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ABSTRACT
With the increasing availability of location-acquisition technolo-
gies, we have better access to collections of large spatio-temporal
datasets. This brings new opportunities to location-based services
(LBS), especially when knowledge of users’ movement behaviour
(i.e., mobility profiles) can be extracted from such datasets. For in-
stance, in social networks, friends can be recommended according
to similarity scores between user mobility profiles.

In this paper, we propose a new approach to construct users’ mo-
bility profiles and calculate the mobility similarities between users.
We model mobility profiles as traces of places that users frequently
visit and use frequent sequential pattern mining technologies to ex-
tract them. To compare users’ mobility profiles, we first discuss the
weakness of a similarity measurement in the literature and then pro-
pose our new measurement. We evaluate our work using a real-life
dataset published by Microsoft Research Asia and the experimental
results show that our approach outperforms the existing works on
different aspects.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: General—User profiles and alert
services protection; H.2.8 [Database Management]: Data Appli-
cations—Data mining, Spatial databases and GIS

General Terms
Algorithms, measurement

Keywords
Mobility profiles, pattern mining, similarity

1. INTRODUCTION
In the past decades, there has been a large increase on the popu-

larity and diversity of devices capable of location-acquisition. With
this increase, a new type of virtual communities – location-based
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social networks (LBSN) have emerged, e.g., Foursquare and Bikely.
In LBSNs people can share their outdoor activities with friends,
monitor travel distance and duration, or even upload photos tagging
a route. By leveraging user similarity in terms of interest revealed
by their whereabouts, LBSNs can provide better services. For in-
stance, the most basic service friend recommendation can be easily
enhanced or improved by ranking users according to such similari-
ties. Furthermore, once user mobility profiles are available, we can
recommend not only friends but also new places from the ones that
similar users are interested in.

Due to the popularity of recommendation services, mobility pro-
file construction and comparison have been attracting a lot of at-
tention in the literature. One common interpretation of mobility
profiles is users’ regular moving behaviour in terms of space and
time. More specifically, space refers to the places frequently visited
by users and time indicates the typical transition time between two
consecutive places. For example, a student in Luxembourg takes
10 minutes every day to transfer from the central train station to
Hamilius, the central bus stop from which he spends another 15
minutes to get to the campus Kirchberg. This daily routine can be
described as one of the student’s regular movements:

Central Train Station
10 min−−−−→ Hamilius

15 min−−−−→ Kirchberg .

This interpretation leads to many mobility profile construction meth-
ods and mobility similarity measurements.

Related work. We classify the related works in the literature into
two groups – one on mobility profile construction and the other on
user similarity computation for recommender systems.

Giannotti et al. [5] introduce the concept of trajectory patterns to
represent a set of users’ trajectories including the same sequence of
places referred to as regions of interest (RoI), with similar transition
time. They reduce the problem of trajectory pattern mining to the
typical frequent sequential pattern (FSP) problem [1]. Many algo-
rithms have been proposed for FSP among which PrefixSpan [8] is
one of the most efficient and widely used algorithms. Giannotti et
al. [4] extend PrefixSpan to mine sequences with typical temporal
annotations (TAS). Trajectory patterns are defined as an extension
of TASs in [5]. The elements in a pattern are no longer events but
RoIs that a user often visits. RoIs are detected by merging dense
spatial cells, which are contained by many trajectories. By trans-
forming GPS points into RoIs, trajectory pattern mining is reduced
to TAS mining. Through experiments, we find that the RoIs gener-
ated by this method [4] cannot be used as a precise representation
of users’ meaningful areas due to their large area.

