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Contingency ranking with respect to overloads in
very large power systems taking into account
uncertainty, preventive and corrective actions

Stéphane Fliscounakis, Patrick Panciatici, Florin Capitanescu and Louis Wehenkel

Abstract—This paper deals with day-ahead security manage-
ment with respect to a postulated set of contingencies, while tak-
ing into account uncertainties about the next day generation/load
scenario. In order to help the system operator in decision making
under uncertainty, we aim at ranking these contingencies into
four clusters according to the type of control actions needed to
cover the worst uncertainty pattern of each contingency with
respect to branch overload. To this end we use a fixed point
algorithm that loops over two main modules: a discrete bi-level
program (BLV) that computes the worst-case scenario, and a
special kind of security constrained optimal power flow (SCOPF)
which computes optimal preventive/corrective actions to cover the
worst-case. We rely on a DC grid model, as the large number of
binary variables, the large size of the problem, and the stringent
computational requirements preclude the use of existing mixed
integer nonlinear programming (MINLP) solvers. Consequently
we solve the SCOPF using a mixed integer linear programming
(MILP) solver while the BLV is decomposed into a series of
MILPs. We provide numerical results with our approach on a
very large European system model with 9241 buses and 5126
contingencies.

Index Terms—worst-case analysis, optimal power flow, oper-
ation under uncertainty, bi-level programming, mixed integer
linear programming, security-constrained optimal power flow

I. I NTRODUCTION

A. Motivation

DAy-ahead operational planning, as well as intraday op-
eration of power systems, is affected by an increasing

amount of uncertainty due to the coupling of: wind and solar
power intermittency, cross-border exchanges, market clearing,
load evolution. In this context, a deterministic approach that
consists in forecasting a single best-guess of the system
injections for the next day or hours, and in ensuring system
security along this only trajectory, becomes insufficient.

As the 24-hours ahead probabilistic prediction of intermit-
tent renewable sources is not sufficiently accurate, a possible
approach to cope with uncertainties consists in checking
whether, given some assumptions regarding uncertainties (e.g.
defined as active/reactive power injection intervals on buses),
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the worst case with respect to each contingency is still control-
lable by appropriate combinations of preventive and corrective
actions.

B. Related work

To tackle this problem Ref. [1] sets up a broader framework
as a three-stage decision making process, including slow
strategic preventive controls (e.g. starting up a power plant,
postponing maintenance works), fast preventive controls (e.g.
generation rescheduling) and corrective (or emergency) con-
trols (e.g. generation rescheduling, network switching, phase
shifter actions, etc.). The computation of worst-case scenarios
is an essential task of this approach.

The worst-case overload condition of a power system under
operational uncertainty has been tackled in the literature
mostly in the framework of security margins Ref. [2], [3].
These approaches tend to compute minimum security margins
under operational uncertainty with respect to thermal over-
loads. These approaches yield min-max optimization prob-
lems, since a security margin is, by definition, the maximum
value of the loading parameter for a given path of system
evolution. However these works do not consider the help of
preventive or corrective actions to manage the worst operating
states.

Ref. [1] formulates the worst case with respect to a con-
tingency as a bi-level (min-max) optimization problem which,
assuming a DC load flow approximation and hence focusing
on thermal overload only, can be transformed into a MILP
problem for which suitable solvers are available. Ref. [4]
proposes an approximate heuristic solution of the bi-level
worst-case problem in its nonlinear form (i.e. using the AC
network model). Its algorithm relies on the identification in
a combinatorial fashion of the worst-case by looking at the
sets of constraints violated by worst uncertainty patterns.
Furthermore, Ref. [8] focuses on the computation of strategic
actions in order to cover the worst-cases that cannot be
satisfied by best preventive/corrective controls.

C. Contribution and organization of the paper

In this paper, which builds upon our previous work in [1],
we focus on the contingency ranking with respect to overloads
in very large systems, taking into account uncertainty and
preventive/corrective actions. The main contributions ofthis
paper are summarized as follows:
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• we implement theiterative algorithm for mixed integer
BLV optimization proposed in Ref. [6] to compute the
worst-case scenario in the presence of corrective actions,
whereas in Ref. [1] we used an one-step procedure for a
continuousBLV;

• we implement a special kind of SCOPF which computes
optimal preventive/corrective actions to cover the worst-
case, whereas in Ref. [1] we computed only the worst-
case scenarios;

• we develop a fixed point algorithm Ref. [5] to coordinate
the convergence of the iterations between these two
modules;

• we prove the feasibility of our approach on a very large
EHV Pan-European network of 9241 buses and 5126
contingencies, whereas the approach proposed in Ref. [1]
has been illustrated on a 30-bus system;

• we extend the problem formulation to take into account
two types of discrete variables stemming from: control
actions with discrete behaviour (e.g. fast generators start-
up and load shedding) and boolean conditional corrective
actions that ensure that a corrective action is triggered
only if a certain limit is exceeded.

