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Abstract

Location-based vehicle services have been enduring a rapid growth with the prevalence of GNSS
technologies, nowadays freely available for everyone. Given the nature of location data, privacy is of
prime importance in services such as electronic tolling pricing (ETP) and pay-as-you-drive. In this
paper, we first propose a new electronic toll pricing system based on group signatures – GroupETP
which achieves a good balance between privacy and overhead imposed upon user devices. Second,
we give a comprehensive formal analysis of GroupETP. Our analysis, conducted by ProVerif, requires
some abstraction of the system and extensions to the existing analysis methods. The results show that
GroupETP satisfies the desired properties – correctness, accountability and unlinkability.

1 Introduction
Electronic Toll Pricing (ETP) systems, by collecting tolls electronically, aim to eliminate delays due to
queuing on toll roads and thus to increase the throughput of transportation networks. For instance, the
E-ZPass system deployed in the US is estimated to reduce the total delay at toll plazas by 85 percent [2].
By exploiting the availability of free Global Navigation Satellite Systems (GNSS), traditional ETP is
evolving into a more sophisticated location-based vehicular service. Users’ trajectories are collected
in the form of GNSS positions and the passing time, and subsequently used to calculate the tolls of
each user. In this way, it can offer smart pricing, e.g., by charging less who drive on uncongested roads
or during off-peak hours. Insurance companies can also bind insurance premiums to roads that their
users actually use, and offer a service known as “Pay-As-You-Drive” (PAYD) [3]. As locations are
considered as sensitive and private information, ETP and PAYD systems raise users’ privacy concerns.
It is out of users’ control that how their locations will be used. For example, locations gathered by
E-Zpass have already been used in courts and applications to extract traffic statistics. The research such
as user profiling based on spatio-temporal datasets [4, 5, 6] aggravates the situation. One of the steps of
user profiling is to extract users’ places of interest and mobility patterns, which users obviously want to
keep secret.

In the last few years, secure ETP and PAYD systems have been widely studied [3, 7, 8, 9, 10, 11].
They can roughly be divided into two categories based on whether locations are stored in user devices or
collected by central toll servers. PriPAYD [3], PrETP [9], the cell-based solution described in [10], and
Milo [11] belong to the first category. In these systems, locations and tolls are managed by user devices
while servers are allowed to process only aggregated data. In the second category we find VPriv [8],
∗This paper is an extended version of the work originally presented at the 6th International Conference on Availability, Relia-

bility and Security (ARES’12), Prague, Chzech Republic, August 2012 [1].
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where the server stores a database of users’ travel history, and the ETP system described in [7], where
the server collects the hash values of trip records.

Hiding locations from servers drastically reduces the concerns over location privacy. However, it
also imposes an overhead on user devices as they have to store travel records and construct proofs that
they have not cheated, e.g., by zero-knowledge proofs. The availability of location databases collected
by servers, e.g., in VPriv, can improve applications such as traffic monitoring and control, although
the integration of multiple systems should be carried out carefully. Whereas, more effort is required to
preserve users’ location privacy than those without explicit locations stored.

We propose a new ETP system called GroupETP [1], which is based on our evaluation of the strengths
of the existing systems. It follows the design principles of VPriv [8] in order to have a good balance
between location privacy and overhead on user devices. Users are divided into groups and use group
signature schemes to sign their locations. If users and the server cannot reach an agreement on the final
amount of tolls, an authority is then involved to open the group signatures and solve the dispute. As
only the authority has the right to open the location signatures, users’ anonymity is protected in groups
against the server. With the division of groups and one-round calculation of tolls, GroupETP reduces the
amount of exchanged information as well as the computation overhead compared to VPriv.

As the design of security systems is error-prone, we believe that the security claims of an ETP
system should be formally verified before deployment in practice. In this paper, we model GroupETP
with the applied pi calculus, and perform a formal analysis of the system by leveraging the previous
analysis of vehicular services, e.g., mix-zones [12] and VPriv [13]. With the aid of the protocol analysis
tool ProVerif [14], we show that GroupETP satisfies all the desired security properties – correctness,
accountability and unlinkability.

Structure of the paper. Sect. 2 briefly describes our ETP system GroupETP [1]. In Sect. 3, we introduce
shortly the applied pi calculus which are used to model the system in Sect. 4. In Sect. 5 we show the
methods to analyse the system with ProVerif as well as the analysis results. We conclude our paper in
Sect. 6 with some discussions and ideas for future work.

2 The GroupETP System

2.1 System Model

Principals. The system consists of four principals: users, their cars with on board units (OBUs), the
authority, and the toll server.

Users own and drive cars, and are also responsible for toll payments. To be entitled to use the
electronic tolling service, a user brings his car to the authority, which registers the car and installs an
OBU on it. The authority is a governmental department trusted by both users and the toll server. It also
builds up the group signature scheme and manages groups of users. An OBU computes locations using
GNSS, e.g., GPS (Global Positioning System), and stores them, for example, in a USB stick or a TPM
(Trusted Platform Module), which interfaces the OBU and contains security information. It transmits
location data to the toll server, which is a logical organisation that can be run by multiple agents in
practice. The server collects location data and computes the fee of each location record. It can also
contact the authority to resolve disputes when some users cheat on their tolls.

Adversary model. With regards to the deployment environment of ETP systems, the possible threats
can come from: 1) manipulated OBUs, which generate false location records; 2) dishonest users, who
(partially) avoid paying their road usage; 3) dishonest toll servers, who intend to increase their revenue
and breach users’ privacy; 4) the honest but curious authority.
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Assumptions. Considering the practice of ETP systems, we make an assumption that users and the
server have motivation to obtain economic benefits during toll payment and toll collection (Assumption
1). Users tend to pay fewer tolls than those they should pay according to their road usage and the server
wants no economic loss. For instance, dishonest servers can perform any actions to satisfy their strong
economic motivation and curiosity. They can deviate from the protocols and collude with other attack-
ers. The attackers considered in the system follow the Dolev-Yao intruder model [15] (Assumption 2).
Specifically, they have full control over the network, which means they can eavesdrop, block and inject
messages anywhere at anytime. However, an encrypted message can never be opened unless they have
the right key. We assume that location tuples are transmitted to toll servers anonymously (Assumption
3). This can be achieved by the architecture in [16], for instance, which uses a communication service
provider to separate authentication from data collection.1 The authority is supposed to be curious but
not to collude with any other participants, meaning that it tries to peek users’ privacy only based on the
data learnt during the execution of the protocols it is involved in (Assumption 4).

