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Abstract

We give the cumulative distribution functions, the expected values, and the mo-
ments of weighted lattice polynomials when regarded as real functions of indepen-
dent random variables. Since weighted lattice polynomial functions include ordinary
lattice polynomial functions and, particularly, order statistics, our results encom-
pass the corresponding formulas for these particular functions. We also provide an
application to the reliability analysis of coherent systems.
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1 Introduction

The cumulative distribution functions (c.d.f.’s) and the moments of order
statistics have been discovered and studied for many years (see for instance
David and Nagaraja [4]). Their generalizations to lattice polynomial functions,
which are nonsymmetric extensions of order statistics, were investigated very
recently by Marichal [10] for independent variables and then by Dukhovny [5]
for dependent variables.

Roughly speaking, an n-ary lattice polynomial is a well-formed expression
involving n real variables x1, . . . , xn linked by the lattice operations ∧ = min
and ∨ = max in an arbitrary combination of parentheses. In turn, such an
expression naturally defines an n-ary lattice polynomial function. For instance,

p(x1, x2, x3) = (x1 ∧ x2) ∨ x3
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is a 3-ary (ternary) lattice polynomial function.

Lattice polynomial functions can be straightforwardly generalized by fixing
certain variables as parameters, like in the 2-ary (binary) polynomial function

p(x1, x2) = (c ∧ x1) ∨ x2,

where c is a real constant. Such “parameterized” lattice polynomial functions,
called weighted lattice polynomial functions [7], play an important role in the
areas of nonlinear aggregation and integration. Indeed, they include the whole
class of discrete Sugeno integrals [12,13], which are very useful aggregation
functions in many areas. More details about the Sugeno integrals and their
applications can be found in the remarkable edited book [6].

In this paper we give closed-form formulas for the c.d.f. of any weighted lat-
tice polynomial function in terms of the c.d.f.’s of its input variables. More
precisely, considering a weighted lattice polynomial function p : Rn → R and
n independent random variables X1, . . . , Xn, Xi (i = 1, . . . , n) having c.d.f.
Fi(x), we give formulas for the c.d.f. of Yp := p(X1, . . . , Xn). We also yield
formulas for the expected value E[g(Yp)], where g is any measurable function.
The special cases g(x) = x, xr, [x − E(Yp)]

r, and etx give, respectively, the
expected value, the raw moments, the central moments, and the moment-
generating function of Yp.

As the lattice polynomial functions are particular weighted lattice polyno-
mial functions, we retrieve, as a corollary, the formulas of the c.d.f.’s and the
moments of the lattice polynomial functions.

This paper is organized as follows. In Section 2 we recall the basic material
related to lattice polynomial functions and their weighted versions. In Section
3 we provide the announced results. In Section 4 we investigate the particular
case where the input random variables are uniformly distributed over the unit
interval. Finally, in Section 5 we provide an application of our results to the
reliability analysis of coherent systems.

2 Weighted lattice polynomials

In this section we recall some basic definitions and properties related to
weighted lattice polynomial functions. More details and proofs can be found
in [7].

As we are concerned with weighted lattice polynomial functions of random
variables, we do not consider weighted lattice polynomial functions on a gen-
eral lattice, but simply on a closed interval L := [a, b] of the extended real
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number system R := R ∪ {−∞, +∞}. Clearly, such an interval is a bounded
distributive lattice, with a and b as bottom and top elements. The lattice
operations ∧ and ∨ then represent the minimum and maximum operations,
respectively. To simplify the notation, we also set [n] := {1, . . . , n} for any
integer n > 1.

Let us first recall the definition of lattice polynomial functions (with real
variables); see for instance Birkhoff [2, §II.5].

Definition 1 The class of lattice polynomial functions from Ln to L is de-
fined as follows:

(1) For any k ∈ [n], the projection (x1, . . . , xn) 7→ xk is a lattice polynomial
function from Ln to L.

(2) If p and q are lattice polynomial functions from Ln to L, then p ∧ q and
p ∨ q are lattice polynomial functions from Ln to L.

(3) Every lattice polynomial function from Ln to L is constructed by finitely
many applications of the rules (1) and (2).