Note that our problem can be formulated as a very large
scale mixed integer nonlinear programming (MINLP). How-
ever, nowadays for this class of optimization problem thereis
no suitable solver - at least given the stringent computational
time requirement Ref. [7]. For this reason we adopt the
DC grid model approximation that allows breaking down
significantly the computational time, as our problem is solved
by a sequence of very large mixed integer linear programming
(MILP) problems. Besides, this linear approximation has some
advantages in terms of desired properties of the optimal
solution and accurate network reduction.

We finally notice that other works of the authors Ref. [4],
[8] utilize the AC nonlinear model as some system operator
operational rules (e.g. conditional corrective actions) are re-
laxed. Consequently, the control variables used were either
continuous (e.g. generator active power) or allowed continu-
ous relaxation (e.g. generator start-up as strategic preventive
action), enabling thereby the use of a sequence of MILP and
NLP solvers. Even under these assumptions, the approaches
of Ref. [4], [8] are very computationally intensive on our very
large scale model.

The remaining of the paper is organized as follows. Sec-
tion II provides the main ideas and steps of our approach.
Section III formulates the worst-case scenario problem. Sec-
tion IV presents the two main computational modules of our
algorithm: the special kind of SCOPF and the BLV to compute
worst-cases. Extensive numerical results with the approach are
provided in Section V. Section VI concludes.

II. RANKING OF CONTINGENCIES INTO FOUR CLUSTERS

ACCORDING TO THEIR SEVERITY

A. Goals

In order to check the controllability of postulated contin-
gencies for the worst uncertainty pattern, a very useful result
for the system operator (SO) is the ranking of contingencies

into four clusters, according to the type of actions needed to
cover the worst-case:

1) Contingencies which do not require preventive or cor-
rective actions;

2) Contingencies which require only corrective actions;
3) Contingencies which require corrective and preventive

actions;
4) Contingencies for which the security of the system

cannot be ensured even by the best combination of
available preventive and corrective actions.

The SO has to pay attention to contingencies according to the
following cluster priority: 4, 3, and 2.

B. Fixed point algorithm for covering a single contingency

The contingency ranking sought is a by-product of the fixed
point algorithm described in Table I, which computes the
optimal preventive and corrective actions required to cover
the worst-case of a single contingency.

TABLE I
FIXED POINT ALGORITHM FOR COVERING THE WORST-CASE OF A SINGLE

CONTINGENCYl BY PREVENTIVE AND CORRECTIVE ACTIONS

do:
1) ûp = up ;
2) BLV : compute the worst uncertainty patternsl(ûp) after the contin-

gencyl in the presence of corrective actions ;
3) SCOPF : compute optimal preventive actions (e.g. minimizing the

preventive control change‖up − ūp‖1) taking into account corrective
actions to cover the worst uncertainty patternsl(ûp) after the contin-
gencyl.
Let up be the optimal preventive actions.

while load shedding is not required and‖up − ūp‖2 ≥ (1+ ǫ)‖ûp − ūp‖2

where
• ūp denotes the given preventive actions ;
• ǫ is a tolerance for the termination criterion.

We first solve a bi-level optimization problem in which
the preventive controls are frozen in order to assess whether
the corrective actions alone are able to ensure the securityof
the system whatever the uncertainty. Note that, thanks to the
definition of the objective function of this bi-level optimization
problem, any contingency in clusters 1 and 2 can be detected at
the first iteration of the fixed point algorithm and this diagnosis
holds whatever the uncertainties.

Then if corrective actions are not sufficient to ensure system
security, we solve a special kind of SCOPF problem which
computes the optimal combination of preventive and corrective
actions to cover the current worst-case scenario. Note that, if
best preventive/corrective actions are not sufficient to ensure
the system security, case that is revealed by the presence
of load shedding, it signifies that the contingency belongs
to cluster 4 and we stop. Otherwise, we keep iterating until
the convergence of the process, i.e. fixed point on preventive
actions, which reveals that the contingency belongs to cluster
3.

This algorithm involves two major computational steps that
we describe mathematically hereafter.
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III. C OMPUTATION OF THE WORST-CASE SCENARIO

A. General mathematical formulation of the problem

The determination of the worst uncertainty pattern for
a contingency requires defining a measure to quantify the
worst operating conditions. A natural choice is to express the
worst operating conditions in terms of the maximum overall
amount of post-contingency constraint violations (e.g. branch
overloads) taking into account corrective actions.