Zheng et al. propose and implement a personalised friend and
location recommender system called GeoLife [14]. GPS points are
grouped into stay points which stand for the places where users
hang out and spend a certain amount of time. A density-based al-
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gorithm is then used to hierarchically cluster the stay points into
RoIs. Once all uses’ trajectories are transformed into sequences
of RoIs, the longest common subsequence (LCS) is extracted for
any pair of users and used to measure their similarities. Xiao et
al. [9] propose a similar approach but make use of the semantics of
places. They model a GPS trajectory with a sequence of semantic
locations, such as museums and restaurants. In this way, the se-
mantic meanings of RoIs are considered. However, both of the two
approaches [14, 9] work on trajectories, which may contain some
places rarely visited. These places will enlarge the area of ROIs
as outliers during the clustering process. Ying et al. also propose
an approach to recommend friends based on users’ semantic tra-
jectories but on the level of trajectory patterns [11]. They use Pre-
fixSpan to mine frequent semantic trajectory patterns and define a
measurement called maximal semantic trajectory pattern similarity
(MSTP-similarity) in order to compute the similarity between two
users. However, Ying et al. ignore transition time and their mea-
surement encounters a problem when comparing two identical uses
(see Sect. 4).

Our contributions. In this paper, we propose a new approach to
construct user mobility profiles and calculate the similarity scores
between users based on their mobility profiles. First, we improve
the mobility profile construction procedure by Giannotti et al. [5] to
find more precise meaningful places (RoIs) of users. The use of tra-
jectory patterns in our approach allows us to focus on users’ regular
movements. Second, we show that the user similarity measurement
proposed by Ying et al. [9] is incorrect and we define a new mea-
surement. Since we also consider transition time, our measurement
is more accurate to compute user similarities.

We make use of a real-life dataset published by Microsoft Re-
search Asia in our experiments. The results show that our profile
construction process outperforms the existing works in the litera-
ture and our new similarity measurement is quite effective.

2. PRELIMINARIES
We refer to a GPS point as a location on the earth and denote it

by (`at, `ng) indicating the latitude and longitude. A region repre-
sents an area and can be considered as a set of GPS points. We use
a region of interest (RoI) to denote a meaningful region for a user
where he has performed an activity. For the student in Luxembourg
in Sect. 1, the central train station and Hamilius are two RoIs. GPS
trajectories are paths that moving objects follow through space in
certain time periods. They record users’ outdoor movements by
logging time-stamped geographic points.

DEFINITION 1 (GPS TRAJECTORY). A GPS trajectory is a
sequence of chronologically ordered spatio-temporal points, i.e.,
(p0, . . . , pn) where pi = 〈`ati, `ngi, ti〉 (0≤ i≤ n) with ti as a
time point and (`ati, `ngi) as a GPS point.

A stay point stands for a geographic region, where a user stays
over a time threshold θt and within a distance threshold θd [7]. Let
dis(p, p′) be the Euclidean distance between two points p and p′.
The definition of stay points can be formulated as follows:

DEFINITION 2 (STAY POINT). A stay point s of a given tra-
jectory T = (p0, . . . , pn) corresponds to a subsequence T ′ of T .
If T ′ = (pj , . . . , pj+m) where ∀0 < x ≤ m, dis(pj , pj+x) ≤ θd,
dis(pj , pj+m+1) > θd and tj+m − tj ≥ θt, then we have s =

(`at, `ng, ta, te) where `at =
∑m

x=0 `atj+x

m+1
, `ng =

∑m
x=0 `ngj+x

m+1

stand for the average latitude and longitude of the points in T ′,
ta = tj is the arriving time at s and te = tj+m is the exiting time.

From the trajectory dataset published by Microsoft [15], we have
observed that a user tends to start and end a trajectory with one of
his meaningful places, e.g., home or offices. Therefore, besides the
stay points representing regions, we also consider the first and the
last point of a trajectory as stay points. However, if they are close
to other region representative stay points and the distance is smaller
than a threshold, i.e., θm, we merge them into one stay point, which
is the middle point of the line connecting them.

A trajectory pattern of a user represents one of the user’s regular
mobility trace. It is usually denoted as sequences of RoIs with
transition time annotated [5].

