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Faculté des Sciences, de la Technologie et de la
Communication
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Abstract. We show that timed branching bisimilarity as defined by Van der Zwaag [17] and Baeten
and Middelburg [2] is not an equivalence relation, in case of a dense time domain. We propose an
adaptation based on Van der Zwaag’s definition, and prove that the resulting timed branching bisim-
ilarity is an equivalence indeed. Furthermore, we prove that in case of a discrete time domain, Van
der Zwaag’s definition and our adaptation coincide. Finally, we prove that a rooted version of timed
branching bisimilarity is a congruence over a basic timed process algebra containing parallelism,
successful termination and deadlock.

1. Introduction

Branching bisimilarity [8, 9] is a widely used concurrency semantics for process algebras that include the
silent step τ . Two processes are branching bisimilar if they can be related by some branching bisimulation
relation. See the work of [7] for a clear account on the strong points of branching bisimilarity.

Over the years, process algebras such as CCS, CSP and ACP have been extended with a notion of
time. As a result, the concurrency semantics underlying these process algebras have been adapted to
cope with the presence of time. Klusener [11, 12, 13] was the first to extend the notion of a branching

Address for correspondence: Wan Fokkink, Vrije Universiteit Amsterdam, Department of Computer Science, De Boelelaan
1081a, 1081 HV Amsterdam, The Netherlands, wanf@cs.vu.nl

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/11858856?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Wan Fokkink et al. / Is Timed Branching Bisimilarity a Congruence Indeed?

bisimulation relation to a setting with time. The main complication is that while a process can let time
pass without performing an action, such idling may mean that certain behavioural options in the future
are being discarded. Klusener pioneered how this aspect of timed processes can be taken into account in
a branching bisimulation context. Based on his work, Van der Zwaag [17, 18] and Baeten and Middel-
burg [2] proposed new notions of a timed branching bisimulation relation. A main distinction between
Klusener’s notion and the latter ones is that he does not allow consecutive actions to happen at the same
moment in time.

A key property for a semantics is that it is an equivalence. In general, for concurrency semantics in
the presence of τ , reflexivity and symmetry are easy to see, but transitivity is much more difficult. In
particular, the transitivity proof for branching bisimilarity in [8] turned out to be flawed, because the rela-
tion composition of two branching bisimulation relations need not be a branching bisimulation relation.
Basten [3] pointed out this flaw, and proposed a new transitivity proof for branching bisimilarity, based
on the notion of a semi-branching bisimulation relation. Such relations are preserved under transitive
closure, and the notions of branching bisimilarity and semi-branching bisimilarity coincide.

In a setting with time, proving equivalence of a concurrency semantics becomes even more compli-
cated, compared to the untimed case. Still, equivalence properties for timed semantics are often claimed,
but hardly ever proved. In [13, 17, 18, 2], equivalence properties are claimed without an explicit proof,
although in all cases it is stated that such proofs do exist.

Related to this, it is an interesting question whether a rooted version of timed branching bisimilarity
is a congruence over a basic timed process algebra containing parallelism, successful termination and
deadlock (such as Baeten and Bergstra’s BPAur

ρδ [1], which is a basic real time process algebra with time
stamped urgent actions). Similar to equivalence, congruence properties for timed branching bisimilarity
are often claimed, but hardly ever proved. One such congruence proof is provided by Klusener [13].
Considering other timed settings, Reniers and Van Weerdenburg [15] provide a congruence proof for a
setting with an untimed τ -step, which makes it possible for them, unlike for us, to follow the format
of the usual congruence proof for untimed branching bisimilarity. Trčka [16] proved timed branching
bisimilarity to be a congruence over a timed process algebra in a setting with discrete, relative time.

In the current paper, first of all, we study in how far the notion of timed branching bisimilarity of Van
der Zwaag constitutes an equivalence relation. This part was reported earlier in [6]. We give a counter-
example to show that in case of a dense time domain, his notion is not transitive. We proceed to present
a stronger version of Van der Zwaag’s definition (stronger in the sense that it relates fewer processes),
and prove that this adapted notion does constitute an equivalence relation, even when the time domain is
dense. Our proof follows the approach of Basten. Next, we show that in case of a discrete time domain,
Van der Zwaag’s notion of timed branching bisimilarity and our new notion coincide. So in particular, in
case of a discrete time domain, Van der Zwaag’s notion does constitute an equivalence relation.

