xk, 1, . . . , 1) ∧ δf (c)

= f(x1, . . . , xk, c, . . . , c) ∧ δf (c) = f(x ∧ c) ∧ δf (c).

Moreover, by nondecreasing monotonicity, we have f(x ∧ c) = f(x ∧ c) ∧ δf (c), and thus
f(x ∧ c) = f(x) ∧ δf (c).

5 Some special classes of quasi-polynomial functions

In this final section we consider few noteworthy subclasses of quasi-polynomial functions,
namely those of quasi-term functions and quasi-weighted maximum and minimum functions,
and provide characterizations accordingly.
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5.1 Quasi-term functions

We say that a function f : Ln → L is

• conservative if, for every x ∈ Ln, we have f(x) ∈ {x1, . . . , xn}.
• quasi-conservative if, for every x ∈ Ln, we have f(x) ∈ {δf (x1), . . . , δf (xn)}.

Note that, if f is idempotent, then it is quasi-conservative if and only if it is conservative.

Theorem 19. A quasi-polynomial function f : Ln → L is a quasi-term function if and only
if it is quasi-conservative.

Proof. The condition is clearly necessary. To show that it is also sufficient, we use Propo-
sition 14 and note that

f(x) = (pf ◦ δf )(x) =
∨

I⊆[n]
f(eI)=1

∧

i∈I

δf (xi) = δf


 ∨

I⊆[n]
f(eI)=1

∧

i∈I

xi


.

5.2 Quasi-weighted maximum and minimum functions

A function f : Ln → L is said to be a weighted maximum function if there are v0, v1, . . . , vn ∈
L such that

f(x) = v0 ∨
∨

i∈[n]

(vi ∧ xi). (7)

Similarly, f : Ln → L is said to be a weighted minimum function if there are w0, w1, . . . , wn ∈
L such that

f(x) = w0 ∧
∧

i∈[n]

(wi ∨ xi). (8)

We say that a function f : Ln → L is a quasi-weighted maximum function (resp. a quasi-
weighted minimum function) if there exist a weighted maximum function (resp. a weighted
minimum function) p : Ln → L and a nondecreasing function ϕ : L → L such that f = p◦ϕ.

To present a axiomatization of each of these classes, we need to recall some terminology.
We say that a function f : Ln → L is

• maxitive if, for every x,x′ ∈ Ln, we have f(x ∨ x′) = f(x) ∨ f(x′).

• minitive if, for every x,x′ ∈ Ln, we have f(x ∧ x′) = f(x) ∧ f(x′).

We first recall the descriptions of maxitive and minitive functions; see [8, 12]. For the
sake of self-containment, a short proof is given here.

Proposition 20. A function f : Ln → L is maxitive (resp. minitive) if and only if there
are nondecreasing unary functions fi : L → L (i ∈ [n]) such that, for every x ∈ Ln,

f(x) =
∨

i∈[n]

fi(xi) (resp. f(x) =
∧

i∈[n]

fi(xi)).
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Proof. Sufficiency follows from the fact that the functions fi are nondecreasing. Let us
show the necessity for maxitive functions only; the other case follows dually. By maxitivity,
we have

f(x) =
∨

i∈[n]

f(0xi
i ) =

∨

i∈[n]

fi(xi), (9)

where, for every i ∈ [n], fi : L → L is defined by fi(x) = f(0x
i ). To see that each fi is

nondecreasing, just observe that each is maxitive.

Theorem 21. Let f : Ln → L be a quasi-polynomial function. Then f is a quasi-weighted
maximum function (resp. quasi-weighted minimum function) if and only if it is maxitive
(resp. minitive).

Proof. By Proposition 20, the condition is clearly necessary. We show the sufficiency for
maxitive functions; the other case follows dually. Assume f is a maxitive quasi-polynomial
function. By definition, there exist a polynomial function p : Ln → L and a nondecreasing
function ϕ : L → L such that f = p ◦ϕ. Then, by Lemma 13 and Proposition 14, for every
i ∈ [n], we have

f(0xi
i ) = p

(
ϕ(0) ∨

(
e{i} ∧ ϕ(xi)

))
= 〈ϕ(0)〉p ∨

(
p(e{i}) ∧ 〈ϕ(xi)〉p

)

= δf (0) ∨
(
p(e{i}) ∧ δf (xi)

)
.

Setting v0 = δf (0) and vi = p(e{i}) for i = 1, . . . , n, by (9), we finally obtain

f(x) = v0 ∨
∨

i∈[n]

(
vi ∧ δf (xi)

)
.

Remark 5. (i) Idempotent weighted maximum functions f : Ln → L are those functions
(7) for which v0 = 0 and ∨i∈[n]vi = 1. Dually, idempotent weighted minimum functions
f : Ln → L are those functions (8) for which w0 = 1 and ∧i∈[n]wi = 0. These functions
were introduced on real intervals by Dubois and Prade [7] in fuzzy set theory.

(ii) As observed in Proposition 14, the underlying weighted maximum function (resp.
weighted minimum function) defining a given quasi-weighted maximum function (resp.
quasi-weighted minimum function) can be chosen to be idempotent.
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