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Abstract—This paper explores the scalability and perfor-
mance of pool and island based evolutionary algorithms, both
of them using as a mean of interaction an object store; we
call this family of algorithms SofEA. This object store allows
the different clients to interact asynchronously; the point of
the creation of this framework is to build a system for spon-
taneous and voluntary distributed evolutionary computation.
The fact that each client is autonomous leads to a complex
behavior that will be examined in the work, so that the design
can be validated, rules of thumb can be extracted, and the
limits of scalability can be found. In this paper we advance
the design of an asynchronous, fault-tolerant and scalable
distributed evolutionary algorithm based on the object store
CouchDB. We test experimentally the different options and
show the trade-offs that pool and island-based solutions offer.

Keywords-Cloud services, distributed evolutionary compu-
tation, evolutionary algorithms, pool-based computing.

I. INTRODUCTION

Most studies on evolutionary algorithms (EAs) rely on

traditional execution environments with single memory

and CPU. These environments can be studied traditionally

and extended to parallel and even distributed environ-

ments, provided that there are certain conditions, such as

synchrony, homogeneity and centralized operations, for

instance. However, in the last few years the range of

possible computational environments has been extended

greatly, to the point that it is possible to achieve a bigger

computational raw power [1] by creating ad hoc, loosely

linked, and heterogeneous frameworks where EAs can be

run. One of such targets are the so-called volunteer com-
puting or desktop grid environments, [2], [3], which have

been used extensively so far in evolutionary algorithms,

for instance in [4]–[6].

In this paper we present a system whose main objective

is to adapt an evolutionary algorithm to a volunteer

computing environment; an evolutionary algorithm is a

population-based algorithm which evolves sets of solutions

inspired by the principles of biological evolution [7]. The

basic evolutionary algorithm loop consists in evaluating

a set of solutions, assigning a fitness to each one, and

them choosing them for reproduction based on that fitness,

changing them (performing mutation) or combining them

(doing crossover) to create a new generation; this is done

until the solution is reached or during a predetermined

amount of steps (which are called generations).

Environments for volunteer evolutionary computation

have been implemented in several ways, from a farming

approach (farming out evaluations to clients) to an island-

like approach (which was the one used in [8], [9]). Both

present problems from the ad-hoc framework point of

view. The first one has to run the EA on the sever, which is

not too pliable to a client-server architecture and makes the

server a bottleneck; the second one is better, performance-

wise, but the server does not keep track of a good part

of the population (just the ones that are being migrated

among islands). However, it is an interesting architecture

that will be one of the possible options we will test in this

paper.

The other architectures we will test here are pool-

based. The basic idea is that the bulk (or possibly all)

the population, is kept in a server with some structure.

The clients, which can join and leave at any time, pull

a set of tasks from the server, perform them, and return

the result. If we identify a task with a single individual,

this is as spontaneous as it gets: a client can perform a

single step and leave the experiment without any further

consequences, since the state is kept on the server.

An island-based system, on the other hand, is less

amenable to spontaneous collaboration since the server

usually keeps only track of migrant individuals. Even in

this kind of systems there are several possible ways of con-

figuring them, that is why in this paper we will test several

configurations, mainly measuring their scaling capability

with respect to the number of nodes and performance,

since spontaneity is mainly a requisite which pool-based

systems have in a high degree and island-based in a low

degree.

After presenting in other papers [10], [11] several

versions of SofEA, a pool-based evolutionary algorithm,

in this paper we introduce new versions and compare its

scalability and performance with an island-based evolu-

tionary algorithm that uses the same infrastructure. This

version is more suitable for using it in real-life applica-

tions. SofEA could run in browsers using the embedded

JavaScript interpreter, and, using this, massive experiments

via volunteers using it by simply visiting an URL.

The rest of the paper is structured as follows. In the next

section the state of the art in these topics is presented;

after it, section III introduces CouchDB, the document

store we are going to consider for mapping the EAs. The
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CouchDB-based evolutionary algorithms are described in

section IV, and the experiments performed for testing them

are included in section V. Finally, the conclusions and

future lines of work are presented in section VI.

II. STATE OF THE ART

In this section we will examine pool-based distributed

computing systems, mainly those that have been applied

to evolutionary algorithms. The most popular model for

asynchronous distributed algorithms is called A-teams,

where A stands for asynchronous [12]. A-Teams combine

different algorithms that share a memory in closed loops

and are a way of specifying data flow among different

methods to solve a problem. A-Teams are not intrinsically

evolutionary methods but have been successfully applied

in the last decades to a wide variety of problems [13];

their authors have released a toolkit that can be used to

implement solutions to different problems. A-Teams can

be implemented in many different ways, but they often

refer to a pool or shared memory from which solutions

(or sets of them) can be drawn, improved and put back,

or to where newly constructed solutions can be shared

among all the agents participating in the experiment.