This problem can be formulated as a bi-level mathematical
program:

δ(l, ûp, S, Uc) = max δl (1)

s.t.























































s ∈ S

C(θ, ûp, s) ≤ L0

F (θ, ûp, s) = 0

(δl, uc) ∈ arg min
(δ̃,ũc)

δ̃

s.t.











ũc ∈ Uc

Cpost(θ̃post, ûp, ũc, s) ≤ δ̃L1

Fpost(θ̃post, ûp, ũc, s) = 0.

where s is the vector of uncertainty, modeled as bounded
active power injections at some buses,up anduc are vectors
of preventive and corrective actions, functionsC andF denote
the operational constraints and active power flow balance in
the base case, functionsCpost andFpost denote the operational
constraints and active power flow balance after the contin-
gency,L0 andL1 > L0 are base case and post-contingency
limits, θ and θ̃post are voltage angles in the base case and
post-contingency,δ, δ̃, δl are positive relaxation variables.

Note that in problem (1) the preventive controlûp ∈ Up is
frozen, and the constraintsC(θ, ûp, s) ≤ L0 andF (θ, ûp, s) =
0 are imposed over the set of possible scenarios, thereby
restricting them to those that will lead to realistic and viable
pre-contingency states. As the aim of our approach is to reveal
dangerous combinations of uncertainties and contingencies
that are difficult or impossible to control with available preven-
tive/corrective actions, we assume that, if needed, preventive
controls are set before the application of our approach (e.g.
using [4]) so as to avoid overloads in the pre-contingency state
∀s ∈ S.

If the objective of the problem (1) satisfiesδ(l, ûp, S, Uc) >
1, it means that for contingencyl there are some scenarios
for which security can not be managed only via corrective
control. Adjustment of preventive controls are then computed
as explained in the algorithm of Table I, based on the most
constraining scenariosl(ûp) computed by the problem (1).

B. On the need to use discrete decision variables

The adequate modelling of corrective actions, the control
rules of some devices, and SO operation rules requires the
use of various types of binary variables as follows:

• the start-up of generators to remove post-contingency
overloads requires that a generator can be either discon-
nected from the grid (i.e.Pg = 0) or connected to the
grid (i.e.Pg ∈ [Pmin

g ;Pmax
g ]);

• a load can be either connected or fully shed;

• the phase shifter angle change is triggered only if the
power flow through the device exceeds its monitored
limit.

We emphasize that, unlike the optimization under continuous
variables, the presence of these tough discrete variables makes
meaningless the information provided by Lagrange multipliers,
which justifies our option for the fixed point algorithm.

C. Some useful properties of the DC approximation

Thanks to the linear DC approximation the bilevel program
(1) has two useful properties:

S′ ⊂ S ⇒ δ(l, ûp, S
′, Uc) ≤ δ(l, ûp, S, Uc), (2)

U ′
c ⊂ Uc ⇒ δ(l, ûp, S, U

′
c) ≥ δ(l, ûp, S, Uc). (3)

meaning that shrinking the set of uncertainties (respectively
corrective actions) set will lead to smaller (respectivelylarger)
overloads in the worst-case. Note that in the non linear case
(i.e. AC power system model) these two properties may not
hold since a non linear max-min algorithm cannot guarantee
the convergence to the global optimum. Moreover, in the
DC approximation and in constrast to the AC model, if an
uncertainty vector is feasible for the leader, this uncertainty
vector is also feasible for the follower i.e. after contingency
and corrective actions.

D. Effects of network reduction

We replace the external network by uncertain injections at
the boundary nodes, adapting the Ward method Ref. [9] to our
problem, as detailed hereafter.

From the DC approximation equationsBθ = P , the external
busk can be eliminated by using the following formula:

∑

j 6=k,i

(
Bi,kBk,j

Bk,k

−Bi,j)(θi − θj) = Pi −
Bi,kPk

Bk,k

(4)

Hence, after elimination of an external zone, the equivalent
active powers at boundary buses verify:

Brθint = Pint +DrPext (5)

where superscriptr denotes the internal system after reduc-
tion, and subscriptint (resp.ext) denotes the internal (resp.
external) grid. The matrixDr is obtained through an iterative
application of formula (4).