In Appendix B, we show that our counter-example for transitivity also applies to a notion of timed
branching bisimilarity by Baeten and Middelburg in case of a dense time domain (see [2, Section 6.4.1]).
So that notion does not constitute an equivalence relation either. We note that our counter-example does
not apply to Klusener’s version of timed branching bisimilarity, because the example uses in an essential
way that consecutive actions can happen at the same moment in time.

Following the equivalence proof, we prove that a rooted version of the stronger version of timed
branching bisimilarity is a congruence over a basic timed process algebra containing parallelism, suc-
cessful termination and deadlock. In a number of ways, our proof differs from the usual congruence
proof for untimed branching bisimilarity. Example 6.1 (τ(0)·b(1) and b(1) are timed branching bisimilar
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at time 0, but a(1)·τ(0)·b(1) and a(1)·b(1) are not) demonstrates that the standard approach for untimed
branching bisimilarity, i.e. take the smallest congruence closure and prove that this yields a branching
bisimulation, falls short in a timed setting. Furthermore, due to the presence of successful termination,
there is an excessive number of cases. In fact, the presentation of the congruence proof for the parallel
composition operator is restricted to a setting without successful termination, since the number of cases
in a proof considering successful termination is just too large.

This paper is organised as follows. Section 2 contains the preliminaries, describing the notion of a
timed labelled transition system, i.e. a timed state space. Section 3 features a counter-example to show
that the notion of timed branching bisimilarity by Van der Zwaag is not an equivalence relation in case
of a dense time domain. A new definition of timed branching bisimulation is proposed in Section 4, and
we prove that our notion of timed branching bisimilarity is an equivalence indeed. In Section 5, we prove
that in case of a discrete time domain, our definition and Van der Zwaag’s definition of timed branching
bisimilarity coincide. In Section 6, we prove that our definition constitutes a congruence, for a simple
timed process algebra with timed actions and alternative, sequential, and parallel composition. Section 7
presents some conclusions. Appendix A contains the proofs of three lemmas for the congruence result.
In Appendix B, we show that our counter-example for transitivity also applies to the notion of timed
branching bisimilarity by Baeten and Middelburg [2].

2. Timed Labelled Transition Systems

Let Act be a non-empty set of visible actions, and τ a special action to represent internal events, with
τ 6∈ Act . We use Actτ to denote Act ∪ {τ}.

The time domain Time is a totally ordered set with a least element 0. We say that Time is discrete
if for each pair u, v ∈ Time there are only finitely many w ∈ Time such that u < w < v.

We use the notion of timed labelled transition systems from [17], in which labelled transitions are
provided with a time stamp. A transition (s, `, u, s′) expresses that state s evolves into state s′ by the

execution of action ` at (absolute) time u. Such a transition is presented as s
`−→u s

′. It is assumed that
execution of transitions does not consume any time. To keep the definition of timed labelled transition
systems clean, consecutive transitions are allowed to have decreasing time stamps; in the semantics,
decreasing time stamps simply give rise to an (immediate) deadlock (see Definitions 3.2 and 4.1). To
express time deadlocks, the predicate U(s, u) denotes that state s can let time pass until time u. A special
state

√
represents successful termination, expressed by the predicate

√ ↓.

Definition 2.1. (Timed labelled transition system)
A timed labelled transition system (TLTS) [10] is a triple (S, T ,U), where:

1. S is a set of states, including a special state
√

, which is the only state in which the predicate ↓
holds;

2. T ⊆ S ×Actτ × Time × S is a set of transitions;

3. U ⊆ S × Time is a delay relation, which satisfies:

• if T (s, `, u, r), then U(s, u);

• if u < v and U(s, v), then U(s, u).
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3. Van der Zwaag’s Timed Branching Bisimulation

Van Glabbeek and Weijland [9] introduced the notion of a branching bisimulation relation for untimed
LTSs. Intuitively, a τ -transition s

τ−→ s′ is invisible if it does not lose possible behaviour (i.e., if s and
s′ can be related by a branching bisimulation relation). See the work of Van Glabbeek [7] for a lucid
exposition on the motivations behind the definition of a branching bisimulation relation.