As mentioned in the introduction, weighted lattice polynomial functions gener-
alize lattice polynomial functions by considering both variables and constants.
We thus have the following definition.

Definition 2 The class of weighted lattice polynomial functions from Ln to
L is defined as follows:

(1) For any k ∈ [n] and any c ∈ L, the projection (x1, . . . , xn) 7→ xk and
the constant function (x1, . . . , xn) 7→ c are weighted lattice polynomial
functions from Ln to L.

(2) If p and q are weighted lattice polynomial functions from Ln to L, then
p ∧ q and p ∨ q are weighted lattice polynomial functions from Ln to L.

(3) Every weighted lattice polynomial function from Ln to L is constructed
by finitely many applications of the rules (1) and (2).

Because L is a distributive lattice, any weighted lattice polynomial function
can be written in disjunctive and conjunctive forms as follows.

Proposition 3 Let p : Ln → L be any weighted lattice polynomial function.
Then there are set functions α : 2[n] → L and β : 2[n] → L such that

p(x) =
∨

S⊆[n]

[
α(S) ∧ ∧

i∈S

xi

]
=

∧

S⊆[n]

[
β(S) ∨ ∨

i∈S

xi

]
.

Proposition 3 naturally includes the classical lattice polynomial functions. To
see this, it suffices to consider nonconstant set functions α : 2[n] → {a, b} and
β : 2[n] → {a, b}, with α(∅) = a and β(∅) = b.
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The set functions α and β that disjunctively and conjunctively define the
polynomial function p in Proposition 3 are not unique. For example, we have

x1 ∨ (x1 ∧ x2) = x1 = x1 ∧ (x1 ∨ x2).

However, it can be shown that, from among all the possible set functions
that disjunctively define a given weighted lattice polynomial function, only
one is nondecreasing. Similarly, from among all the possible set functions that
conjunctively define a given weighted lattice polynomial function, only one is
nonincreasing. These particular set functions are given by

α(S) = p(eS) and β(S) = p(e[n]\S),

where, for any S ⊆ [n], eS denotes the characteristic vector of S in {a, b}n, i.e.,
the n-dimensional vector whose ith component is b, if i ∈ S, and a, otherwise.
Thus, any n-ary weighted lattice polynomial function can always be written
as

p(x) =
∨

S⊆[n]

[
p(eS) ∧ ∧

i∈S

xi

]
=

∧

S⊆[n]

[
p(e[n]\S) ∨ ∨

i∈S

xi

]
.

The best known instances of weighted lattice polynomial functions are given by
the discrete Sugeno integrals, which consist of a nonlinear discrete integration
with respect to a fuzzy measure.

Definition 4 An L-valued fuzzy measure on [n] is a nondecreasing set func-
tion µ : 2[n] → L such that µ(∅) = a and µ([n]) = b.

The Sugeno integrals can be presented in various equivalent forms. The next
definition introduce them in one of their simplest forms (see Sugeno [12]).

Definition 5 Let µ be an L-valued fuzzy measure on [n]. The Sugeno integral
of a function x : [n] → L with respect to µ is defined by

Sµ(x) :=
∨

S⊆[n]

[
µ(S) ∧ ∧

i∈S

xi

]
.

Thus, any function f : Ln → L is an n-ary Sugeno integral if and only if it is
a weighted lattice polynomial function fulfilling f(e∅) = a and f(e[n]) = b.

3 Cumulative distribution functions and moments

Consider n independent random variables X1, . . . , Xn, Xi (i ∈ [n]) having
c.d.f. Fi(x), and set Yp := p(X1, . . . , Xn), where p : Ln → L is any weighted
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lattice polynomial function. Let H : R→ {0, 1} be the Heaviside step function,
defined by H(x) = 1, if x > 0, and 0, otherwise. For any c ∈ R, we also define
the function Hc(x) := H(x− c).

The c.d.f. of Yp is given in the next theorem.