Since all entries of matrixDr are non-negative numbers
and assuming that all uncertainties in the external network
are expressed by nodal injection intervals[Pmin

ext , Pmax
ext ] one

obtains:

Pmin
ext ≤ Pext ≤ Pmax

ext ⇒ DrPmin
ext ≤ DrPext ≤ DrPmax

ext

(6)
If new uncertainty intervals at boundary nodes are obtained

from vectorsDrPmin
ext andDrPmax

ext , the pessimistic inequality
(7) results from property (2):

δfull grid(l, ûp, S, Uc) ≤ δreduced grid(l, ûp, S, Uc) (7)

So we can reduce parts of the network whose corrective
actionsuc and flow limitsL1 have no effect, in such a way as
to avoid missing limit violations due to uncertainties. In the
Appendix VI-A, sufficient conditions will be given to identify
these parts.
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IV. ON THE MODELING OF SO OPERATING RULES

A. SCOPF modeling SO operating rules

A drawback of the conventional SCOPF Ref. [10] is that
it does not model the system operator operating rules, which
associate a pre-defined set of corrective actions with a given
post-contingency constraint violation, the corrective actions
being activated only if these constraints are violated.

To cover the current worst-case scenariosl of contingency
l while taking into account SO operating rules we solve the
following SCOPF problem which minimizes the amount of
preventive actions:

min
up,uc,b,d,p,e

w ‖up − ūp‖1 (8)

s.t.



























































C(θ, up, sl) ≤ L0

F (θ, up, sl) = 0

(umin
p − ūp) b ≤ up − ūp ≤ (umax

p − ūp) b

umin
c e ≤ uc ≤ umax

c e

e ≤ R d b, d, p, e ∈ {0, 1}

−L1 ≤ Ml θ +Mcuc ≤ L1

−(L2 + L1)(1− p) + L1d ≤ Ml θ ≤ L1 + (L2 − L1)d

−(L2 + L1)p+ L1d ≤ −Ml θ ≤ L1 + (L2 − L1)d

where the preventive actionsup include generation re-dispatch,
generator start-up, and load shedding,umin

p and umax
p are

bounds on preventive actions, the corrective actionsuc include
phase shifter angle change and generator start-up,umin

c and
umax
c are bounds on corrective actions,w is a vector of

weights of preventive control to distinguish between generator
re-dispatch or start-up and load shedding in order to ensure
that load shedding takes place only if the post-contingency
constraints are not met by other types of preventive/corrective
actions, binary variablesb model the generators start-up and
load shedding. MatrixMl links the post-contingency angles to
pre-contingency anglesθ, Mc is the sensitivity matrix of post-
contingency angles to corrective actions, andL2 > L1 are
flow limits that must be satisfied by preventive actions only.

Observe that, thanks to the DC approximation, the con-
straints after contingencyl are expressed implicitly as linear
functions of base case angles and corrective actions by means
of matricesMl andMc.

Boolean matrix R links post-contingency violated con-
straints with specific corrective actions, associated to the
binary variablese, which model the SO operating rules in
such a way thate ≤ R d. Note that the activation of corrective
actions according to the SO operating rules, managed by the
binary decision variablesd andp, is described by the set of last
five inequalities and operates in the following way. As long as
post-contingency flowsMl θ are below their limitsL1, from
the last inequalities we have thatd = 0, which prevent any
corrective actionuc = 0. Otherwise, if post-contingency flows
Ml θ violate limits L1 then d = 1 and the corresponding
corrective actions are activated (i.e.umin

c ≤ uc ≤ umax
c ) in

order to bring flows below limits according to the inequalities
−L1 ≤ Ml θ +Mcuc ≤ L1.

As preventive actions only intervene in the objective func-
tion, the optimization naturally uses them only if the full use

of corrective actions is insufficient to satisfy post-contingency
flow limits.

B. Bilevel program modeling uncertainties and SO operating
rules

The mixed-integer bilevel program can be formulated as
follows:

max
θ,s∈S,p∈{0,1},d∈{0,1}

δl (9)

s.t.







































































C(θ, ûp, s) ≤ L0

F (θ, ûp, s) = 0

−(L2 + L1)(1− p) + L1d ≤ Ml θ ≤ L1 + (L2 − L1)d

−(L2 + L1)p+ L1d ≤ −Ml θ ≤ L1 + (L2 − L1)d

(δl, uc) ∈ arg min
(δ̃l,ũc,ẽ)

δ̃l

s.t.










−δ̃lL1 ≤ Ml θ +Mc ũc ≤ δ̃lL1

umin
c ẽ ≤ ũc ≤ umax

c ẽ

ẽ ≤ R d ẽ ∈ {0, 1}

where notations have the same meaning as in the SCOPF prob-
lem. The leader (respectively the follower) controls variables
areθ, s, d, p (respectivelyδ̃l, ũc, ẽ).