It has been shown that users’ moving traces can be reconstructed from anonymised positions, e.g.,
by multi-target tracking techniques [17] or taking into account users’ mobility profiles [18], and users’
private information can thus be inferred [19]. However, we observed from the experiments in the litera-
ture that tracking users remains difficult in practice, especially when the intervals between transmissions
are big (about one minute) and the number of travelling users is not small. Therefore, similar to VPriv,
in this paper, we focus on privacy leakage from ETP systems without considering the above mentioned
trace reconstruction techniques (Assumption 5).

2.2 Security Properties
In addition to reducing communication and computation overheads, GroupETP deploys proper measures
to protect honest users and servers. Referring to what other ETP systems achieve (e.g., [3, 8, 9]), we
give the following security properties which GroupETP should satisfy:

Correctness. Users pay their road usage correctly and the server collects the right amount of tolls.

Accountability. If a malicious action that deviates from the specification of the system occurs, sufficient
evidence can be gathered to identify its originator.

Unlinkability. The adversary cannot link a given location record to its generator.

2.3 Cryptographic Primitives
Group Signature Schemes. Group signatures [20] provide the signers anonymity among a group of
users. A group signature scheme consists of group members and a group manager. The task of the group
manager is to organise the group, set up the group signature infrastructure and reveal signers if needed.
The signature of a message, signed by a group member, can be verified by others based on the group
public key while the identity of the signer remains secret.

Group signature schemes contain at least the following five functions: SETUP, JOIN, SIGN, VERIFY
and OPEN. Function SETUP initialises the group public key, the group manager’s secret key and other
related data. The procedure JOIN allows new members to join the group. Group members call function
SIGN to generate a group signature based on their secret keys. The VERIFY function makes use of the
group public key to check if a given signature is signed by a group member. Function OPEN determines
the signer of a signature based on the group manager’s secret key.

We take group signature schemes as an essential building block of our system because they have the
following properties, which effectively meet our security goals.

1Thus identification based on message transmission is out of the scope of our paper.
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• CORRECTNESS Signatures produced by a member using SIGN must be accepted by VERIFY.
• UNFORGEABILITY Only group members can sign messages on behalf of the group.
• ANONYMITY Given a valid signature of some message, identifying the actual signer is unfeasible

for everyone but the group manager.
• UNLINKABILITY Deciding whether two different valid signatures were computed by the same

group member is unfeasible.
• EXCULPABILITY Neither a group member nor the group manager can sign on behalf of other

group members.
• TRACEABILITY The group manager is always able to open a valid signature and identify the

actual signer.
• COALITION-RESISTANCE A colluding subset of group members cannot generate a valid signature

that the group manager cannot link to one of them.

There are some other properties we desire as well, e.g., efficiency and dynamic group management.
Efficiency concerns the length of signatures and computation time of each function, which determines
the feasibility of our system. Dynamic group management enables users to join or quit their current
groups at any time when they are new or not satisfied (e.g., see [21]).

In the last decade, efficient group signature schemes with new fancy features have been developed,
e.g., group message authentication [22] and group signcryption [23]. Some of the schemes may improve
the security of our system. For instance, an efficient group signcryption scheme can prevent attackers
from eavesdropping users’ location signatures over the network. In the description of our system, we
will make use of an abstract version of group signature schemes as any group signature scheme with the
required security properties can be adopted.
Public Key Cryptographic Primitives. We adopt a public key cryptosystem with classic security
properties for applications of confidentiality and digital signatures. Furthermore, we assume that the
public key encryption is probabilistic in order to prevent possible off-line dictionary attacks.
Cryptographic Hash Function. In the system, we also use cryptographic hash functions, which are
publicly known and satisfy the minimum security requirements – preimage resistance, second preimage
resistance and collision resistance.

2.4 The ETP System

Overview. Our system is organised into four phases. The first phase is about the service subscription
and set-up. A user first signs a contract with a toll server in order to get access to the toll service,
and establishes a security communication channel with the server. Afterwards, when users contact the
authority to join a group, the authority assigns them to groups according to a group division policy (see
Sect. 6). Clients’ private keys for group signatures are also established during the communication with
the authority. At the end of this phase, the server is informed of the groups containing its users and the
corresponding group public keys.

The second phase is about collecting location data. During driving, OBUs compute their locations
and time, which together with the group name form location tuples. OBUs periodically send location
tuples and the corresponding group signatures on the hash values of the location tuples (called location
signatures) to the server, who stores them in its location database. In order to increase entropy of the
hash values, a random number is generated and added in every location tuple.

The third phase is about calculating tolls. At the end of a toll session, each user contacts the server
using a user interface through browsers (not OBUs). According to the public charging policy, a user
calculates the fees of his location tuples and his toll payment subsequently by adding them up. The
server then collects all users’ payments.
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The fourth phase is about resolving a dispute. This phase takes place only when the sum of users’
payments in a group is not equal to the sum of all location tuples’ fees. The authority is involved to
determine misbehaving participants. The server sends all location signatures and location tuples with
their fees to the authority. When location signatures are opened, for each user, the authority calculates
the fees belonging to his location tuples, whose sum is compared to the committed payment of the user.
An inequality indicates misbehaviour from either the server or the user. The authority then contacts
the user to ask for proofs. Based on the received proofs, the authority can find out who originated the
mistake and decide the type of the misbehaviour. If the user has cheated, he has to pay their unpaid tolls
to the server (possibly with an additional fine). If the server has misbehaved, it will be punished by the
authority as well.

Protocol specifications. Here we specify the four protocols that implement the phases of our system,
namely: Set-up, Driving, Toll Calculation, and Dispute Solving. In the following discussion, we fix a
group G of users. Furthermore, we use {M}pkX to denote the encrypted message of M with the public
key of X and [M ]skX to represent the signature of X on message M . A group signature of user u in G
on M is denoted as [M ]gsku . From a signature, the corrrespondign message M cannot be determined
and M is requried to verify the signature.