Theorem 6 Let p : Ln → L be a weighted lattice polynomial function. Then,
the c.d.f. of Yp is given by each of the following formulas:

Fp(y) = 1− ∑

S⊆[n]

[
1−Hp(eS)(y)

] ∏

i∈[n]\S
Fi(y)

∏

i∈S

[1− Fi(y)], (1)

Fp(y) =
∑

S⊆[n]

Hp(e[n]\S)(y)
∏

i∈S

Fi(y)
∏

i∈[n]\S
[1− Fi(y)]. (2)

Proof. Starting from the disjunctive form of p, we have

Fp(y) = 1− Pr
[ ∨

S⊆[n]

[
p(eS) ∧ ∧

i∈S

Xi

]
> y

]

= 1− Pr
[
∃S ⊆ [n] such that y < p(eS) and y <

∧

i∈S

Xi

]
.

Consider the following events:

A :=
[
∃S ⊆ [n] such that y < p(eS) and y <

∧

i∈S

Xi

]
,

B :=
[
∃S ⊆ [n] such that y < p(eS) and

∨

i∈[n]\S
Xi 6 y <

∧

i∈S

Xi

]
.

Event B implies event A trivially. Conversely, noting that p is nondecreasing
in each variable and replacing S with a superset S ′ ⊇ S, if necessary, we
readily see that event A implies event B.

Since the events
[ ∨

i∈[n]\S Xi 6 y <
∧

i∈S Xi

]
(S ⊆ [n]) are mutually exclusive,

we have

Fp(y) = 1− ∑

S⊆[n]

Pr
[
y < p(eS)

]
Pr

[ ∨

i∈[n]\S
Xi 6 y <

∧

i∈S

Xi

]
,

which, using independence, proves the first formula. The second one can be
proved similarly by starting from the conjunctive form of p. 2

5



The expressions of Fp(y), given in Theorem 6, are closely related to the follow-
ing concept of multilinear extension of a set function, which was introduced
by Owen [11] in game theory.

Definition 7 The multilinear extension of a set function v : 2[n] → R is the
function Φv : [0, 1]n → R defined by

Φv(x) :=
∑

S⊆[n]

v(S)
∏

i∈S

xi

∏

i∈[n]\S
(1− xi).

Using this concept, we can immediately rewrite (1) and (2) as

Fp(y) = 1− Φvp,y [1− F1(y), . . . , 1− Fn(y)],

Fp(y) = Φv∗p,y
[F1(y), . . . , Fn(y)],

where, for any fixed y ∈ R, the (nondecreasing) set functions vp,y : 2[n] →
{0, 1} and v∗p,y : 2[n] → {0, 1} are defined by

vp,y(S) := 1−Hp(eS)(y) and v∗p,y(S) := Hp(e[n]\S)(y).

Owen [11] showed that the function Φv, being a multilinear polynomial, has
the form

Φv(x) =
∑

S⊆[n]

mv(S)
∏

i∈S

xi, (3)

where the set function mv : 2[n] → R, called the Möbius transform of v, is
defined as

mv(S) =
∑

T⊆S

(−1)|S|−|T |v(T ). (4)

Using this polynomial form of Φv, we can immediately derive two further
formulas for Fp(y), namely

Fp(y) = 1− ∑

S⊆[n]

mvp,y(S)
∏

i∈S

[1− Fi(y)], (5)

Fp(y) =
∑

S⊆[n]

mv∗p,y
(S)

∏

i∈S

Fi(y). (6)

Formulas (1)–(2) and (5)–(6) thus provide four equivalent expressions for
Fp(y). As particular cases, we retrieve the c.d.f. of any lattice polynomial
function. For example, using formula (1) leads to the following corollary (see
[10]).

6



Corollary 8 Let p : Ln → L be a lattice polynomial function. Then, the c.d.f.
of Yp is given by

Fp(y) = 1− ∑

S⊆[n]
p(eS)=b

∏

i∈[n]\S
Fi(y)

∏

i∈S

[1− Fi(y)].

Let us now consider the expected value E[g(Yp)], where g : R→ R is any mea-
surable function. For instance, when g(x) = xr, we obtain the raw moments
of Yp.

By definition, we simply have

E[g(Yp)] =
∫ ∞

−∞
g(y) dFp(y) = −

∫ ∞

−∞
g(y) d[1− Fp(y)].

Using integration by parts, we can derive alternative expressions of E[g(Yp)].
We then have the following immediate result.

Proposition 9 Let p : Ln → L be any weighted lattice polynomial function
and let g : R→ R be any measurable function of bounded variation.