Note that assuming that all discrete variablesd, ẽ are
fixed enables us to compute bounds for the variables in the
dual problem of the follower. We provide a proof in the
Appendix VI-B that these bounds depend only onL1, L2,
umin
c , umax

c , property which we call hereafter ”dual property”.
As a consequence, we show in the Appendix that the resolution
of the corresponding continuous linear bilevel program is
equivalent to a classical MILP problem. To solve in the general
case the problem (9), we use the method proposed in Ref.
[6], whose the main steps are presented in the next section,
and that can be summarized as a successively tighter lower
bounding procedure. To implement the method, the ”dual
property” is again useful since it enables the use of KKT
necessary conditions through big-M formulation for the lower-
level problem where discrete variables are fixed.

C. Discrete Bilevel Programming Algorithm

We compute the worst uncertainty pattern for a given
contingency of the formulation (1) using an iterative algorithm
for discrete bi-level programming proposed in Ref. [6] which
we describe hereafter.

For the sake of clarity and formulation compactness we
adopt the following generic notations and make the link with
the optimization variables of the previous formulations:
Xu set of upper continuous variables ( ={θ, ûp, s} )
Y u set of upper discrete variables ( ={p, d} )
X l set of lower continuous variables ( ={δ̃l, ũc} )
Y l set of lower discrete variables ( ={ẽ} )
gu continuous functions onXu × Y u

gl,1 continuous functions onXu × Y u ×X l × Y l

gl,2 continuous functions onX l × Y l

The continuity ongu, gl,1 and gl,2 is only required when
discrete variables are fixed.



5

A bilevel program with both discrete and continuous vari-
ables can be formulated in a generic and compact way as
follows:

min fu(xu, yu, xl, yl) (10)

s.t.











































gu(xu, yu, xl, yl) ≤ 0

xu ∈ Xu, yu ∈ Y u

(xl, yl) ∈ arg min
(xm,ym)

f l(xu, yu, xm, ym)

s.t.











gl,1(xu, yu, xm, ym) ≤ 0

gl,2(xm, ym) ≤ 0

xm ∈ X l, ym ∈ Y l

The algorithm in Ref. [6] solves a sequence of single-
level MILP optimization problems that compute upper bounds
(UBD) and lower bounds (LBD) for the original BLV until the
difference between these bounds falls below a toleranceǫuf .
This toleranceǫuf must verify: ǫsolver < ǫuf whereǫsolver is
the precision on the objective values associated to the global
solutions provided by the classical mixed-integer linear solver
chosen to solve the sub-problems described below. Figure 1
shows the flowchart of the algorithm.

The main challenge of this algorithm is the influence of
upper-level variables on the generation of parametric upper
bounds for the lower-level program.

Initialization

Set

LBD=−∞

UBD=+∞

Lower

bounding

Infeasible

problem

Populate

parametric

upper

bounds to

lower-level

problem

Upper

bounding

update

exit

LBD ≥

UBD −

εuf

Terminate

no

yes

yes

no

Fig. 1. Algorithm of [6].

The main computational steps of this algorithm are de-
scribed hereafter. Given the high complexity of the method
we refer the reader to Ref. [6] for further details and proofs
about the method.

1) Parametric upper bounds:These bounds are based
on pairs comprising a subset of the upper-level host set
Xu,k × Y u,k and a lower-level point(xl,k, yl,k) such that
gl,2(xl,k, yl,k) ≤ 0, that remains feasible in the lower-level
program for all(xu, yu) ∈ Xu,k × Y u,k

gl,1(xu, yu, xl,k, yl,k) ≤ 0 (11)

2) Lower bounding:Lower bounds are computed from the
following problem:

LBD = min fu(xu, yu, xl, yl) (12)

s.t.







































gu(xu, yu, xl, yl) ≤ 0

gl,1(xu, yu, xl, yl) ≤ 0

gl,2(xl, yl) ≤ 0

xu ∈ Xu, yu ∈ Y u, xl ∈ X l, yl ∈ Y l

∀k ∈ K, (xu, yu) ∈ Xu,k × Y u,k

⇒ f l(xu, yu, xl, yl) ≤ f l(xu, yu, xl,k, yl,k)

Using the solution(x̄u, ȳu) of the lower bounding problem
(12), an approximation of the optimal lower objective function
is obtained by:

f̄ l,∗ = min fu(x̄u, ȳu, xl, yl) (13)

s.t.











gl,1(x̄u, ȳu, xm, ym) ≤ 0

gl,2(xm, ym) ≤ 0

xm ∈ X l, ym ∈ Y l

3) Upper bounding:Upper bounds are computed from the
following problem:

UBD = min fu(x̄u, ȳu, xl, yl) (14)

s.t.







































gu(x̄u, ȳu, xl, yl) ≤ 0

gl,1(x̄u, ȳu, xl, yl) ≤ 0

gl,2(xl, yl) ≤ 0

f l(x̄u, ȳu, xl, yl) ≤ f̄ l,∗ + ǫlf
LBD ≤ f̄u(x̄u, ȳu, xl, yl)

xl ∈ X l, yl ∈ Y l

V. NUMERICAL RESULTS

A. Description of the PEGASE Pan European EHV network

We use a very large scalemodified model of the inter-
connected EHV European power system which spans from
Portugal and Spain to Ukraine, Russia, Greece and Turkey.
Notice that in this model the real parameters of the indi-
vidual power systems components (e.g. lines, transformers,
etc.), the network topology, as well as the limits on: gen-
erators active/reactive powers, transformers ratio and angle,
and branch currents have been biased. Nevertheless, this
model is representative of the European system in terms of
size and complexity. Furthermore, we have chosen very tight
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operational limits and physical bounds of controls in order
to assess the robustness of our tools. For instance the base
case is quite constrained e.g. many generators have narrow
physical active/reactive power limits, and the angle rangeof
several phase shifters is very small. Furthermore the reactance
of more than hundred very short lines has been set to a
minimum default value of 0.0002 pu in order to avoid severe
ill-conditioned problems.

The system comprises: 9241 buses, 1445 generators, 5546
loads, 14124 lines, 2237 transformers, and 79 PSTs.

A summary of the characteristics of this system according
to the voltage level is given in Table II.

TABLE II
PEGASE PAN EUROPEANEHV NETWORK

voltage level (kV) number of buses number of lines
750 3 2
400 126 217
380 1814 4034
330 2 1
220 3185 5638
154 728 1268
150 1530 2033
120 10 13
110 1843 2764

Fig. 2 gives a top view of the European system, the power
flows exchanged at the base case between countries, and the
location of PSTs.

Fig. 2. Top view of the 9241 European system

All numerical results and CPU times are given for the
following configuration :

• two processors Intel Xeon E5640 4 cores 8 threads CPU
2.66 Ghz 64 bits ram 24 Go cache size 12 MB

• version 7.3 of Hyper Xpress

B. Overcoming computational issues: effect of network reduc-
tion and XPRESS solver options

In order to render our approach tractable computationally
we rely on an errorless grid reduction and investigate appro-
priate options for the XPRESS solver.

Let us consider the outage of a line which carries 47 MW.
Table III provides the objective function, the computational
time, and the overall uncertainty for two grid models: the
whole model (i.e. 9241 nodes) and the reduced model
of 4067 nodes (this is composed of the set of countries
{N,B, F,D, S,O, I, C, Z}), and for two values of the number
of threads in XPRESS. The objective of the benchmark BLV
problem is 0.8125 pu and decision variables work properly as
no action on the 79 PSTs is taken. Note that, after eliminating
5174 nodes of the external systems, the BLV converges to
the same objective function value and no change of discrete
variables is observed, which proves an excellent agreement
with the simulation that uses the whole model. It is noteworthy
to observe that, for the same accuracy of results, the compu-
tational time is roughly reduced by a factor of 5 thanks to the
network reduction and further by a factor of 2 thanks to the
proper choice of the number of threads in XPRESS.

TABLE III
EFFECT OF NETWORK REDUCTION AND NUMBER OF THREADS IN

XPRESS

number of number of BLV objective computational time‖s‖
1

buses threads function value (seconds) (MW)
9241 1 0.8125243907 2345 10727
9241 4 0.8125243897 1070 10729
4067 1 0.8125265698 386 10718
4067 4 0.8125265735 220 10722

In the sequel of the paper, unless otherwise specified, we
model in detail only the internal system, which is composed
of the set of countries{N,B, F,D, S,O, I, C, Z} and which
considers 4067 buses, whereas the external nodes are elimi-
nated by the Ward reduction method.

We further evaluate the effect of the number of threads in
XPRESS for the outage of a line which carries 1208 MW,
which we analyze in detail in the next subsection. When the
number of threads is enforced to 1 (respectively to 4), the
whole process converges in 638 (respectively 373) seconds.
Table IV provides the computational effort of SCOPF and BLV
modules at each iteration. One can remark that expectedly
the BLV takes significantly more time than the SCOPF, as
BLV iterates between several MILP problems whereas the
SCOPF solves a single MILP, and that the SCOPF effort is
rather insensitive to the number of threads. This significant
computational effort fully justifies the proper setting of this
parameter. Furthermore, if we adopt the set of countries
{N,B,D,O} as internal zone, choice which leads to consider
only 1734 buses, the whole process converges now in 187
seconds (mipthreads=4).