DEFINITION 3 (TRAJECTORY PATTERN). A trajectory pattern
(T-pattern for short) is a pair (S,A) where S = (R0, . . . , Rn)
(n ≥ 0) is a sequence of RoIs and A = (α1, . . . , αn) is the
temporal annotation of the sequence. It can be represented as
(S,A) = R0

α1−−→ . . .
αn−−→ Rn.

If a user sequentially travels all the RoIs of a T-pattern in a tra-
jectory and spends similar time to transfer between regions, then
we say this pattern is spatio-temporally contained in this trajectory.

DEFINITION 4 (SPATIO-TEMPORAL CONTAINMENT). Given
a trajectory T , time tolerance τ and a T-pattern (S,A) = R0

α1−−→
. . .

αn−−→ Rn, we say that (S,A) is spatio-temporally contained in
T (denoted by (S,A) �τ T ) if and only if there exists a subse-
quence of T , i.e., T ′ = (〈x′0, y′0, t′0〉, . . . , 〈x′n, y′n, t′n〉) such that:

∀0 ≤ i ≤ n, 〈x′i, y′i〉 ∈ Ri and |αi−α′i |≤ τ where α′i = t′i−t′i−1.

When T-pattern (S,A) is spatio-temporally contained in a trajec-
tory, we say that the T-pattern has an occurrence. A T-pattern usu-
ally has multiple occurrences in a spatio-temporal dataset. We use
support value (supportTτ (S,A)) to represent the percentage of the
trajectories containing (S,A) in dataset T when the time interval
tolerance is set to τ . If the support value of a T-pattern is larger
than a given minimum support, then we call the pattern a frequent
T-pattern.

The problem of trajectory pattern mining is how to find frequent
T-patterns in a given spatio-temporal dataset. The result is a set of
T-patterns, called frequent pattern set.

DEFINITION 5 (FREQUENT PATTERN SET). For a set of tra-
jectories T , time tolerance τ and a minimum support value σ, the
(τ, σ)-frequent pattern set of T is

PSTτ,σ = {(S,A) |supportTτ (S,A) ≥ σ}.
A mobility profile describes a user’s regular movement, i.e., the

traces of places that the user often visits. Such traces have a nat-
ural correspondence with frequent T-patterns when the places are
interpreted as RoIs. Moreover, as a user’s movement is represented
by a collection of trajectories, we can model his mobility profile by
the frequent pattern set of his trajectories and use trajectory pattern
mining techniques to construct it. Let Tu be the trajectories taken
by user u in a dataset T . We call PSTuτ,σ the mobility profile of
u. In the following discussion, we use PSu to denote u’s mobility
profile for short by assuming τ and σ have been defined and Tu
is clear from the context. With the same rule applied, the support
value supportTuτ (S,A) is denoted by supportu(S,A) instead.

3. CONSTRUCTING MOBILITY PROFILES
Given user u’s trajectories Tu, we construct his mobility profile

through the following four sequential steps:

1. Compute the stay points of each trajectory in Tu using stay
point detection & merging algorithm;



(a) Trajectories & stay points. (b) RoIs with outliers. (c) RoIs without outliers. (d) RoIs by the T-pattern miner.

Figure 1: An example of RoI construction.

2. Remove the noisy stay points and apply a hierarchical clus-
tering algorithm on remaining stay points to generate RoIs;

3. Transform the GPS trajectories in Tu into RoI trajectories
using the RoIs computed at step 2;

4. Use the trajectory pattern miner [5] to compute frequent tra-
jectory patterns from the RoI trajectories obtained at step 3.