The reflexive transitive closure of
τ−→ is denoted by =⇒ .

Definition 3.1. (Branching bisimulation [9])
Assume an untimed LTS. A symmetric binary relation B ⊆ S × S is a branching bisimulation if s B t
implies:

1. if s
`−→ s′, then

i either ` = τ and s′ B t,

ii or t=⇒ t̂
`−→ t′ with s B t̂ and s′ B t′;

2. if s ↓, then t=⇒ t′ ↓ with s B t′.

Two states s and t are branching bisimilar, denoted by s ↔b t, if there is a branching bisimulation B
with s B t.

Van der Zwaag [17] defined a timed version of branching bisimulation, which takes into account time
stamps of transitions and ultimate delays U(s, u).

For u ∈ Time , the reflexive transitive closure of
τ−→u is denoted by =⇒u .

Definition 3.2. (Timed branching bisimulation [17])
Assume a TLTS (S, T ,U). A collection B of symmetric binary relations Bu ⊆ S × S for u ∈ Time is
a timed branching bisimulation if s Bu t implies:

1. if s
`−→u s

′, then

i either ` = τ and s′ Bu t,

ii or t=⇒u t̂
`−→u t

′ with s Bu t̂ and s′ Bu t′;

2. if s ↓, then t=⇒u t
′ ↓ with s Bu t′;

3. if u ≤ v and U(s, v), then for some n ≥ 0 there are t0, . . . , tn ∈ S with t = t0 and U(tn, v), and
u0 < · · · < un ∈ Time with u = u0 and v = un, such that for i < n, ti =⇒ui ti+1, s Bui ti+1 and
s Bui+1 ti+1.

Two states s and t are timed branching bisimilar at u, denoted by s ↔Z,u
tb t, if there is a timed branching

bisimulation B with s Bu t. States s and t are timed branching bisimilar, denoted by s ↔Z
tb t,

1 if they
are timed branching bisimilar at all u ∈ Time .

1The superscript Z refers to van der Zwaag, to distinguish it from the adaptation of his definition of timed branching bisimula-
tion that we will define later.
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Transitions can be executed at the same time consecutively. By the first clause in Definition 3.2, the
behaviour of a state at some point in time is treated like untimed behaviour. The second clause deals with
successful termination.2 By the last clause, time passing in a state s is matched by a related state t with
a “τ -path” where all intermediate states are related to s at times when a τ -transition is performed.3

In the following examples,
�
≥0 ⊆ Time , and, for any states s0, s1 ∈ S , if s0

`−→u s1, then U(s0, u)
and for all v > u, ¬U(s0, v).

Example 3.1. Consider the following two TLTSs: s0
a−→2 s1

b−→1 s2, t0
a−→2 t1, and U(t1, 1). We have

s0 ↔Z
tb t0, since s0 Bw t0 for w ≥ 0, s1 Bw t1 for w > 1, and s2 Bw t1 for w ≥ 0 is a timed branching

bisimulation.

Example 3.2. Consider the following two TLTSs: s0
a−→1s1

τ−→2s2
b−→3s3, t0

a−→1t1
b−→3t2, U(s3, 4),

and U(t2, 4). We have s0 ↔Z
tb t0, since s0 Bw t0 for w ≥ 0, s1 Bw t1 for w ≤ 2, s2 Bw t1 for w ≥ 0,

and s3 Bw t2 for w ≥ 0 is a timed branching bisimulation.