Phase 1: Set-up. This protocol accomplishes two tasks. The first is to establish the public key in-
frastructure between the users, the server and the authority. The second task is to set up the group
infrastructure.

We make use of two secrets to achieve the security goal of this phase – pin codes and serial numbers.
The former are generated by the server for users to prove their legal access to the toll service, while a
serial number is issued with each OBU as a secret between the authority and a user. We take user u as an
example. Let pin be his pin code and sn the serial number. During the authentication process between
u and the authority, m is a fresh nonce generated by u. The Set-up protocol can be depicted as follows:

u→ S : {u, pku, [pin]sku}pkS
S → u : {[pku, u]skS }pku
u→ A : {[pku, u]skS , pku, u, sn, S,m}pkA
A→ u : {gpkG ,G,m}pku

The user starts with sending his public key to the server and meanwhile his signature on pin is added
in order to authenticate himself to the server. Upon receiving the user’s public key, the server checks u’s
signature with the public key and the shared secrecy pin . If valid, the server replies with its signature
on the key as a ticket which the user can use to prove the agreement of the server on his public/private
key pair. The user sends the next message to the authority as a request to join a group composed of
customers subscribing the service of the server S. The secrecy sn allows the authority to authenticate
the user and the nonce m enables the user to authenticate the authority and ensure that the group public
key in the reply uniquely corresponds to his request. Upon receiving the group public key, the user
continues with the JOIN process to set up the private keys to generate group signatures.

We omit the last step where the server learns from the authority its users’ groups and the group
public keys, since such information can be made public.

Phase 2: Driving. The driving protocol specifies how users periodically transmit location tuples and
location signatures to the server. Let 〈`, t, r,G〉 be a location tuple where r is a random number and
h(M) be the hash value of message of M . A message from user u, a member of group G, is denoted by
(〈`, t, r,G〉, [h(`, t, r)]gsku .

u→ S : 〈`, t, r,G〉, [h(`, t, r)]gsku .

5



After receiving this message, the server verifies [h(`, t, r)]gsku using the group public key gpkG . If valid,
the received message is stored. The hash function and random numbers added are used to keep location
tuples secret from the curious authority (see Phase 4).
Phase 3: Toll Calculation. This protocol aims to reach an agreement on toll payments between the
server and its users. Let Ru be the locations which u has travelled and are stored on the USB stick.
The user starts with calculating his toll payment costu in toll session sid . For each 〈`, t, r〉 in Ru, the
user computes its fee f(`, t) according to the server’s public charging policy modelled by function f
and obtains costu by adding all fees up, i.e., costu =

∑
〈`,t,r〉∈Ru

f(`, t). Then the user sends to the
server his signature on costu and session identifier sid , which indicates that user u’s toll payment in toll
session sid is costu. After receiving u’s message, the server verifies the signature before sending back
its signature on u’s toll payment. In addition to prove the acceptance of the user’s payment, the server’s
signature also works as proof of the user’s accomplishment of the toll calculation phase. The protocol
can be described as follows:

u→ S : {costu, [costu, sid ]sku}pkS
S → u : {[costu, sid , u]skS }pku

Phase 4: Dispute Resolving. In this protocol, with the help of the authority, the server finds cheating
users and the amount of unpaid tolls. The server initiates dispute resolving only when, with respect to a
group, the sum of committed payments is not equal to the sum of fees of all location tuples. In practice,
as users tend to pay less, the server asks for dispute resolution only when it has collected less tolls. Let
L be the set of location tuples of group G, then the condition can be formally described as∑

u∈G
costu <

∑
〈`,t,r〉∈L

f(`, t).

A dispute resolution involves the authority, who can link a location signature to its signer. At the
beginning of the dispute resolution, the server constructs two sets S and T . Set S consists of the hash
values of location tuples, the corresponding fees, and the location signatures that the server has received
in Phase 2:

S = {〈h(`, t, r), f (`, t), [h(`, t, r)]gsku 〉 | ∀(`, t, r) ∈ L,∀u ∈ G.}

T consists of the users’ committed toll payments in Phase 3:

T = {〈u, costu, [costu, sid ]sku 〉 | ∀u ∈ G}.

Subsequently, the server sends S, T and its signature on S to the authority

S → A : S, T , [S, sid]skS .

Upon receiving the message, the authority starts to compute users’ tolls based on S and find the incon-
sistency with users’ committed toll payments. This process is described as function SvrDisRes shown
in Alg. 1. We use checksign(sign,m, pk) to check if the sign is a signature of m using pk and group
signature functions VERIFY and OPEN work as described in Sect. 2.3. The check on set T (line 4-7) and
verification of the signature on S (line 8-9) and location signatures (line 11-12) exclude the possibility
of modifying users’ toll payments by the malicious server. Each user’s toll payment in S (i.e., tollu) is
computed in lines 16-17. When it is not larger than the user’s committed one (i.e., costu), the user has
paid the amount of tolls that the server asks for. In other words, the user’s committed cost has covered
all his location tuples in S . Otherwise, the server or the user (or both) is cheating (line 19). For instance,
the server may increase the fees of some location tuples or add fake location tuples in S, while some
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Algorithm 1 Function SvrDisRes

1: Input: S, T , signS
2: Output: res
3: res := ∅; Su = ∅; tollu := 0;
4: for all (u, cost , sign) ∈ T do
5: if checksign(sign, (cost , sid), pku) = false then
6: return ‘check of T failed’ ;
7: end if
8: end for
9: if checksign(signS , (S, sid), pk(S)) = false then

10: return ‘check of integrity of S failed’ ;
11: end if
12: for all 〈hashLoc, feeLoc, gsign〉 ∈ S do
13: if VERIFY(gsign, hashLoc) = false then
14: return ‘Faked location signatures’ ;
15: else
16: u :=OPEN(gsign) ;
17: tollu := tollu + feeLoc;
18: Su := Su ∪ {〈hashLoc, feeLoc, gsign〉};
19: end if
20: end for
21: for all tollu > costu do
22: res := res ∪ {(u, tollu − costu)};
23: end for
24: return res

users are also possible to have committed smaller payments. For any user u with tollu > costu, there is
a pair (u, tollu − costu) in the result res . Moreover, all corresponding tuples of user u in S are stored
in set Su.