(1) If limy→∞ g(y)[1− Fi(y)] = 0 for all i ∈ [n], then

E[g(Yp)] = g(−∞) +
∫ ∞

−∞
[1− Fp(y)] dg(y).

(2) If limy→−∞ g(y)Fi(y) = 0 for all i ∈ [n], then

E[g(Yp)] = g(∞)−
∫ ∞

−∞
Fp(y) dg(y).

Clearly, combining Proposition 9 with formulas (1)–(2) and (5)–(6) immedi-
ately leads to various explicit expressions of E[g(Yp)]. For instance, if

lim
y→∞ g(y)[1− Fi(y)] = 0, ∀ i ∈ [n],

then

E[g(Yp)] = g(−∞) +
∑

S⊆[n]

∫ p(eS)

−∞

∏

i∈[n]\S
Fi(y)

∏

i∈S

[1− Fi(y)] dg(y). (7)

It is noteworthy that Eq. (7) can also be established without the knowledge
of the c.d.f. of Yp. As the proof is very informative, we give it in the appendix.

Remark 10 We can also retrieve the c.d.f. of Yp directly from formula (7).
Indeed, rewriting (7) with the function g(y) = H(z−y), we immediately obtain
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Fp(z) = Pr[z − Yp > 0] = Pr[H(z − Yp) = 1] = E[H(z − Yp)]

= 1 +
∫ ∞

−∞

∑

S⊆[n]

[
1−Hp(eS)(y)

] ∏

i∈[n]\S
Fi(y)

∏

i∈S

[1− Fi(y)] dH(z − y)

and hence we retrieve (1).

Remark 11 Suppose that some variables Xi are constants, say, Xk = ck for
all k ∈ K for a given K ⊆ [n]. Then, the weighted lattice polynomial function
p reduces to an (n − |K|)-ary weighted lattice polynomial function and it is
easy to see that

∨

S⊆[n]

[
p(eS) ∧ ∧

i∈S

Xi

]
=

∨

S⊆[n]\K

[
αK

p (S) ∧ ∧

i∈S

Xi

]

where

αK
p (S) :=

∨

T⊆K

[
p(eS∪T ) ∧ ∧

j∈T

cj

]
(S ⊆ [n] \K).

Thus, the conditional expectation E[g(Yp) | Xk = ck ∀k ∈ K] can be immedi-
ately calculated by Proposition 9.

4 The case of uniformly distributed variables on the unit interval

We now examine the case where the random variables X1, . . . , Xn are uni-
formly distributed on [0, 1]. We also assume L = [0, 1].

Recall that the incomplete beta function is defined, for any u, v > 0, by

Bz(u, v) :=
∫ z

0
tu−1(1− t)v−1 dt (z ∈ R),

and the beta function is defined, for any u, v > 0, by B(u, v) := B1(u, v).

According to Eq. (7), for any weighted lattice polynomial function p : [0, 1]n →
[0, 1] and any measurable function g : [0, 1] → R of bounded variation, we have

E[g(Yp)] = g(0) +
∑

S⊆[n]

∫ p(eS)

0
yn−|S|(1− y)|S| dg(y).

If, furthermore, g(y) = 1
r
yr, with r ∈ N \ {0}, then

1

r
E[Y r

p ] =
∑

S⊆[n]

Bp(eS)(n− |S|+ r, |S|+ 1). (8)
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Remark 12 Considering Eq. (8), with p(eS) = z, if S = [n], and 0, other-
wise, we obtain

Bz(r, n + 1) =
1

r

∫

[0,1]n

[
z ∧ ∧

i∈[n]

xi

]r

dx

and hence the following identity

1

r

∫

[0,1]n

( ∨

S⊆[n]

[
p(eS)∧∧

i∈S

xi

])r

dx =
∑

S⊆[n]

1

n− |S|+ r

∫

[0,1]n

[
p(eS)∧∧

i∈S

xi

]n−|S|+r

dx,

which shows that computing the raw moments of any weighted lattice polyno-
mial reduces to computing the raw moments of bounded minima.