The first two steps are about constructing RoIs. Fig. 1 shows an
example of the RoI construction for a user. We use the blue lines
to depict the user’s trajectories. The extraction of stay points elim-
inates the points collected during transition between places and en-
ables us to only focus on users’ meaningful places. Fig. 1a displays
the extracted stay points in yellow dots. Since GPS trajectories
can be different even if they are collected from an identical route,
the stay points vary from trajectory to trajectory. However, from
Fig. 1a, we can observe that the stay points in an RoI are usually
close to each other. Thus we can apply clustering algorithms to
automatically detect nearby stay points. In this paper, we use the
minimum rectangular area which covers a cluster of stay points to
represent an RoI. Another observation is that there exist outlying
stay points which users visit occasionally (see the points in red cir-
cles in Fig. 1a). Such points degrade the quality of generated RoIs,
e.g., enlarging area or computing infrequent places [6]. We intro-
duce LOF (Local Outlier Factor) [3] to measure the extent of each
stay point to which it is isolated from others. Based on the results,
we discard a certain percentage (called deletion percentage) of the
points with the largest LOF values. Fig. 1b and 1c show the RoIs
generated by the hierarchical clustering algorithm with and without
outlying points, respectively. It is clear that if the outliers are not
removed, a number of small regions are computed and they only
have a few points inside. Such regions should not be considered as
RoIs where users usually visit. After removing the outliers, we can
see that the RoIs have a relative large number of stay points inside
and have smaller area compared to the ones in Fig. 1b.

The last two steps focus on mining the frequent pattern set. With
the stay points computed in the step 1, we first transform each tra-
jectory into a sequence of stay points. Subsequently we transform
this stay point trajectory into an RoI trajectory by replacing any
stay point with the RoI where it lies in. In the end, we give the
RoI trajectories to the trajectory mining tool [4] and compute the
T-patterns that satisfy given minimum support and time tolerance.

With regards to the RoI construction, there exist other methods
in the literature. Zheng et al. [14] use a density-based clustering
algorithm OPTICS [2] to compute RoIs from stay points but with-
out removing outliers. We have illustrated the shortcoming of this
method by Fig. 1b and 1c. In the trajectory pattern miner, Giannotti
et al. [5] also implement an RoI construction algorithm. Space is
divided into a grid, each cell of which is assigned a density value
according to the number of GPS trajectories passing through. Af-

terwards, a region growing procedure starts from dense cells by
merging nearby dense cells. The procedure continues until the av-
erage density of the region is below a threshold. We do not use this
method because: (1) the density measures the frequency of a user
passing by a cell but not staying in the cell; (2) the popularity of an
RoI is determined only by density and stay time is ignored. There-
fore, the generated RoIs tend to have large areas, particularly when
users own large numbers of fine-grained trajectories. Fig. 1d shows
the RoIs computed by the tool, which covers almost the whole area.
In the following we present an example of mobility profiles.

EXAMPLE 1. Suppose after trajectory transformation (i.e., step
3), user u has three RoI trajectories:

T1 : A
1−→ B

4−→ D
2−→ C T2 : A

2−→ B
5−→ E

1−→ C

T3 : A
3−→ B

7−→ F
1−→ C.

For the sake of being concise, we label the transition time between
RoIs explicitly. Assume the minimum support σ = 0.5 and time
tolerance τ = 2.

We find that a sequence of RoIs may correspond to infinitely many
T-patterns. For instance, when 0 ≤ α ≤ 4, A α−→ B always has
two occurrences and supportu(A

α−→ B) = 2
3
> 0.5. For these

T-patterns, we can use the interval [0, 4] to represent the transi-

tion time between A and B, and thus A
[0,4]−−−→ B is the set of all

T-patterns with the sequence of RoIs (A,B) and transition time be-
tween 0 and 4. Thus, in Exa. 1 the user u’s mobility profile can be
represented as follows:

PSu ={A,B,C,A [0,4]−−−→ B,A
[6,12]−−−→ C,B

[6,8]−−−→ C,

A
[0,4]−−−→ B

[6,8]−−−→ C}.

4. COMPARING MOBILITY PROFILES
In this section, we first focus on comparing mobility profiles

without considering transition time and then give our method to
take transition time into account.