After getting res , the authority needs to verify its correctness. In other words, the related users
should try to prove their innocence. The authority sends a private message to ask each user appearing
in res to initiate the dispute solving protocol with it. The server and the adversary cannot eavesdrop on
this private channel. A deadline for dispute solving is also included. Any user who misses the deadline
has to pay the rest of his tolls indicated by res . For the sake of simplicity, we omit the cryptographic
details in the following description of the protocol:

A→ u : Su
u→ A : R′u, [R′u, sid ]sku whereR′u = {〈`, t, r〉 | ∃〈h(`, t, r), fee, gsign〉 ∈ Su ∧ f(`, t) < fee}
A→ u : [ru, sid ]skA where ru = UsrDisRes(R′u, res,Su).

The user finds the set of location tuples R′u ∈ Ru with larger fees in Su, and sends it back to the
authority. The authority then determines how many tolls the related users still need to pay by function
UsrDisRes , which is shown in Alg. 2. First, the authority checks the integrity of R′u by verifying the
user’s signature (line 4-5). Then for each location tuple 〈`, r, t〉 ∈ R′u, the authority finds the tuple
〈hashLoc, fee, gsign〉 ∈ Su where hashLoc = h(`, t, r), and accumulates the extra fee added by the
server, i.e., fee − f(`, t) (line 6-9). The result δ is the amount of tolls that the server has added to u’s
real tolls. By subtracting the user’s committed payment costu, we obtain the rest of tolls the user still
needs to pay, i.e., ru (line 10) which is called dispute resolution in the following discussion.
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Algorithm 2 Function UsrDisRes

1: Input: R′u, signRu , Su
2: Output: ru
3: δ := 0;
4: if checksign(signRu, (R′u, sid), pku) = false then
5: return ’check ofR′u failed’;
6: end if
7: for all 〈`, t, r〉 ∈ R′u do
8: if ∃〈h(`, r, t), fee, gsign〉 ∈ Su then
9: δu := δu + (fee− f(`, t));

10: end if
11: end for
12: ru := (u, tollu − costu − δu);
13: return ru

For each user u, ru = (u, 0) indicates that the server has misbehaved and the user is innocent while
ru = (u, tollu− costu) means the server is honest and the user paid less. If tollu− costu− δu < 0, the
user has paid what the server asks for (i.e., all his location tuples in S). Otherwise, both the user and the
server have misbehaved. At last, the authority constructs a setR = {(u, v) | v = tollu−costu−δu∧v >
0}, consisting of all misbehaved users’ dispute resolution and sends it back to the server. With the
authority’s signature on R, the server proves the authenticity of the resolution to users, which forces
them to pay their unpaid tolls. Note that after resolving, the authority only learns the location tuples with
manipulated fees given by the server and the number of location records of each user in that particular
group. If the misbehaved server were captured, the authority might enforce a punishment policy and
make this information public. The server then has to undertake some economic loss and its reputation
is thus damaged.

After executing our protocol, the server collects no less tolls than it asks for. This is why a server
who wants no loss of tolls should not throw away any location tuples in L which is is the set of locations
that the server has collected in the toll session. Otherwise, the user whose location tuple(s) is (are)
omitted, may pay less by committing a cost larger than what the server asks for but smaller than what
he should pay.

We refer readers to [1] for the formal definitions of the security properties and a detailed theoretical
security analysis. In this paper, we resort to formal verification techniques to check the properties.

2.5 Discussion

Comparison with VPriv. As mentioned in Sect. 1, GroupETP resembles VPriv [8] in that the server
collects locations. However, VPriv imposes a relatively high overhead to users and the server. Com-
pared with VPriv, in GroupETP, the communication overhead between users and the server is reduced.
GroupETP does not require the server to provide the set of location tuples with fees to users during toll
calculation, which is usually large even for groups of small size. Second, we apply the principle of
separation of duties, namely the authority takes the responsibility to find misbehaved users or server.
Hence, the server and users are released from a heavy computational overhead by avoiding running
zero-knowledge proof protocols as in VPriv. Resolving disputes needs to open all location signatures,
which is time consuming for the authority. However, with punishment policies and the accountability
property of our system, the authority can have a very low frequency of resolving disputes. Last but
not least, we consider a malicious server with more power, which is not passive but can perform active
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attacks, such as increasing fees or other attacks to learn users’ whereabouts.

Group management. A good group management policy can improve the protection of users’ privacy
in our system. In principle, groups should be chosen to maximise the difficulty for the adversary to
construct users’ traces. One way to achieve this goal is to group people according to ‘similarity’ criteria
based on multi-level hierarchical structure, as proposed in [24]. For instance, at the root level, we have
the group of all users in a city. Subgroups at the next level contain those that usually travel in the same
region. At lower levels the subgroups can include users having a similar driving style. Other factors can
be considered as well, e.g., driving periods, car models, etc. The information needed to group people
is collected by the authority at the moment of registration. The provision of such information is not
compulsory but users are encouraged if they desire a better privacy protection.

Dynamic group management, which enables users to change their group memberships, is also nec-
essary. For instance, users move to another city or they are not satisfied with the current groups. To find
the optimal group size which can protect users’ anonymity is our future work. Note that if a user joins
multiple groups, the similarity between his travel records of the groups would decrease his anonymity.

Tamper resistant devices vs. spot checks. In order for the system to provide correct data, it must be
ensured that OBUs are not manipulated by users, e.g., to transmit false locations. We consider two
possible solutions to this problem. One way is to utilise devices that are tamper resistant. However,
users can always turn off the device. Therefore, as discussed in VPriv and PrETP, we can use sporadic
random spot checks that observe some physical locations of users. A physical observation of a spot
check includes location, time and the car’s plate number. Let 〈`, t, pn〉 be an observation of car pn
whose owner is user c ∈ G. Then there should be at least one location record 〈`′, t′〉 of group G such
that | t, t′ |< ε/2 and | `, `′ |< γ· | t, t′ | where ε is the interval between two transmissions and γ is the
maximum speed of vehicles. If there are no such location tuples, then the server can determine that user
c has misbehaved. Otherwise, the server could send the tuples with nearby locations to the authority to
check if one of these belongs to c. According to [8], a small number of spot checks with a high penalty
would suffice.