Example 3.3. Consider the following two TLTSs: s0
a−→u s1

τ−→v s2 ↓ and t0
a−→u t1 ↓. If u = v,

we have s0 ↔Z
tb t0, since s0 Bw t0 for w ≥ 0, s1 Bu t1, and s2 Bw t1 for w ≥ 0 is a timed branching

bisimulation. If u 6= v, we have s0 6↔Z
tb t0, because s1 and t1 are not timed branching bisimilar at

time u; namely, t1 has a successful termination, and s1 cannot simulate this at time u, as it cannot do a
τ -transition at time u.

Example 3.4. Consider the following two TLTSs: s0
τ−→u s1

a−→v s2 ↓ and t0
a−→v t1 ↓. If u = v,

we have s0 ↔Z
tb t0, since s0 Bw t0 for w ≥ 0, s1 Bw t0 for w ≥ 0, and s2 Bw t1 for w ≥ 0 is a

timed branching bisimulation. If u 6= v, we have s0 6↔Z
tb t0, because s0 and t0 are not timed branching

bisimilar at time u+v
2 .4

Van der Zwaag [17, 18] wrote about his definition: “It is straightforward to verify that branching bisim-
ilarity is an equivalence relation.” However, we found that in general this is not the case. A counter-
example is presented below. Note that it uses a dense time domain.

Example 3.5. Let p, q, and r defined as in Figures 1, 2 and 3, with Time = � ≥0. We depict s
a−→u s

′

as s
a(u)−→ s′.
p ↔Z

tb q, since p Bw q for w ≥ 0, pi Bw qi for w ≤ 1
i+2 , and p′i Bw qi for w > 0 (for i ≥ 0) is a

timed branching bisimulation.
Moreover, q ↔Z

tb r, since q Bw r for w ≥ 0, qi Bw ri for w ≥ 0, qi B0 rj , and qi Bw r∞ for
w = 0 ∨ w > 1

i+2 (for i, j ≥ 0) is a timed branching bisimulation. (Note that qi and r∞ are not timed
branching bisimilar in the time interval 〈0, 1

i+2 ].)

2Van der Zwaag does not take into account successful termination, so the second clause is missing in his definition.
3In the definition of Van der Zwaag, instead of u ≤ v and n ≥ 0, u < v and n > 0 are written, respectively. The change
is needed in order to deal correctly with the deadlock process δ(u) and the parallel composition operator || later on, when we
come to the congruence proof in Section 6. According to the old definition, δ(1)↔Z,2

tb δ(2), but then, since a(2) || δ(1) 6↔Z,2
tb

a(2) || δ(2), the congruence proof would be broken. Instead, it is desirable that δ(1) 6↔Z,2
tb δ(2). Van der Zwaag did not

consider deadlock explicitly; in the absence of deadlock, the two definitions (with ‘u < v’ and ‘u ≤ v’) coincide.
4s0 ↔Z

tb t0 would hold for u ≤ v if in Definition 3.2 we would require that they are timed branching bisimilar at 0 (instead of
at all u ∈ Time).
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Figure 2. A timed process q

However, p 6↔Z
tb r, due to the fact that none of the pi can simulate r∞. Namely, r∞ can idle until

time 1; pi can only simulate this by executing a τ at time 1
i+2 , but the resulting process

∑i+1
n=1 a( 1

n) is
not timed branching bisimilar to r∞ at time 1

i+2 , since only the latter can execute action a at time 1
i+2 .

4. A Strengthened Timed Branching Bisimulation

In this section, we propose a way to fix the definition of Van der Zwaag (see Definition 3.2). Our
adaptation requires the stuttering property [9] (see Definition 4.3) at all time intervals. That is, in the last
clause of Definition 3.2, we require that s Bw ti+1 for ui ≤ w ≤ ui+1. Hence, we achieve a stronger
version of Van der Zwaag’s definition. We prove that this new notion of timed branching bisimilarity is
an equivalence relation.
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4.1. Timed Branching Bisimulation

Definition 4.1. (Timed branching bisimulation)
Assume a TLTS (S, T ,U). A collection B of binary relations Bu ⊆ S × S for u ∈ Time is a timed
branching bisimulation if s Bu t implies:

1. if s
`−→u s

′, then

i either ` = τ and s′ Bu t,

ii or t=⇒u t̂
`−→u t

′ with s Bu t̂ and s′ Bu t′;