Taking then one step down and entering the realm of the

implementations (away from the models exposed above),

several authors have directly implemented evolutionary

algorithms in a pool based architecture, where the basic

idea is to use a (more or less persistent) store of so-

lutions from which the evolutionary algorithm draws its

individuals, instead of having the population as a data

structure that is taken from one method to the next.

The first papers in the 90s used shared memory systems

such as Linda [14]. Lately, multi-threaded systems with

a shared memory [15] have been proposed; this memory

can be read from all threads, but is divided in chunks

writable by only one of the threads. Relational database

systems [16] have also been used, proving their capability

for avoiding algorithms with explicit synchronization and

their fault-tolerance, at least to client failure, providing a

persistent storage for population from which solutions can

be, later on, retrieved. A database is, for instance, used in

Distributed BEAGLE [17], which separates evolution and

evaluation with a single evolver client independent from

the evaluator clients, both working with a central database.

Even if the database is a single point of failure, this can

be avoided by replication; besides, the state of evolution

is partially held by anyone of the clients at a particular

moment, so even in the event of a database failure all the

information is not lost.

III. BRIEF INTRODUCTION TO COUCHDB

CouchDB is a key-value store [18] that uses JSON

(JavaScript Object Notation, a text serialization of arbi-

trary data structures [19]) for expressing them, being able

to store any kind of data structure, called documents in

this context. Objects can be retrieved by key or range

of keys directly, but complex queries using map/reduce

[20] operations, written by default in JavaScript and called

views, can be applied to them. Map operations apply

individually to each element in the database, while reduce
ones are applied to lists of keys and values resulting

from the map operation. For instance, if we want to

count how many documents have a particular attribute,

a map operation would emit that attribute as key, with

the document itself (or any other attribute) as value. The

Reduce operation would count the number of keys with

the same value.

CouchDB uses a simple REST (Representational State

Transfer) application programming interface (API) that

can be accessed either from the command line or from

multitude of client libraries; this API can be used either

to access objects directly or to apply operations to them.

Every document in the database is provided with several

additional attributes, the most important of which will be

for us the revision, a versioning attribute that changes

every time an object is modified; revisions take the

form 1-91285b0279dc582d8e1549c84c9c1406)

and its main part increases every update.

The easiest and fastest, not to mention highly con-

current, operations in CouchDB are those that involve

querying using keys. Inserting or updating a set of el-

ements in bulk is very fast too. More complex queries

involving document content, that is, views, that include

map/reduce operations, are slower and cannot be done

concurrently to such a degree; that is why it is better

to design high-performance applications around the use

of keys and reduce use of views as much as possible.

However, there is no other way of accessing the content
of the documents stored in the database, that is why they

are in many cases unavoidable.

Apart from technical reasons, one of the advantages of

CouchDB is its wide availability for all common operating

system, this means that one can develop for CouchDB

anywhere. Moreover, since its API is based in the easy-

to-build REST convention, clients can also be written

in most common computer languages; it can even be

used from the command line composing URLs by hand.

Ultimately, building a CouchDB client or even a client-

server application is straightforward and, in order to use

it in a volunteer computing environment, enables support

of fitness functions and algorithms written in virtually

any language, even an mix of several. Quite importantly,

CouchDB is an one-stop framework for developing web

applications, that is, clients can be completely embedded

in the browser using JQuery and JavaScript.

CouchDB is able to support thousands of concurrent

users; the maximum reported quantity of concurrent users

is 23001. This is more than enough for supporting a long

range of single-server scalability. If a higher number of

concurrent users is previewed, two-way replication can

be easily set up with CouchDB. On the other hand,

for documents of the size we are handling (several Ks)

CouchDB can serve several requests per second, with

updates of dozens of documents in a single request. A

1http://nosql.mypopescu.com/post/9891985838/
help-couchdb-break-the-c10k-barrier

2020



request for a single document (done in bulk) would be in

the ballpark of a millisecond.

Using CouchDB is also easy; each

database has an entry URL of the form

http://host.com:5984/database; database

name and host or this URL are the only parameters

needed to access the database. Since they are configured

by default to be accessed only from the local host, it is

not usual to include authentication methods, although

these can be added if needed (not in the application

presented here).

Eventually, the models shown in this paper might be

adapted to other data stores such as MongoDB, Cassandra

or Riak [21], specially this last one, whose features are

very similar to those of CouchDB. However, in this

paper we will focus in the development of evolutionary

algorithms that fit CouchDB architecture. This will be

shown next.