3 The Applied Pi Calculus

The applied pi calculus is a process calculus used to formally model concurrent systems and their inter-
actions. It provides an intuitive way to model cryptographic protocols. In this section we briefly describe
the syntax and semantics of the applied pi calculus. For more details, we refer the reader to [25].

The applied pi calculus assumes an infinite set of names (used to model communication channels
and other atomic data), an infinite set of variables and a set of functions (used to model cryptographic
primitives). Terms model messages which can be names, variables or functions applied to other terms.
An equational theory E is used to define the equivalence between terms. A protocol is modelled as a set
of processes defined as follows:

P,Q,R ::= processes
0 null process
P | Q parallel composition
!P replication
ν n;P name restriction
if M =E N then P else Q conditional
{M/x} active substitution
in(u, x);P message input
out(u,M);P message output.
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Processes consist of plain processes, which are built up similar to the pi calculus and extended
processes which contains variable restrictions and active substitutions. By restricting variables, we can
bound a process to a name or a variable. Active substitution {M/x} replaces x with M . We use “let
x = M in P ” to denote P{M/x}. A process is closed if all variables are bound either by an input
or a restriction. We use C[ ] to denote an evaluation context (a process with a whole) and C[P ] is a
process obtained by filling the whole with process P . The applied pi calculus assumes the Dolev-Yao
intruder [15] who controls the network.

The operational semantics of the applied pi calculus contains structural equivalence, internal re-
duction (denoted as→) and labelled reduction (denoted as α−→). The structural equivalence defines the
equivalence relations between two processes which differ only in structure. Internal reductions mean
a process can execute an action without interaction with the context, while labelled reductions mean a
process interacts with the context. Transition A α−→ B indicates that A executes α and the result is B.

There are many equivalence relations defined in the applied pi calculus. In this paper, we use obser-
vational equivalence, which captures the indistinguishability between two processes in any adversary
contexts. To define it, we use A ⇓ a to denote that process A can send a message on a.

Definition 1 (Observational equivalence (≈) [25]). Observational equivalence is the largest symmetric
relationR between closed extended processes with the same domain such that ARB implies:

1. if A ⇓ a then B ⇓ a;

2. if A→∗ A′ then B →∗ B′ and A′ R B′ for some B′;

3. C[A]R C[B] for closing evaluation context C.

However, observational equivalence is hard to use in practice due to the quantification over contexts.
Labelled bisimilarity is thus introduced, which is easier to verify either manually or automatically and
coincides with observational equivalence [25].

4 Modelling
We use the applied pi calculus to model the GroupETP system. We simplify the system to have only
one server and one group. Furthermore, we suppose that each user sends only one location record to
the server during driving for the sake of simplicity. More importantly, if GroupETP works properly and
preserves users’ anonymity in groups in this extreme case, then it will also satisfy the required properties
in general cases. As spot checking has been formally analysed in [13] which shows its effectiveness in
preventing users’ manipulation on OBUs, we assume that location records sent in the driving phase are
trustworthy. In this section, we start with the description of the functions introduced and then proceed
to explain the processes used in our analysis.

4.1 Signatures and equational theory
A group signature scheme consists of five functions, among which we only need to formally model
three of them. The function SETUP and JOIN are captured in our modelling by assuming the availability
of the group secret keys of users (gskey), the group public key (gpkey) and the group secret key of
the group manager (gmskey). We introduce some functions in order to reduce the number of names
in the modelling and thus keep the models simple to read. A user’s group secret key is denoted by
function gsk(sk) where sk is the user’s asymmetric private key for secure communication. Because of
the secrecy of sk, only the user knows his group secret key. Since for a group, the group manager has
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only one group secret key corresponding to the group public key, we use gpk(y) to denote the group
public key where y is the secret key of the group manager of the same group.

Recall that a user requires his group secret key and the group public key to sign a group signature on
a string of bits. Hence, we model function SIGN by gsign with three arities whose types are gskey, gpkey
and bitstring, respectively. Due to the secrecy of the user’s group secret key, only the user can generate a
group signature on his own behalf. The function is as follows:

fun gsign(gskey, gpkey, bitstring) : bitstring.

The function VERIFY checks the validity of a group signature using the group public key and the string
of bits signed. As long as the signature is signed on the string using the group public key, it will return
true. It is captured by function checkGSign as follows:

forall x : gskey, y : gpkey, z : bitstring; checkGSign(gsign(x, y, z), y, z) = true.

The group manager uses OPEN to learn the signer of a group signature, which requires his secret key
and the group public key. As the group public key can be constructed with the manager’s group secret
key, we omit it in the modelling function open. We use a user’s public key pk(x) to identify him where
x is his private key for communication. Only the manager can open a group signature due to the secrecy
of the manager’s group secret key. The function open is as follows:

forall x : skey, y : gmskey, z : bitstring; open(gsign(gsk(x), gpk(y), z), y, z) = pk(x).

Hash functions, encryptions and signed messages are modelled by functions hash, encand sign. Mean-
while decryption and verifying signatures are modelled by functions dec and checksign following the
standard modelling methods.

We use f(l) and costU(l) to denote the real fee of a location record l and a smaller amount of tolls
committed by a cheating user, respectively. So we have costU(l) < f(l). Detailed equations could be
found in the ProVerif code in [26].

4.2 Processes
In the following discussion, we suppose a group with m registered users. We do not give the process of
the server as it is assumed to collude with the adversary in GroupETP and we can consider it as part of
the adversary. Therefore, the secrets of the server are part of the adversary’s knowledge.