2. if t
`−→u t

′, then vice versa;

3. if s ↓, then t=⇒u t
′ ↓ with s Bu t′;

4. if t ↓, then vice versa;

5. if u ≤ v and U(s, v), then for some n ≥ 0 there are t0, . . . , tn ∈ S with t = t0 and U(tn, v), and
u0 < · · · < un ∈ Time with u = u0 and v = un, such that for i < n, ti =⇒ui ti+1 and s Bw ti+1

for ui ≤ w ≤ ui+1;

6. if u ≤ v and U(t, v), then vice versa.

Two states s and t are timed branching bisimilar at u, denoted by s ↔u
tb t, if there is a timed branching

bisimulation B with s Bu t. States s and t are timed branching bisimilar, denoted by s ↔tb t, if they are
timed branching bisimilar at all u ∈ Time .

It is not hard to see that the union of timed branching bisimulations is again a timed branching
bisimulation.

The difference between Definitions 3.2 and 4.1 lies in the stuttering property. In clauses 5 and 6 of
Definition 4.1, in addition to the requirement that time passing in a state s is matched by a related state t
with a “τ -path” where all intermediate states are related to s at times when a τ -transition is performed,
all intermediate states also need to be related to s between these times. Note that states q and r from
Example 3.5 are not timed branching bisimilar according to Definition 4.1. Namely, none of the qi can
simulate r∞ in the time interval 〈0, 1

i+2 ], so that the stuttering property is violated.
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Starting from this point, we focus on timed branching bisimulation as defined in Definition 4.1. We
did not define this new notion of timed branching bisimulation as a symmetric relation (like in Defini-
tion 3.2), in view of the equivalence proof that we are going to present. Namely, in general the relation
composition of two symmetric relations is not symmetric. Clearly any symmetric timed branching bisim-
ulation is a timed branching bisimulation. Furthermore, it follows from Definition 4.1 that the inverse of
a timed branching bisimulation is again a timed branching bisimulation, so the union of a timed branch-
ing bisimulation and its inverse is a symmetric timed branching bisimulation. Hence, Definition 4.1 and
the definition of timed branching bisimulation as a symmetric relation give rise to the same notion.

Example 4.1. Consider the following two TLTSs: s0
a−→1 s1 and t0

a−→1 t1, with U(s1, 0) and U(t1, 1)
We have s0 6↔tb t0, because s1 and t1 are not timed branching bisimilar at time 1; namely, t1 can delay
until time 1, and s1 can neither delay until time 1, nor simulate this by doing τ -transitions at time 1 to
a state which can delay until time 1. (Note that s0 and t0 are timed branching bisimilar according to the
original definition of Van der Zwaag; see footnote 3).

4.2. Timed Semi-branching Bisimulation

Basten [3] showed that the relation composition of two (untimed) branching bisimulations is not neces-
sarily again a branching bisimulation. Figure 4 illustrates an example, showing that the relation compo-
sition of two timed branching bisimulations is not always a timed branching bisimulation. It is a slightly
simplified version of an example from [3], here applied at time 0. Clearly, B and D are timed branching
bisimulations. However, B◦D is not, and the problem arises at the transition r0

τ−→0 r1. According to
case 1 of Definition 3.2, since r0 (B◦D) t0, either r1 (B◦D) t0, or r0 (B◦D) t1 and r1 (B◦D) t2, must
hold. But neither of these cases hold, so B◦D is not a timed branching bisimulation.

DB

r0

r1

r2

r3

s0

s1

s2

s3

t0

t1

t2

r0

r1

r2

r3

t0

t1

t2

τ (0)

τ (0)τ (0)

τ (0)

τ (0)

τ (0)

B◦D

τ (0)

τ (0)

τ (0)

τ (0)

τ (0)

τ (0)

τ (0)

Figure 4. Composition does not preserve timed branching bisimulation

Semi-branching bisimulation [9] relaxes case 1i of Definition 3.1: if s
τ−→ s′, then it is allowed

that t=⇒ t′ with s B t′ and s′ B t′. Basten proved that the relation composition of two semi-branching
bisimulations is again a semi-branching bisimulation. It is easy to see that semi-branching bisimilarity
is reflexive and symmetric. Hence, semi-branching bisimilarity is an equivalence relation. Then he
proved that semi-branching bisimilarity and branching bisimilarity coincide, that means two states in an
(untimed) LTS are related by a branching bisimulation relation if and only if they are related by a semi-
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branching bisimulation relation. We mimic the approach of [3] to prove that timed branching bisimilarity
is an equivalence relation.