Let us now examine the case of the Sugeno integrals. As these integrals are usu-
ally considered over the domain [0, 1]n, we naturally calculate their expected
values when their input variables are uniformly distributed over [0, 1]n. Since
any Sugeno integral is a particular weighted lattice polynomial, by Eq. (8), its
expected value then writes

∫

[0,1]n
Sµ(x) dx=

∑

S⊆[n]

Bµ(S)(n− |S|+ 1, |S|+ 1)

=
∑

S⊆[n]

∫ µ(S)

0
xn−|S|(1− x)|S| dx

=
∑

S⊆[n]

|S|∑

i=0

(|S|
i

)
(−1)i µ(S)n−|S|+i+1

n− |S|+ i + 1
.

Surprisingly, this expression is very close to that of the expected value of the
Choquet integral with respect to the same fuzzy measure.

Let us recall the definition of the Choquet integrals [3]. Just as for the Sugeno
integrals, the Choquet integrals can be expressed in various equivalent forms.
We present them in one of their simplest forms (see for instance [8]).

Definition 13 Let µ be a [0, 1]-valued fuzzy measure on [n]. The Choquet
integral of a function x : [n] → [0, 1] with respect to µ is defined by

Cµ(x) :=
∑

S⊆[n]

mµ(S)
∧

i∈S

xi,

where mµ : 2[n] → R is the Möbius transform (cf. (4)) of µ.

For comparison purposes, we recall the expected value of Cµ (see for instance
[9]):
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∫

[0,1]n
Cµ(x) dx=

∑

S⊆[n]

µ(S) B(n− |S|+ 1, |S|+ 1)

=
∑

S⊆[n]

µ(S)
∫ 1

0
xn−|S|(1− x)|S| dx

=
∑

S⊆[n]

µ(S)
(n− |S|)! |S|!

(n + 1)!
.

5 Application to reliability theory

In this final section we show how the results derived here can be applied to the
reliability analysis of coherent systems. For a reference on reliability theory,
see for instance Barlow and Proschan [1].

Consider a system made up of n independent components, each component Ci

(i ∈ [n]) having a lifetime Xi and a reliability ri(t) := Pr[Xi > t] at time t > 0.
Additional components, with constant lifetimes, may also be considered.

We assume that, when components are connected in series, the lifetime of
the subsystem they form is simply given by the minimum of the component
lifetimes. Similarly, for a parallel connection, the subsystem lifetime is the
maximum of the component lifetimes.

It follows immediately that, for a system mixing series and parallel connec-
tions, the system lifetime is given by a weighted lattice polynomial function

Yp = p(X1, . . . , Xn)

of the component lifetimes. Our results then provide explicit formulas for the
c.d.f., the expected value, and the moments of the system lifetime.

For example, the system reliability at time t > 0 is given by

Rp(t) := Pr[Yp > t] = Φvp,t [r1(t), . . . , rn(t)]. (9)

Moreover, for any measurable function g : [0,∞] → R of bounded variation
and such that limy→∞ g(y)ri(y) = 0 for all i ∈ [n], we have, by Proposition 9,

E[g(Yp)] = g(0) +
∫ ∞

0
Rp(t) dg(t).

As an example, the following proposition yields the mean time to failure E[Yp]
in the special case of the exponential reliability model.
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Proposition 14 If ri(t) = e−λit for all i ∈ [n], we have

E[Yp] = p(e∅) +
∑

S⊆[n]
S 6=∅

∑

T⊆S

(−1)|S|−|T |
1− e−λ(S) p(eT )

λ(S)
,

where λ(S) :=
∑

i∈S λi.

Proof. Using (9) and then (3)–(4), we obtain

Rp(t) =
∑

S⊆[n]

mvp,t(S) e−λ(S)t =
∑

S⊆[n]

∑

T⊆S

(−1)|S|−|T | vp,t(T ) e−λ(S)t

and hence

E[Yp] =
∫ ∞

0
Rp(t) dt =

∑

S⊆[n]

∑

T⊆S

(−1)|S|−|T |
∫ p(eT )

0
e−λ(S)t dt. 2

6 Conclusion

We have extended the c.d.f.’s and moments of lattice polynomial functions
to the weighted case. At first glance, this extension may appear as a simple
exercise. However, it led us to nontrivial formulas, which can be directly ap-
plied to qualitative aggregation functions such as the Sugeno integrals and
their particular cases: the weighted minima, the weighted maxima, and their
ordered versions.