Main process. The main process is represented in Fig. 1. This process first generates the private keys
of the server, the authority and each user which are skS , skA, and skui (1 ≤ i ≤ m), respectively.
The process then generates a location record and a boolean value for each user, e.g., li and cheat i
(1 ≤ i ≤ m). The variable cheat i determines whether the user ui will cheat on his payment since
GroupETP assumes users to be honest except for cheating on payments. Then the manager’s group
secret key is generated. We public the group public key and users’ public key on the public channel ch
as they are part of the adversary’s knowledge. The server’s private key is also put on the public channel
ch as it is part of the adversary. In the end, the main process launches m copies of user sub-process and
one authority sub-process.

User process. The user process is described in Fig. 2. During the driving phase, the user sends his
location records to the server anonymously. Due to the abstraction in the applied pi calculus that all
channels are anonymous, we do not have to explicitly build such an anonymous channel [27]. Recall
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P ,new skS ; new skA; new sku1 ; . . . ; new skum ;

new l1; . . . ; new lm; new cheat1; . . . ; new cheatm;

new gmskA;

let gpk = gpk(gmskA) in

let pkA = pk(skA) in

let pku1 = pk(sku1 ) in . . . let pkum = pk(skum ) in

out(ch, gpk) | out(ch, skS) | out(ch, pkA) | out(ch, pku1 ) | . . . | out(ch, pkum ) |
User(sku1 , pkA, cheat1, l1, gpk) | . . . | User(skum , pkA, cheatm, lm, gpk) |
!Authority(pkS , skA, pku1 , . . . , pkum , gmskA)

Figure 1: The main process.

that cheat determines the honesty of the user. In the toll calculation phase, a user sends f(l) to the server
if cheat is false. Otherwise, he sends a smaller payment costU(l). Afterwards, the user starts waiting
for the challenge from the authority for dispute resolution which is captured by the process disputeRes
shown in Fig. 3. The message from the authority comes from a private channel in order to prevent the
adversary from distinguishing honest and dishonest users. This channel is modelled by pchA(pk(sku))
where function pchA is private and out of the adversary’s knowledge. If the group signature in the
challenge is valid, then the user answers with his location record l. Finally he learns the resolution
result from the channel ch and he continues with the payment process pay if it is valid.

User(sku ,pkA, pkS , cheat , l, gpk) ,

let gsigu = gsign(gsk(sku), gpk, h(l)) in out(ch, (l, gsigu));

in(ch, cheat);

if cheat = false then

let sigu = sign(sku, f(l)) in

out(ch, (pk(sku), f(l), sigu));

in(ch, signS);

if checksign(pkS , (pk(sku), f(l)), signS) = true then disputeRes(sku, l)

else let sigu = sign(sku, costU(l)) in

out(ch, (pk(sku), costU(l), sigu));

in(ch, signS);

if checksign(pkS , (pk(sku), costU(l)), signS) = true then disputeRes(sku, l).

Figure 2: The user process.

disputeRes(sku, l) =in(pchA(pk(sku)), (hash, toll , gsig));

if checkGSign(gsig, gpk , h(l)) = true then

out(pchA(pk(sku)), l);

in(ch, (res, resSig));

if checksign(pkA, (pk(sku), res), resSig) = true then pay.

Figure 3: The user dispute resolution process.

12



Authority process. Fig. 4 shows the authority process. The authority process receives all the location
records, the server’s signature sigS on them and each user’ signature sigCost i on his tolls cost i(1 ≤
i ≤ m). In this process, the authority only receives the first m records as there are at most m valid
location records from honest users and the server cannot generate any on behalf of them. Furthermore,
the users’ commitments are put in the ascending order of their owners’ identities, i.e., pku1

, . . . , pkum
.

The authority checks the validity of group signatures and the cost commitments. If all are valid, then
the authority inserts an entry for each user consisting of his identity pkui and his tolls cost i in the
table commitCosts. Afterwards, the authority opens each group signature and learns the originator pkj .
By reading the table, the authority obtains the corresponding user’s committed payment. In the end, a
challenging sub-process commUA (see Fig. 5) is initiated for each user to find out the amount of tolls
that the user has not paid. This sub-process corresponds to the user dispute resolution process disputRes
(see Fig. 3).

The commUA process contacts a user u through the private channel pchu(pk(sku)). It first checks
whether there is an agreement between the server and the user by comparing the committed num-
ber of tolls (commitCost) with the amount required by the server toll . If they are not equal, i.e.,
commitCost <> toll (‘<>’ represents the inequality between terms), the hashed location record as
well as the group signature are sent to the user. After receiving the user’s response containing his real
location rl, the process compares toll and commitCost with the real cost of rl and issues the rest of
tolls the user has to pay according to Alg. 2.

Authority(pkS , skA, pku1 , . . . , pkum , gmskA) ,

in(ch, ((hash1, toll1, gsig1), . . . , (hashm, tollm, gsigm), sigS ));

in(ch, ((cost1, sigCost1), . . . , (costm, sigCostm)));

let S = ((hash1, toll1, gsig1), . . . , (hashm, tollm, gsigm)) in

if checksign(pkS , S, sigS) = true &&

checkGSign(gsig1, gpk(gmskA), hash1) = true &&

. . . && checkGSign(gsigm, gpk(gmskA), hashm) = true &&

checksign(pku1 , cost1, sigCost1) = true && . . . && checksign(pkum , costm, sigCostm) = true then

insert commitCosts(pku1 , cost1);

. . .

insert commitCosts(pkum , costm);

let (pk1, . . . , pkm) = (open(gsig1, gmskA, hash1), . . . , open(gsigm, gmskA, hashm) in

get commitCosts(= pk1, commitCost1) in

. . .

get commitCosts(= pkm, commitCostm) in

commUA(pku1 , commitCost1, hash1, gsig1, toll1, skA) |
. . .

| commUA(pkum , commitCostm, hashm, gsigm, tollm, skA).

Figure 4: The authority process.