When transition time is ignored, given a user u’s mobility pro-
file PSu we get a simpler mobility profile (called sequence pattern
set) PS

u
= {S | ∃(S,A) ∈ PSu}. The support value of a se-

quence pattern S (supportu(S)) equals to the support value of any
(S,A) ∈ PSu when τ is set to +∞, i.e., supportTu+∞(S,A). In the
sequence pattern set, we have all the frequent sequences of RoIs.
In Exa. 1, PS

u
= {A,B,C,A → B,A → C,B → C,A →

B → C}. We notice that some of these sequence patterns have du-
plicated information. For instance, in Exa. 1, if we know A → B
is a sequence pattern, then A and B are also his sequence patterns.



If we compare two users’ mobility profiles using the whole se-
quence pattern set, some behaviour will be considered more than
once. Therefore, we use the maximal pattern set to compare users’
mobility profiles which consist of only the patterns that are not con-
tained in other patterns.

Given P = (R0, . . . , Rn) and Q = (R′0, . . . , R
′
m), we call Q a

subsequence of P (denoted byQ v P ) if there exists j1<. . .<jm
such thatR′i = Rji (0 ≤ i ≤ m). We define the maximal sequence
pattern set as follows:

DEFINITION 6 (MAXIMAL SEQUENCE PATTERN SET). Given
user u’s sequence pattern set PS

u
, the maximal sequence pattern

set of u is

M(PS
u
) = {P ∈ PS

u |6 ∃P ′ ∈ PS
u
(P v P ′)}.

In the following discussion, we first give a brief introduction to
a similarity measurement [11] in the literature and show that it is
incorrect through examples. Afterwards, we define our own mea-
surement and extend it to take transition time into account.

4.1 A similarity measurement by Ying et al.
Ying et al. define a user similarity measurement [11] according

to semantic trajectory patterns. By ‘semantics’ they mean the func-
tion of the places, such as parks, schools or hospitals. For instance,
the trajectory pattern of the student in Luxembourg in Sect. 1 corre-
sponds to semantic pattern train station → bus stop → school .
To compute two users’ similarity, they first propose a similarity
measurement between maximal semantic pattens (MSTP-similarity).
Then based on pattern similarity, users’ profiles which consist of all
maximal semantic patterns are compared.

Although maximal semantic patterns are defined on the level of
location semantics, they have the same form as sequence patterns
syntactically. So we can apply it on maximal sequence patterns
as well. Given two maximal sequence patterns, the argument is
that the more similar they are, the longer common part they share.
We use longest common sequences (LCS) to represent the longest
common part. For example, sequence patterns P = A → E →
B → H → D and Q = E → A → B → D have two longest
common sequences E → B → D and A → B → D. They form
the set of the longest common sequences of P and Q, denoted by
lcs(P,Q). Let lenLCS(P,Q) be the length of the longest common
sequences in lcs(P,Q) and len(P ) be the length of P . According
to the weighted average trajectory pattern similarity in [11], the
similarity between P and Q is calculated as follows:

sim(P,Q) =
2 · lenLCS(P,Q)

len(P ) + len(Q)
.

In the previous example, with lenLCS(P,Q) = 3 and len(P ) =
len(Q) = 4, sim(P,Q) = 2·3

4+4
= 0.75.

The similarity between users is computed based on MSTP-similarity.
The idea is to compute the weighted average of all possible simi-
larities between maximal patterns. In this paper, we use support
values of patterns to construct the weighting function. Given two
users u and u′, the similarity between them is calculated as follows:

sim(u, u′) =

∑
Pi∈M(PS

u
)

∑
Qj∈M(PS

u′
)

w(Pi, Qj) · sim(Pi, Qj)

∑
Pi∈M(PS

u
)

∑
Qj∈M(PS

u′
)

w(Pi, Qj)

where w(Pi, Qj) =
supportu(Pi)+supportu

′
(Qj)

2
.

We find that the similarity between users calculated by this mea-
surement is counter-intuitive and inconsistent with common sense

in certain cases. We illustrate the inconsistency through the follow-
ing example.