TABLE IV
COMPUTATIONAL TIME (S) OF FIXED POINT ALGORITHM FOR COVERING A

SINGLE CONTINGENCY

iteration number of threads = 1 number of threads = 4
SCOPF BLV SCOPF BLV

1 9 67 10 54
2 10 99 11 48
3 10 118 10 51
4 10 105 10 49
5 10 98 10 59
6 10 92 10 51
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C. Contingencies requiring preventive actions

We consider the outage of a line which carries 1208 MW
with respect to the uncertainties induced by the active load
power injections in systems N and B. In our simulations the
range of uncertainties is limited only by the set of system
constraints in pre-contingency state, which implies that the
power balance is satisfied and that the permanent power flow
limits L0 are met.

Table V provides the iteration details of the fixed point
algorithm and Table IV provides the computational effort of
SCOPF and BLV modules at each iteration. One can observe
that the worst-case is not controllable only by corrective
actions as the objective of the BLV at the first iteration is
larger than 1. However, as larger amount of preventive actions
are taken at each iteration, the worst-case severity decreases
monotonically until the worst-case becomes controllable by
preventive actions.

TABLE V
FIXED POINT ALGORITHM FOR COVERING A SINGLE CONTINGENCY

iter ‖ûp − ūp‖1 number of BLV objective‖up − ūp‖2
nb (p.u.) re-dispatched generators function value (p.u.)
1 0.0 0 1.017977 0.2501380
2 0.056046 10 1.007202 0.2809721
3 0.071479 8 1.002719 0.3357288
4 0.078853 8 1.001618 0.3550285
5 0.082799 8 1.000082 0.3559991
6 0.083038 8 1.000004 0.3560181

It is worth discussing the underlying mechanism of decision
variables in this case. Since the PSTs are assumed in a “flow
control” mode, and that immediately after the contingency
their monitored flow is below the thresholdL1 as shown in
Fig. 3, the PSTs do not act at all to relieve the overload.
However, if we assume that the PSTs are classical remedial
actions, they prove being very efficient in removing the
overload, as the worst-case severity computed by the BLV is
of only 0.9442 pu at the first iteration thanks to the action of
three PSTs.

D. Contingency clusters

In order to obtain contingency clusters, we must decide the
number of threads allowed to Xpress for each MILP optimiza-
tion. From the numerical point of view, experiments on the
MIPLIB problems reported in Ref. [11] show a significant gain
with four threads for cases (like the “protfold” problem) where,
during the branch and bound, it becomes increasingly difficult
to find better-quality solutions. However, due to the large
number of lines or transformers, keeping threads to process
the contingencies in parallel seems much more efficient.

Table VI yields the contingency ranking in the four clusters.

TABLE VI
CONTINGENCY CLUSTERS

cluster sizes
number of contingencies 1 2 3 4

5126 5012 5 107 2

In this example, the contingency clusters are determined us-
ing the set of countries{N,B, F,D, S,O, I, C, Z}, while un-
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Fig. 3. Active flows Distribution

certainties are localized on the restricted set{N,B, I, C, Z}.
We take advantage of this configuration by an errorless net-
work reduction.

E. Uncertainty levels and contingency ranking

We consider a contingency corresponding to the outage of a
line which carries 1086 MW in three different scenarios. Note
that in each scenario the fixed point algorithm stops after the
first iteration due to the following reasons:

• without uncertainties no corrective action is needed
(hence the contingency belongs to cluster 1);

• when uncertainties affect a reduced list of countries
corrective action on one PST suffices (the contingency
belongs to cluster 2);

• when uncertainties affect all countries load shedding is
required in SCOPF to ensure system security for the
worst uncertainty pattern computed by the BLV (the
contingency belongs to cluster 4).

Table VII summarizes the results of these simulations,
where the last column measures the level of uncertainty while
the BLV objective value measures the uncertainty impact.
Uncertainty is of 10% on active load power. Fig. 4 shows
that several lines are significantly overloaded at the solution
of the BLV problem corresponding to the last case, which
explains why the contingency requires load curtailment to
restore security.

TABLE VII
EFFECT OF UNCERTAINTY AREA SIZE ON CONTINGENCY RANKING

uncertainty areas BLV objective load shedding‖s‖
1

(countries) function value (MW) (MW)
none 0.938796 0 0

N,B, F,D, S,O, I, C, Z 1.000048 0 10082
all countries 1.249035 1124 40597
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Fig. 4. Sub-network of the PEGASE test case

VI. CONCLUSIONS AND FUTURE WORKS

To investigate if preventive and corrective controls can
maintain the system in a secure state, the method proposed in
this paper determines the worst patterns of uncertain variables
associated to each contingency. Through discrete bilevel opti-
mization, attention has been focused on the adequate handling
of decision variables arising from SO operating rules. Results
analysis with the help of clusters reveal whether a contingency
is safe or it requires preventive actions. Our results show that
these worst cases are characterized by an interaction between
uncertainties and the individual flow thresholds which trigger
the action of phase shifter transformers. As a consequence,
the cluster classification provides also a valuable help for
identifying an insufficient coordination of corrective actions.