5 Analysis

In this section, we give the analysis of GroupETP in terms of the security properties – correctness,
accountability and unlinkability using the analysis tool ProVerif.
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commUA(pku ,commitCost , hash, gsig, toll , skA) ,

if commitCost<> toll then

out(pchu(pku), (hash, toll , gsig));

in(pchu(pku),msgU );

let (= pku, rl) = msgU in

if h(rl) = hash then

if toll = f(rl) then

let res = (pku, diff(toll , cost)) in out(ch, (res, sign(skA, res)))

else if diff(toll , cost)<>diff(toll , f(rl) then

let res = (pku, diff(diff(toll , cost), diff(toll , f(rl)))) in

out(ch, (res, sign(skA, res))).

Figure 5: The commUA process.

5.1 ProVerif

ProVerif is a tool for automatic analysis of security protocols. It takes a protocol modelled in the applied
pi calculus as input and then outputs whether this protocol satisfies a property which is described as a
query. The output is sound but not complete. It is sound because if ProVerif claims that a property holds
then the protocol does enforce the property. It is incomplete because it may neither be able to prove nor
disprove a property for some protocols.

There are three types of queries supported by ProVerif which we will use to describe the secu-
rity properties of GroupETP. Reachability is modelled as query F where F is either attacker(M)
or event(e(M1, . . . ,Mk)). The former means whether the adversary can construct M after the pro-
tocol is executed while the latter indicates that an event can happen. Correspondence, modelled as
query e⇒ e′, means “if an event e has been executed, then the event e′ has been previously executed”.

ProVerif uses a constructor choice[x, y] to define two processes P1 and P2 where x is evaluated in
P1 and y is evaluated in P2. When choice is used, ProVerif will automatically verify the observational
equivalence between the two processes without explicit property queries.

ProVerif has been used to verify a number of security protocols. With regard to location privacy,
Dahl et al. manage to use ProVerif to analyse vehicular mix-zones [12] and another ETP system –
VPriv [13]. ProVerif has also been applied on protocols in other application domains, such as certified
email protocols [28], electronic cash protocols [29], online auction [30], electronic healthcare [31] and
electronic voting [27, 32].

5.2 Correctness

Correctness means that the server can collect the right amount of tolls and all users exactly pay their
tolls. Recall that there are two underlying assumptions according to practical toll pricing scenarios. One
is that a user has no intention to pay more than his actual tolls while the other is that the server wants
no loss of users’ tolls. In GroupETP, this means that the server never throws away location records or
decreases fees of any location records, and users never commit larger payments.

To prove the satisfaction of correctness, it is sufficient to prove that no users can pay less tolls.
We can make use of a reachability assertion to verify whether the attacker can reach such an event
after the protocol is finished. In the user process, the event happens after he receives res signed
by the authority and when add(costU(l), res) 6= f(l) while function add models the addition opera-
tion on positive numbers. We use event incorrect(costU(l), res) to denote this event. By inquiring
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event incorrect(costU(l), res), we can check the property of correctness. To implement this, we in-
troduce a judge process (see Fig. 6 and add an extra operation before the payment process pay in the
process disputRes . The user sends the resolution result res and his location l to the judge through a
private channel pch , i.e., out(pch, (l, res, cost)). ProVerif gives a negative result, which means that the
adversary cannot reach the incorrect event and GroupETP thus satisfies correctness.

judge(rl, res, cost) ,in(pch, (rl, res);

if add(res, cost)<> f(l) then

event incorrect(cost , res).

Figure 6: The judge process.

5.3 Accountability
Accountability means that upon detection of a malicious behaviour, GroupETP can identify the originator
of the behaviour. In GroupETP, the set of possible misbehaviours contains:

• e1: users send smaller toll payment to the server;
• e2: the server attaches wrong fees to location tuples;
• e3: the server sends false location tuples to the authority;
• e4: the server sends less toll payments to the authority.

Once any of the misbehaviours happens, the authority is always able to provide sufficient evidence to
prove its identification of the originator.

Accountability is similar to the non-repudiation property which has been analysed in the litera-
ture [28] before. We can divide it into two sub-properties: (1) if a misbehaviour has been detected and
a user has been found as the originator, then the user must have originated the malicious behaviour; (2)
once a user has originated a misbehaviour, the system must be able to detect it and identify the user.

We use event begin(e, pk(sku)) to denote that user u has generated a misbehaviour e and
event end(e, pk(sku)) to represent that the user u has been detected as the generator of the misbe-
haviour e. It has been addressed in [28] that the satisfaction of accountability also requires reliable
channels between principles in the system. This means that a message sent on a channel should even-
tually reach its destination. To conclude, accountability is satisfied once the following two conditions
hold for each misbehaviour e:

1. if end(e, pk(sku)) has been executed then begin(e, pk(sku)) has been previously executed;

2. if begin(e, pk(sku)) has been executed, then end(e, pk(sku)) will be executed in the future with
reliable channels.

The first condition can be reduced to the correspondence assertion, end(e, pk(sku))⇒ begin(e, pk(sku))
and we can have an automatic analysis of it using ProVerif. However, as ProVerif does not take reliable
channels into account, we cannot verify the second condition by ProVerif. Hence, we do a manual proof
for the second condition. Since the proof just follows the execution steps of the protocol, it is much
simpler than the analysis of the first one, which should be go backwards through all execution histories
leading to end(e, pk(sku)).

In GroupETP, misbehaviour may come from either users or the server. For the misbehaviour origi-
nated from the server, the first condition is trivial to verify. The behaviour of the server is unpredictable
as it is part of the adversary. However, we can add the event begin(e′, pk(skS)) after the authority re-
ceives the first two messages. This is because sending the two messages are the first possible behavior
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once the server has misbehaved. In addition, the corresponding event end(e′, pk(skS)) occurs at the
later steps as the authority is responsible to catch the server’s misbehaviour in GroupETP. Thus, the
correspondence assertion end(e′, pk(skS)) ⇒ begin(e′, pk(skS)) is always true as they are executed
sequentially in the same process.

In the following discussion, we take the most typical misbehaviour that a user cheats on his tolls as
an example to show how an analysis for accountability looks like.

Automatic part of the proof. We first slightly modify the model of the user process by adding the
event begin(e, pk(sku)). Recall that the value of cheat is passed as parameters in the main process and if
it is set to true then the user commits a smaller number of tolls. Hence, we add event begin(e, pk(sku))
after out(ch, (pk(sku), costU(l), sigu)) in the user process.