EXAMPLE 2. Given three sequence patterns P1 = A → B,
P2 = C → D and P3 = E → F and four users u, u1, u2 and u3,
we want to calculate the similarity of u to other three users. The
user u has the same maximal sequence pattern set as u3, which is
{P1, P2, P3} while the maximal sequence pattern sets of u1 and
u2 are {P1} and {P1, P2}, respectively. The pattern similarity
between any two patterns is shown in Tab. 1. For the sake of sim-
plicity, we assume patterns have the same support value 0.2.

Table 1: Example of similarity computation with Ying et al.’s
method.

M(PS
u1) M(PS

u2) M(PS
u3)

P1 P1 P2 P1 P2 P3

M(PS
u
)

P1 1 1 0 1 0 0

P2 0 0 1 0 1 0

P3 0 0 0 0 0 1

We see that u shares one common pattern with u1, two with u2

and three with u3. So intuitively, the similarity of u to u1 should
be the smallest and the similarity between u and u3 should be 1 as
they are identical. However, with the measurement, we get

sim(u, u1) =
0.2

0.2× 3
= 0.33; sim(u, u2) =

0.2× 2

0.2× 6
= 0.33;

sim(u, u3) =
0.2× 3

0.2× 9
= 0.33.

The results say that u is the same similar to the three users, which
is clearly not what we expect.

4.2 Our method
From Exa. 2, we learn that the weighted average of pattern simi-

larities is not the proper measurement for user similarity. Our idea
is to only consider the most similar pattern of each maximal se-
quence pattern instead of all the maximal patterns of another user.

Given two users u and u′, we use function ψu,u′ : M(PS
u
) →

M(PS
u′
) to map a maximal pattern of u to the most similar max-

imal pattern in M(PS
u′
). Specifically, for each Pi ∈M(PS

u
),

ψu,u′(Pi) = argmax
Qj∈M(PS

u′
)

sim(Pi, Qj) · w(Pi, Qj).

Then for each user, we compute his relative similarity to the other
one. The relative similarity of u to u′ is

sim(u |u′) =
∑
Pi∈M(PS

u
) sim(Pi, ψu,u′(Pi)) · w(Pi, ψu,u′(Pi))∑
Pi∈M(PS

u
) w(Pi, ψu,u′(Pi))

.

Similarly, we can also compute the relative similarity of u′ to u,
i.e., sim(u′ | u). As the relation of similarity is symmetric, we
take the average of the two relative similarity as the similarity score
between u and u′:

sim(u, u′) =
sim(u |u′) + sim(u′ |u)

2
.

EXAMPLE 3. Suppose we have the same users as in Exa. 2. We
take u2 as an example to show the calculation process. First, for
each pattern of u, we find the corresponding pattern of u2 with
the maximal similarity score, i.e., ψu,u2(P1) = P1, ψu,u2(P2) =
P2 ψu,u2(P3) = P1/P2. So sim(u | u2) = 0.2+0.2+0

3×0.2
= 0.67.



With the same process, we obtain sim(u2 | u) = 0.2+0.2
0.2+0.2

= 1.
So sim(u, u2) = 0.83. Tab. 2 lists calculated similarities. The
similarity of u with u1 is 0.67 which is the smallest and u has the
largest similarity to u3. The results are consistent with what we
would expect.

Table 2: Example of similarity computation with our method.
HHH

HH

ui u1 u2 u3

sim(u |ui) 0.33 0.67 1
sim(ui |u) 1 1 1
sim(u, ui) 0.67 0.83 1

We can see that our method can clearly distinguish the similarity
degrees of u to the three users. More importantly, for identical
users, our method always gives a degree of 1.

4.3 Adding transition time
In this section, we take transition time into account in user simi-

larity measurement. The argument is that if two users are similar, in
addition to longer common sequences of RoIs, transition time be-
tween consecutive RoIs should also be close. Our idea is to update
the similarity measurement between maximal patterns by taking
comparison of transition time into account. The more similar the
given users are, the longer common sequences they share and the
closer the transition times on common sequences are.