We prove through numerical simulations the feasibility of
the method on very large systems and for a very large number
of contingencies. The method is computationally intensiveon
very large systems as it involves the resolution of a significant
number of large MILP problems. In this context network
reduction, at the expense of a slightly conservative result,
is essential to improve the computational effort. The latter
depends on the number of contingencies in each cluster, as
contingencies that require preventive and corrective actions
generally require a more important computational effort than
those which require only corrective actions or no action at
all. Furthermore, we illustrated the method using a large
number of contingencies but usually operators knowledge
of the system can be a very efficient pre-filter to reduce
the number of potentially dangerous contingencies to some
tens/hundreds. The method can be comfortably applied in day-
ahead operational planning and even close to real-time for a
pre-defined subset of potentially dangerous contingencies.

Further work will concern the improvement of uncertainty
models, using historical information about uncertain power
injections in a more sophisticated way. As the contingency
clusters must be identified for successive anticipated operating
states, future work will focus on the reduction of computa-
tional effort by properly tuning the parameters of the fixed
point algorithms in order to take advantage from the past
simulations instead of starting ”from the scratch” assumptions.
In particular close to real-time the contingency clusters of
previous operating points naturally reduce the number of
potentially dangerous contingencies to be processed by the
algorithm, as the operating point does not generally change
dramatically between two clustering analyses.
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APPENDIX

A. Reducing the problem size

In order to reduce the problem size and save CPU time we
rely on two observations.

Let us remark that, after the contingencyl and before
corrective actions, a violation of thresholdL1 on branchk
can only occur if:

L0,l | Dk,l |≥ L1,k − L0,k (15)

where the distribution factorDk,l is equal to the flow in the
branchk when injections+αl and−αl are applied at the ends
i andj of the branchl. From the DC approximation equations
Bθ = P on the base case, applying the Woodbury formula to
the single ligne outagel of reactanceXl, the value ofαl can
be expressed as :

αl =
Xl

Xl −B−1
i,i +B−1

i,j +B−1
j,i −B−1

j,j

(16)

Due to SO operating rules and condition (15), we can a priori
identify the large subsetN(l) of corrective actions which will
never act for contingencyl.

Therefore, a correct detection of potential post-contingency
violations is ensured by selecting only the branches which
verify (17) in the constraintsCpost of problem (1).

L0,l | Dk,l | +
∑

c ∈ C−N(l)

max
[umin

c ,umax
c ]

| (Mcuc)k |≥ L1,k−L0,k

(17)
where C denotes the total set of corrective actions. As

a consequence, we can identify for each contingency the
corrective actionsuc and flow limitsL1 whose modelization
is required.

B. Dual property

In the DC approximation, when all discrete variables are
fixed, the dual variablesλ of the second-level problem in (9)
are solutions of:

max (λ2 − λ1)
T (Ml θ +Mc ẽ u

min
c )− ẽ λT

4 (u
max
c − umin

c )

s.t. LT
1 (λ1 + λ2) ≤ 1

MT
l (λ1 − λ2) ≤ λ4 − λ3

λ1, λ2, λ3, λ4 ≥ 0 (18)
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To replace the bilevel program by a classical linear com-
plementary optimization, the second-level problem of (9) can
be expressed by its complementary slackness conditions of
the form x ≥ 0, Mx + q ≥ 0, xt(Mx + q) = 0 with
x = (δ̃l, ũc, λ1, λ2, λ3, λ4)

T , where the matrixM and the
vectorq depend only on network characteristics.

To solve this classical linear complementary problem
through MILP optimization, Ref. [12] introduce a new binary
variable vectoru whose the i-th component is equal to one
if xi > 0 and zero otherwise. If the scalarL verifies :
L ≥ max(‖x‖∞, ‖Mx + q‖∞), the following conditions
x ≤ Lu, Mx+q ≤ L(1−u) are equivalent toxt(Mx+q) = 0
sincex ≥ 0 andMx+ q ≥ 0.

The specific form of (9), (18) implies that each optimal
solutionx is a priori bounded, providing that every component
of the vectorsẽ, L1, L2, umax

c − umin
c is strictly positive

and thatθ is feasible for the leader, since the optimal value
of the second-level problem is lower than the maximum
threshold ratioL2/L1. So a sufficiently large constantL can
be determined before the MILP optimization.
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