Definition 4.2. (Timed semi-branching bisimulation)
Assume a TLTS (S, T ,U). A collection B of binary relations Bu ⊆ S × Time × S for u ∈ Time is a
timed semi-branching bisimulation if s Bu t implies:

1. if s
`−→u s

′, then

i either ` = τ and t=⇒u t
′ with s Bu t′ and s′ Bu t′,

ii or t=⇒u t̂
`−→u t

′ with s Bu t̂ and s′ Bu t′;

2. if t
`−→u t

′, then vice versa.

3. if s ↓, then t=⇒u t
′ ↓ with s Bu t′;

4. if t ↓, then vice versa.

5. if u ≤ v and U(s, v), then for some n ≥ 0 there are t0, . . . , tn ∈ S with t = t0 and U(tn, v), and
u0 < · · · < un ∈ Time with u = u0 and v = un, such that for i < n, ti =⇒ui ti+1 and s Bw ti+1

for ui ≤ w ≤ ui+1;

6. if u ≤ v and U(t, v), then vice versa.

Two states s and t are timed semi-branching bisimilar at u if there is a timed semi-branching bisimulation
B with s Bu t. States s and t are timed semi-branching bisimilar if they are timed semi-branching
bisimilar at all u ∈ Time .

It is not hard to see that the union of timed semi-branching bisimulations is again a timed semi-
branching bisimulation. Furthermore, any timed branching bisimulation is a timed semi-branching bisim-
ulation.

Definition 4.3. (Stuttering property [9])
A timed semi-branching bisimulation B is said to satisfy the stuttering property if:

1. s Bu t, s′ Bu t and s
τ−→u s1

τ−→u · · · τ−→u sn
τ−→u s

′ implies that si Bu t for 1 ≤ i ≤ n;

2. s Bu t, s Bu t′ and t
τ−→u t1

τ−→u · · · τ−→u tn
τ−→u t

′ implies that s Bu ti for 1 ≤ i ≤ n.

The following lemma for timed semi-branching bisimulations is easy to prove, in a similar fashion
as the untimed case (see [3, Corollary 10]).

Lemma 4.1. Any timed semi-branching bisimulation satisfying the stuttering property is a timed branch-
ing bisimulation.
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4.3. Timed Branching Bisimilarity is an Equivalence

Following [3], our equivalence proof consists of the following main steps:

1. We first prove that the relation composition of two timed semi-branching bisimulation relations is
again a semi-branching bisimulation relation (Proposition 4.1).

2. Then we prove that timed semi-branching bisimilarity is an equivalence relation (Corollary 4.1).

3. Finally, we prove that the largest timed semi-branching bisimulation satisfies the stuttering prop-
erty (Proposition 4.2).

According to Lemma 4.1, any timed semi-branching bisimulation satisfying the stuttering property is a
timed branching bisimulation. So by the 3rd point, two states are related by a timed branching bisimula-
tion if and only if they are related by a timed semi-branching bisimulation.

The following lemma for timed semi-branching bisimulations can be proved in the same way as in
the untimed case; see [3, Lemma 6].

Lemma 4.2. Let B be a timed semi-branching bisimulation, and s Bu t.

1. s=⇒u s
′ =⇒ (∃t′ ∈ S : t=⇒u t

′ ∧ s′ Bu t′);

2. t=⇒u t
′ =⇒ (∃s′ ∈ S : s=⇒u s

′ ∧ t′ Bu s′).

Proposition 4.1. The relation composition of two timed semi-branching bisimulations is again a timed
semi-branching bisimulation.