Suppose that we have two maximal patterns P ∈ M(PS
u
)

and Q ∈ M(PS
u′
), and one of their longest common sequence

S = (R0, . . . , Rn) (S ∈ lcs(P,Q)). For any two consecutive
RoIs Ri−1 and Ri (0 < i ≤ n), the typical transition time of
user u between them is the union of all transition time appearing
in a T-pattern with S in the user’s profile. Let tranTu

S(i) be the
union, then we have tranTu

S(i) = {αi | ∃(S,A) ∈ PSu s.t. A =
(α1, . . . , αn)}. In the same way, we can obtain the corresponding
set of transition time of user u′, i.e., tranTu′

S (i).
Recall that we can use intervals to represent transition time in

Exa. 1. Thus tranTu
S(i) can be represented as the union of inter-

vals, e.g., [x1, y1]∪ . . .∪ [xk, yk]. Then we can compute the over-
lapping transition time of the users and all the occurring transition
time by calculating the intersection and union of tranTu

S(i) and
tranTu′

S (i). Suppose tranTu′
S (i)∪ tranTu

S(i) = [x1, y1]∪ . . .∪
[xk, yk] and tranTu′

S (i)∩ tranTu
S(i) = [x′1, y

′
1]∪ . . .∪ [x′m, y′m].

Then we can calculate otu,u
′

S (i), the ratio of overlapping time from

Ri−1 to Ri between u and u′, by
∑

1≤i≤m y′i−x
′
i∑

1≤i≤k yi−xi
.

We use the average of all transition time similarities in all longest
common sequences to measure the transition time similarity be-
tween two maximal patterns, called time-overlap-fraction.

DEFINITION 7 (TIME-OVERLAP-FRACTION). Let P and Q
be two maximal sequence patterns of u and u′, respectively. Then
the time-overlap-fraction of P and Q, denoted by tof (P,Q) can
be calculated as:

tof (P,Q) =

∑
S∈lcs(P,Q)

∑len(S)−1
i=1 otu,u

′

S (i)

| lcs(P,Q) | ·(lenLCS(P,Q)− 1)
.

The similarity of P and Q can thus be calculated as follows:

sim(P,Q) =
2 · lenLCS(P,Q)

len(P ) + len(Q)
· tof (P,Q).

5. EXPERIMENTS
We use the GPS trajectory dataset collected in Geolife project of

Microsoft Research Aisa [13] to evaluate our work.

5.1 Setting
The dataset. The Geolife dataset consists of 17,621 trajectories
from 178 users in a period of over four years (from April 2007 to
October 2011). The trajectories cover a total length of 1,251,654
km and a total duration of 48,203 hours. Moreover, the GPS posi-
tions are collected with a high frequency. Over 90% of the positions
are recorded less than every 5 seconds with a distance less than 10
meters from their previous positions. The trajectories also reflect
a diverse collection of users’ outdoor movements, not restricted to
only daily activities. Almost all trajectories are located in Beijing
(China) although the GPS positions are distributed in over 30 cities.

The trajectory dataset does not provide users’ personal informa-
tion such as gender or affiliation due to privacy protection. So we
have no access to the ground truth about the similarity between
users. Although Zheng et al. construct the volunteers’ similarity
which works as the ground truth in [7], we cannot obtain and use it
because of the legal rules about publishing data in Microsoft [12].
In order to validate our similarity measurement, we choose two
users who have a large number of trajectories and divide them into
new users. One is user 126, who is divided into two users (i.e.,
126, 126∗) while the other one is user 151, divided into three users
(i.e., 151 ,151∗,151#). Intuitively, the new users should preserve
the original users’ behaviour and thus have a higher degree of sim-
ilarity. In addition, we choose another five users from the rest of
volunteers. In this way, we have a testing dataset with 10 users and
55 different pair of users for similarity computation. In our exper-
iments, a user’s movement in a day forms a trajectory. For the ten
chosen users, each has about 300 trajectories on average containing
over 1,250 stay points.