IV. POOL AND ISLAND EVOLUTIONARY ALGORITHMS

BASED ON COUCHDB

Several versions of SofEA have already been presented

in [10], [11] and evolved in [22]. The models examined

in this paper are different from previously published ones

[10], [11], achieving greater speeds and reducing the

design space while maintaining the fault-tolerance and

asynchrony of the pool-based architecture.

There is a single thing all SofEA algorithms have in

common: a population kept in a pool from where it is

drawn by the clients, operated on and put back in it.

Latest version, introduced in [22], worked as follows:

after an initial set of evaluated chromosomes were created,

clients took a block of individuals and applied a single

evolutionary algorithm generation on them, putting results

back in the population as many as were deleted from

it. In order to keep the population constant, the program

kept track of the conflicts (individuals already present in

the population) and eliminated as many from the pool

in the next iteration. That avoided population explosions,

and had a benefit on the population. Individuals were

stored in a document (items in the CouchDB database are

called documents, see the previous section) that included

the chromosome, a random constant and its fitness, and

using its binary string as key. We will call this version

BaseSofEA.

However, even if that version solved several problems,

it still presented an obstacle to scalability: the need to

keep the population constant, which was not adaptable to

an increasing number of clients and, even its performance

was much better with this version than with the previous

ones for a single client. New clients did not add speed,

but reliability, that is, likelihood of reaching the solution

in a fixed time.

That is why we introduced a new version of SofEA

which completely eliminated the concept of living popu-
lation. The concept is quite simple: instead of working

with a live and dead population, the former to be kept

constant to avoid decreasing the selective pressure, the live

population (the one the genetic operators will act on) is

simply a set of the best chromosomes ranked by fitness.

This algorithm, which we will call EliteSofEA, works in

the following way:

1) Generate an initial population of size p
2) While the solution has not been reached,

a) Obtain p individuals from the population,

record the worst fitness of the set to use it later

on as a cut-off for sending new individuals to

the pool.

b) Apply a single generation to this population.

c) Put back in the pool the individuals that are

better than the worst incoming individual.

Other small improvements were also added to this

version, tapping from our experience using the system:

the document that stored the chromosome just included

the fitness, eliminating the need for a random constant

and included the chromosome only as key; this resulted

in a more efficient storage but also in faster operations

when retrieving or updating the database. This made this

version the fastest of the pool-based ones, as shown in

figure 1. EliteSofEA works always on the individuals with

the best fitness, having thus the higher selective pressure

of the group of algorithms designed so far. This probably

explains the results shown in the figure, that indicate that

the speed is mainly due to the reduction in the number of

evaluations to solution, implying an algorithmic advantage

over the old versions. This is the main reason for including

this new approach for comparison with island EAs, instead

of the ones introduced in [22].

The last algorithm to be tested in this paper is essen-

tially an island GA [23], which is why we will call it

IslandSofEA. Every island runs an evolutionary algorithm

independently, but, after a certain number of generations,

it obtains from the pool the best n individuals, putting

back in it the best n individuals in the latest generations.

The evolutionary algorithm in every island also uses a

rank-based policy for insertion of new individuals: every

generation, only the best distinct p individuals are kept.

This guarantees that the population holds always different

individuals, maintaining diversity. Every generation, the

client checks whether the solution has been found, stop-

ping if any of the clients finds it. The main difference

between this an other island-based GAs is that the pool

acts as an interconnection grid, connecting all islands to

every other, but without needing explicit connections or

synchronization.

V. EXPERIMENTS AND RESULTS

In order to compare the different algorithms, we have

used MaxOnes, that is, maximizing the number of ones

in a binary string, with several lengths, up to 256 bits;

however, results with lengths smaller than 256 did not

offer much differentiation among the algorithms, since

they were solved too quickly by all of them, so we have

mainly used this bigger length to reach conclusions in

this paper. Since the main factor influencing results is

the time it takes to evaluate fitness and the population
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(a) Running time (in seconds)

(b) Number of evaluations

Figure 1. Boxplots comparing BaseSofEA and EliteSofEA, running
time (left) and number of evaluations (right). Two different versions of
this one have been tested, with client block size equal to 32 (left) and
128 (middle).

size needed to solve it, we wanted to concentrate on

one in which this speed was very small with respect to

application latency, so that the pure algorithmic features of

the proposed system are emphasized. Problems that need

bigger population sizes will increase the range in which

they scale, but in principle it needs not affect differentially

the two types of algorithms shown here; that is why we

consider the set of experiments offered here enough to

reach meaningful conclusions.

We tested all the algorithms with an initial population

that was divided among the clients when its number was

increased, that is, experiments were made with constant
population.