Proof:
Let B and D be timed semi-branching bisimulations. We prove that the composition of B and D (or
better, the compositions of Bu and Du for u ∈ Time) is a timed semi-branching bisimulation. Suppose
that r Bu s Du t for r, s, t ∈ S . We need to check that the conditions of Definition 4.2 are satisfied
with respect to the pair r, t. The first three cases are identical to the proof in the untimed case; see [3,
Proposition 7]. We now consider case 4.

u ≤ v and U(r, v). Since r Bu s, for some n ≥ 0 there are s0, . . . , sn ∈ S with s = s0 and U(sn, v),
and u0 < · · · < un ∈ Time with u = u0 and v = un, such that si =⇒ui si+1 and r Bw si+1 for
ui ≤ w ≤ ui+1 and i < n.

For i ≤ n we show that for some mi ≥ 0 there are ti0, . . . , t
i
mi ∈ S with t = t00 and U(tnmn , v), and

vi0 ≤ · · · ≤ vimi ∈ Time with (Ai) ui−1 = vi0 (if i > 0) and (Bi) ui = vimi , such that:

(Ci) tij =⇒vij
tij+1 for j < mi;

(Di) ti−1
mi−1

=⇒ui−1 t
i
0 (if i > 0);

(Ei) si Dui−1 t
i
0 (if i > 0);

(Fi) si Dw t
i
j+1 for vij ≤ w ≤ vij+1 and j < mi.

We apply induction with respect to i.
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• Base case: i = 0.

Let m0 = 0, t00 = t and v0
0 = u0. Note that B0, C0 and F0 hold.

• Inductive case: 0 < i ≤ n.

Suppose that mk, t
k
0 , . . . , t

k
mk
, vk0 , . . . , v

k
mk

have been defined for 0 ≤ k < i. Moreover, suppose
that Bk, Ck and Fk hold for 0 ≤ k < i, and that Ak, Dk and Ek hold for 0 < k < i.

Fi−1 for j = mi−1 − 1 together with Bi−1 yields si−1 Dui−1 t
i−1
mi−1

. Since si−1 =⇒ui−1 si,
Lemma 4.2 implies that ti−1

mi−1
=⇒ui−1 t

′ with si Dui−1 t
′. We define ti0 = t′ [then Di and Ei

hold] and vi0 = ui−1 [then Ai holds]. si =⇒ui · · · =⇒un−1 sn with U(sn, v) implies that U(si, ui).
Since si Dui−1 t

i
0, according to case 5 of Definition 4.2, for somemi > 0 there are ti1, . . . , t

i
mi ∈ S

with U(timi , ui), and vi1 < · · · < vimi ∈ Time with vi0 < vi1 and ui = vimi [then Bi holds], such
that for j < mi, tij =⇒vij

tij+1 [then Ci holds] and si Dw t
i
j+1 for vij ≤ w ≤ vij+1 [then Fi holds].

Concluding, for i < n, r Bui si+1 Dui t
i+1
0 and r Bw si+1 Dw t

i+1
j+1 for vi+1

j ≤ w ≤ vi+1
j+1 and j < mi.

Since vij ≤ vij+1, vimi = ui = vi+1
0 , t = t00, u = u0 = v0

0 , tij =⇒vij
tij+1, timi =⇒ui t

i+1
0 , and U(tnmn , v),

we are done.
Concluding, case 5 of Definition 4.2 is satisfied. Similarly it can be checked that case 6 is satisfied.

And we already remarked that cases 1-4 of Definition 4.2 are also satisfied, which can be proved in a
similar fashion as in the untimed case ([3, Proposition 7]). So the composition of B and D is again a
timed semi-branching bisimulation. ut

Obviously, timed semi-branching bisimilarity is reflexive and symmetric, and by Proposition 4.1 it is
transitive. So it constitutes an equivalence relation.

Corollary 4.1. Timed semi-branching bisimilarity is an equivalence relation.

Proposition 4.2. The largest timed semi-branching bisimulation satisfies the stuttering property.