Implementation. We use the bottom-up (also called agglomera-
tive) hierarchical clustering algorithm to cluster stay points. Com-
pared to other clustering algorithms, it allows us to customise the
termination condition using the shortest distance between clusters
and does not need to fix the number of clusters beforehand like
k-means. The clustering process stops once the shortest distance
between any two clusters is larger than a threshold, i.e., δ. This
parameter also determines the longest diagonal of generated RoIs.

To compare two users, we first merge their trajectories and con-
struct their common RoIs. Then we transform each user’s trajecto-
ries using these RoIs and generate his mobility profile.

All related parameters need to be fixed before performing our
evaluation. The principle of setting their values is to enforce a good
quality of T-patterns. Due to the page limit, we refer readers to [10]
for the parameter settings.

5.2 Experimental results
In Fig. 2 we show the similarity between any pair of the 10 users

calculated by three similarity measurements. We use different grey
levels to distinguish the similarity scores between two users. The
darker the cell is, the more similar the corresponding two users are.
Fig. 2a and 2b show the user similarities computed by the mea-
surement of Ying et al. [11] (MSTP) and our measurement without
transition time (MTP), respectively. The diagonal cells correspond
to the similarity of a user to himself which is expected to be one.
However, from Fig. 2a it is clear that MSTP fails to capture this
except for the users who have only one maximal sequence patterns,
i.e., user 126 and 126∗. (These two users originate from one vol-
unteer, their maximal sequence patterns are the same. This leads to
a similarity score of 1.00 between them.)
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(a) User similarities computed by MSTP.
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(b) User similarities computed by MTP.
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(c) User similarities computed by MTP+TOF.

Figure 2: User similarities by three methods.

Recall that user 151, 151∗ and 151# are derived from the same
volunteer. They should have large common mobility patterns in
their mobility profiles and thus have high similarity scores. How-
ever, measured by MSTP, the similarity scores are only about 0.20.
On the contrary, our method MTP successfully finds the similarity
of these three users. The average similarity score is over 0.65.

For the users who do not share any common sequences, both of
the two measurements give zero indicating their dissimilarity. From
the above analysis, we can conclude that our measurement can give
a better similarity comparison between users’ mobility profiles, es-
pecially when they have multiple maximal sequence patterns.

Fig. 2c shows the similarity between users when we add time
overlapping fraction into our measurements (MTP+TOF). Com-
pared to the values in Fig. 2b, we find that the similarity values
between users in general become smaller. That is because the dif-
ference between transition time discounts the similarities. Even
for users 126 and 126∗ who have the same maximal sequence pat-
tern, their similarity decreases from 1.0 to 0.97. We can also see
that transition time does help identify similar users. For example,
by MTP, the similarity between users 003 and 004 is 0.77 which is
larger than the similarity between users 151∗ and 151# (0.72) even
they are derived from the same volunteer. With transition time con-
sidered, the former similarity decreases to 0.44 while the later still
remains over 0.60, mainly because users 003 and 004 do not have
similar transition time. Therefore, considering transition time leads
us to a more accurate evaluation of user similarity.

6. CONCLUSION
In this paper, we have accomplished two tasks. First, we propose

a new method to construct users’ mobility patterns. Compared to
the existing methods in the literature, our method can detect more
accurate RoIs for users. This also ensures the precision of the sub-
sequent user similarity computation. Second, we showed that the
user similarity measurement proposed by Ying et al. is incorrect in
some cases and we defined a new measurement to fix the problem.
As transition time between RoIs are also part of users’ mobility
patterns, we further took them into account in our user similarity
measurement. We validated our work by experiments on a dataset
of real-life trajectories. The results show that our measurement and
user profile construction are effective.

For future work, we will apply our similarity measurement to
location privacy analysis. A high similarity between a given set
of anonymised trajectories and a user’s mobility profile indicates
a high probability for the user to be the owner of the trajectories.
It is also interesting to analyse users’ similarity according to their
trajectory logs posted on social networks.
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