IslandSofEA performed migration after 25 generations.

In fact, asynchronous algorithms combined with pool-

based ones do not have a clear sense of population,

which is a global concept, but we did this in order to

make conditions for all algorithms as close as possible.

Experiments were repeated 30 times on a Ubuntu 11.04

computer and CouchDB 1.0.1. All programs, parame-

ters and results are available under a GPL licence from

http://goo.gl/nhon7. Clients were written in Perl and used

the Algorithm::Evolutionary::Simple module,

which is available from CPAN; clients were running on

the same computer, which actually did not result in an

excessive workload.

One of our main objectives with these experiments was

to measure scaling, and the influence of the configuration

in the behavior of the algorithm. This is plotted in figure 2.

This figure shows that the number of evaluations per client
is different for both algorithms. It scales approximately

in the same way, but the number of evaluations for

EliteSofEA is smaller except in the single-client situation

(left-most box). This should be expected since EliteSofEA

always uses the best set of individuals in the pool to apply

a single generation; IslandSofEA obtains the latest global

best only in the generation after migration is performed.

In principle, this would imply EliteSofEA to be faster;

however, since it does a bigger amount of request to

CouchDB, and one per generation, it is actually much

slower, with an average of 1.173 seconds for IslandSofEA

vs. 12.19 for EliteSofEA for 8 clients and population size

32, 2.067 and 30.43 for a single client and population =

256. This also shows that scaling is better for EliteSofEA:

2.5 vs 1.7 when the number of clients increases from 1 to

8. Of course, IslandSofEA is an order of magnitude faster

than EliteSofEA, so this scaling is eclipsed by the raw

speed of the former.

Results for problems with a smaller size, like MaxOnes

with 200 bits, are similar, we show in figure 3 the averages

for the IslandSofEA, comparing it with the results shown

above. Scaling is similar in both cases, with evaluations

for 8 clients (and population divided by 8) around 1/3

of those needed for a single client. These numbers of

evaluations translate more or less linearly to the time to

solution, hinting at a scaling that, while being good, is

not even lineal. However, that was not an objective of this

algorithm; in a volunteer computation context, we only

seek an increase in speed, even small, when new clients

are added.

VI. CONCLUSIONS, DISCUSSION AND FUTURE WORK

In this work we introduce a pool-based version of the

SofEA pool-based evolutionary algorithm, together with

an island-based EA that uses the same framework. The

first conclusion is that the pool-based algorithm presented

in this paper, EliteSofEA, shows the best number of

evaluations, speed and scalability from the set of SofEA
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Figure 2. Boxplots comparing the number of evaluations for IslandSofEA and EliteSofEA. The x axis shows the client population size p; the number
of clients is 256/p. The initial indicates the type of algorithm, e for Elite and i for Island.

Figure 3. Average number of evaluations for IslandSofEA solving
MaxOnes with 256 (black or dark) and 200 (blue or light).

algorithms examined so far [10], [11], [22]. This is an

interesting result by itself, and has been proved by a whole

set of experiments and problem sizes (not shown here). For

problems which are not deceptive and which need a pool-

based algorithm, EliteSofEA is the best option. In this

paper we have tested two algorithms that use CouchDB as

a data store, one that uses this store as a pool (EliteSofEA)

and another that uses it as a simple store to interchange in-

dividuals between individuals (IslandSofEA). Experiments

show that EliteSofEA needs fewer evaluations to reach

the solution and its scalability is better when adding new

clients; however, IslandSofEA is much faster since its use

of high-latency database requests is lower.

This is largely the result of experiments with a

single parametrization; however, EliteSofEA is largely

parameter-less, and IslandSofEA could be parametrized

for the kind of algorithms in every island and the number

of generations to migration. However, even if this quantity

is tuned, we do not foresee a big influence in the above

said conclusions. In static experiments where we know

in advance the number of clients and how long they

will be staying, IslandSofEA and, in general, island-based

evolutionary algorithms are the best option. However,

in environments with spontaneous addition/vanishing of

clients where these are expected to contribute a single

transaction, EliteSofEA or a pool-based EA is the best

option. Taking into account that a pool-based architec-

ture can support both types of algorithms (even at the

same time) and offers advantages such as persistence

and asynchronous operation, we conclude that pool-based

architectures represent a very good option that should be

explored further.

In the future, it would be interesting to test the system

with more heavy-duty problems, such as MMDP or P-
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Peaks, whose solution requires a bigger populations for

chromosomes with the same size, and thus a higher

number of evaluations to reach the solution, but also a

fitness function that takes longer to evaluate. This will

allow us to evaluate a higher range of number of nodes

and check when the physical limits of number of clients

is reached.
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