Appendix: Alternative proof of Eq. (7)

In this appendix we present a proof of Eq. (7) without using the c.d.f. of
Yp. The main idea of this proof is based on the fact that the expected value
E[g(Yp)] can be expressed as an n-dimensional integral, namely

E[g(Yp)] =
∫ ∞

−∞
· · ·

∫ ∞

−∞
g[p(x)] dF1(x1) · · · dFn(xn). (10)

At first glance, the evaluation of this expression requires a difficult or in-
tractable integration. However, as we will now see, any weighted lattice poly-
nomial function fulfills a remarkable decomposition formula, which will enable
us to calculate E[g(Yp)] in a straightforward manner.
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Given a weighted lattice polynomial function p : Ln → L and an index k ∈ [n],
define the weighted lattice polynomial functions pa

k : Ln → L and pb
k : Ln → L

as

pa
k(x) := p(x1, . . . , xk−1, a, xk+1, . . . , xn),

pb
k(x) := p(x1, . . . , xk−1, b, xk+1, . . . , xn).

Then, it can be shown [7] that

p(x) = median
[
pa

k(x), xk, p
b
k(x)

]
(x ∈ Ln). (11)

This decomposition formula expresses that, for any index k, the variable xk can
be totally isolated in p(x) by means of a median calculated over the variable
xk and the two functions pa

k and pb
k, which are independent of xk.

This interesting property leads to the following lemma.

Lemma 15 Let p : Ln → L be any weighted lattice polynomial function, let
k ∈ [n], and let g : R → R be any measurable function of bounded variation
and such that g(−∞) is finite and limy→∞ g(y)[1− Fk(y)] = 0. Then

E[g(Yp)] = E[ga(Ypa
k
)] + E[gb(Ypb

k
)], (12)

where

ga(x) :=
∫ x

−∞
Fk(t) dg(t),

gb(x) := g(x)−
∫ x

−∞
Fk(t) dg(t).

Proof. Let k ∈ [n] and fix xj for all j 6= k. Assume u := pa
k(x) and v := pb

k(x)
are finite. The other cases can be dealt with similarly. Then, we have u 6 v
and, by (11),

p(x) = median[u, xk, v].

Hence, for any measurable function g : R→ R of bounded variation, we have

∫ ∞

−∞
g[p(x)] dFk(xk) =

∫ u

−∞
g(u) dFk(xk) +

∫ v

u
g(xk) dFk(xk) +

∫ ∞

v
g(v) dFk(xk)

= g(v)−
∫ v

u
Fk(t) dg(t)

= ga(u) + gb(v).

Finally, integrating with respect to the other variables xj, j 6= k, and then
using (10), we get the result. 2
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Observe that formula (12), when considered for every index k and every func-
tion g, completely determines the expected value of g(Yp). Indeed, repeated
applications of that formula will eventually lead to integration of transformed
weighted lattice polynomial functions all of whose variables are set to either
a or b.

Proof of Eq. (7). For any fixed S ⊆ [n], define recursively the sequence
{gk

S}n
k=0 of functions gk

S : R→ R as g0
S := g and, for k > 1,

gk
S(x) :=





∫ x

−∞
Fk(t) dgk−1

S (t), if k /∈ S,

gk−1
S (x)−

∫ x

−∞
Fk(t) dgk−1

S (t), if k ∈ S.

Repeated applications of Lemma 15 eventually lead to

E[g(Yp)] =
∑

S⊆[n]

gn
S[p(eS)].

Let us now show that

gn
S(z) = gn

S(−∞) +
∫ z

−∞

∏

k∈[n]\S
Fk(x)

∏

k∈S

[1− Fk(x)] dg(x).

For any S ⊆ [n] and any k ∈ [n], we have

dgk
S(x) =





Fk(x) dgk−1
S (x), if k /∈ S,

[1− Fk(x)] dgk−1
S (x), if k ∈ S,

and hence

dgn
S(x) =

∏

k∈[n]\S
Fk(x)

∏

k∈S

[1− Fk(x)] dg(x),

which proves the result since gn
S(−∞) = g(−∞), if S = N , and 0, other-

wise. 2
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