In GroupETP, any misbehaviour is detected by the authority. If a user committed fewer tolls, the au-
thority will determine the number of rest tolls in the sub-process communicating with the user commUA
by publishing the signed res on the public channel. Therefore, we add event end(e, pku) after each of
the two occurrences of out(ch, (res, sign(skA, res))) in the process of commUA.

After giving the new model to ProVerif, we obtain that end(e, pk(sku)) ⇒ begin(e, pk(sku)) is
true, which means that the correspondence assertion is satisfied.

Manual part of the proof. After the user u sends fewer tolls costU(l) to the server, the server will
eventually receive the message (pk(sku), costU(l), sign(sku, costU(l))) and initiates the dispute res-
olution protocol with the authority because it would lose money otherwise. Due to the same reason,
the information including h(l), gsign(sku, h(l)) and sign(sku, costU(l)) will be included in the mes-
sages sent to the authority from the server. For the user, the amount of tolls the server asked for
(i.e., toll ) is also attached. The authority will receive this message and find the inequality between
toll and costU(l). In the sub-process commUA with u, the authority will send the challenge message
(h(l), toll , gsign(sku, h(l))) on the private channel which only u and the authority have access to. Then
the user sends the real location l to the authority on the same channel, which will reach the authority.
If the user does not send l, he will be considered having misbehaved and thus punished based on the
punishment policy of the GroupETP system. The sub-process commUA will eventually reach the event
end(e, pku) as both of the conditions toll = f(rl) and diff(toll , cost)<> diff(toll , f(rl)) are activated
when cost<> f(rl), and at the moment cost is costU(rl) which is obviously not equal to f(l).

5.4 Unlinkability
Unlinkability holds when, from the information learned from the execution of GroupETP, the attacker
cannot decide whether a user has travelled on any location. In other words, the link between a user and
his location records should be hidden from the adversary.

In GroupETP, the authority is assumed honest but curious, which means that the authority follows
the protocols and does not collude with the adversary. Conditional unlinkability is satisfied with regards
to the authority. If the server does not manipulate the fees in S, the authority will learn nothing about
the owner of any location but the number of each user’s location tuples. This is due to the properties
of the hash function and the randomness of location tuples (random numbers added). Whereas, if the
server cheats on the fees of some tuples, then the affected users have to reveal those location tuples.
This allows the authority to learn their owners as a result. As the choice of the revealed locations cannot
be controlled by the authority, our system enforces conditional unlinkability.

Considering that the server is part of the adversary, we can make use of observational equivalence
to define unlinkability. First we have to suppose there are at least two users. Otherwise, there is no
privacy at all. Furthermore, these two users have to be honest, meaning that they always commit their
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right amount of tolls. This is because GroupETP only protects honest users’ privacy. Similar to [13], we
suppose the locations of these two users have the same fees according to the charging policy. This is
because the user process models a user with only one location record and in practice, a user’s committed
payment does not leak any information about his locations. The intuition behind unlinkability is that if
any two users swap a pair of locations, the adversary cannot observe the difference. The main process P
can then be described by Fig. 7. Let loc1 and loc2 be two location records. Then we say that GroupETP
satisfies unlinkability if the following observational equivalence holds:

P [loc1/l1, loc2/l2] ≈ P [loc2/l1, loc1/l2].

Our model can be automatically verified by ProVerif and the result is positive, which means GroupETP
satisfies unlinkability.

P ,new skS ; new skA; new sku1 ; new sku2 ;

new l1; . . . ; new l2;

let pkA = pk(skA) in

let pku1 = pk(sku1 ) in

let pku2 = pk(sku2 ) in

out(ch, skS) | out(ch, pkA) | out(ch, pku1 ) | out(ch, pku2 ) |
let l1 = choice[loc1, loc2] in

let l2 = choice[loc2, loc1] in

User(sku1 , pkA, false, l1) | User(skum , pkA, false, l2) |!Authority(pkS , skA)

Figure 7: The main process for unlinkability.

We now give the main theorem addressing that our ETP system satisfies the defined properties.

Theorem 1. Our ETP system satisfies correctness, accountability and unlinkability.

5.5 Secrecy & authentication
The protocols of each phase have to satisfy some basic properties such as secrecy and authentication.
Such properties are required to be enforced under the assumption that all participants of the protocols
are honest. Thus, we model the protocols of each phase individually and check whether they are secure
in terms of secrecy and authentication. As the verification of authentication and secrecy is common in
formal analysis and supported well by ProVerif, we do not give the models of the protocols and refer
readers to [26] for the ProVerif codes. The results are given in Tab. 1.

Table 1: Verification of authentication and secrecy.

Protocols Authentication Secrecyinjective non-injective
setupUS – u & S pin
setupUA A u sn

Toll Calculation – u & S costu
Dispute resolving S & A – Su,R′u, ru

We use setupUS to denote the protocol between the server (S) and a user (u) in the setup phase and
setupUA is between a user and the authority (A). We say a term is secret if the attacker cannot get
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it by eavesdropping and sending messages, and performing computations [14]. For authentication,
we consider two notions, namely, agreement and the slightly stronger notion injective agreement [33].
Agreement roughly guarantees to an agent A that his communication partner B has run the protocol as
expected and that A and B agreed on all exchanged data values. Injective agreement further requires
that each run of A corresponds to a unique run of B.

6 Conclusion

In this paper, we proposed a simple design of the GroupETP system, which preserves users’ anonymity
within groups [1]. Moreover, we resorted to formal methods to prove its security in terms of correctness,
accountability and unlinkability. We modelled GroupETP using the applied pi calculus and, with the
help of ProVerif, we successfully verified the system. From the analysis results, we confirmed that in
addition to a balance between users’ privacy and communication and computation overhead, the system
also enforces the claimed security properties.

In future, we plan to develop a prototype of our system and conduct experiments to evaluate different
group management policies. There are other ETP systems proposed recently which have some good
properties. For instance, the ETP system Milo [11] provides techniques based on blind identity based
encryption to strengthen spot checks in PrETP [9] in order to protect against large-scale driver collusion.
It is interesting to see how to adopt these techniques into our system.
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