Proof:
Let B be the largest timed semi-branching bisimulation on S . Let s

τ−→u s1
τ−→u · · · τ−→u sn

τ−→u s
′

with s Bu t and s′ Bu t. We prove that B ′ = B ∪ {(si, t) | 1 ≤ i ≤ n} is a timed semi-branching
bisimulation.

We need to check that all cases of Definition 4.2 are satisfied for the relations siB′ut, for 1 ≤ i ≤ n.
The cases 1-4 can be dealt with as in the untimed case; see [9, Claim 2.7]. We therefore only consider
the cases 5, 6.

Let u ≤ v and U(si, v). Since s=⇒u si and s Bu t, by Lemma 4.2 t=⇒u t
′ with si Bu t′. It follows

that for some n ≥ 0 there are t0, . . . , tn ∈ S with t′ = t0 and U(tn, v), and u0 < · · · < un ∈ Time
with u = u0 and v = un, such that for j < n, tj =⇒uj tj+1 and si Bw tj+1 for uj ≤ w ≤ uj+1. Since
t=⇒u t

′=⇒u t1, this agrees with case 5 of Definition 4.2.
Hence, case 5 of Definition 4.2 is satisfied, and in a similar fashion we can show that case 6 is also

satisfied. Concluding, B′ is a timed semi-branching bisimulation. Since B is the largest, and B ⊆ B ′,
we find that B = B′. So B satisfies the first requirement of Definition 4.3.

Since B is the largest timed semi-branching bisimulation and timed semi-branching bisimilarity is
an equivalence, B is symmetric. Then B also satisfies the second requirement of Definition 4.3. Hence
B satisfies the stuttering property. ut
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As a consequence, the largest timed semi-branching bisimulation is a timed branching bisimulation (by
Lemma 4.1 and Proposition 4.2). Since any timed branching bisimulation is a timed semi-branching
bisimulation, we have the following two corollaries.

Corollary 4.2. Two states are related by a timed branching bisimulation if and only if they are related
by a timed semi-branching bisimulation.

Corollary 4.3. Timed branching bisimilarity, ↔tb, is an equivalence relation.

We note that for each u ∈ Time , timed branching bisimilarity at time u is also an equivalence relation.

5. Discrete Time Domains

Theorem 5.1. In case of a discrete time domain, ↔Z
tb and↔tb coincide.

Proof:
Clearly ↔tb⊆↔Z

tb. We prove that ↔Z
tb⊆↔tb. Suppose B is a timed branching bisimulation relation

according to Definition 3.2. We show that B is a timed branching bisimulation relation according to
Definition 4.1. B satisfies cases 1-4 of Definition 4.1, since they coincide with cases 1-2 of Definition 3.2.
We prove that case 5 of Definition 4.1 is satisfied.

Let s Bu t and U(s, v) with u ≤ v. Let u0 < · · · < un ∈ Time with u0 = u and un = v, where
u1, . . . , un−1 are all the elements from Time that are between u and v. (Here we use that Time is
discrete.) We prove by induction on n that there are t0, . . . , tn ∈ S with t = t0 and U(tn, v), such that
for i < n, ti =⇒ui ti+1 and s Bw ti+1 for ui ≤ w ≤ ui+1.

• Base case: n = 0. Then u = v. By case 3 of Definition 3.2, U(t, u).

• Inductive case: n > 0. Since U(s, v), clearly also U(s, u1). By case 3 of Definition 3.2 there is a
t1 ∈ S such that t=⇒u t1, s Bu t1 and s Bu1 t1. Hence, s Bw t1 for u ≤ w ≤ u1. By induction,
s Bu1 t1 together with U(s, v) implies that there are t2, . . . , tn ∈ S with U(tn, v), such that for
1 ≤ i < n, ti =⇒ui ti+1, s Bui ti+1 and s Bui+1 ti+1. Hence, s Bw ti+1 for ui ≤ w ≤ ui+1.

We conclude that case 5 of Definition 4.1 holds. Similarly, it can be proved that B satisfies case 6 of
Definition 4.1. Hence, B is a timed branching bisimulation relation according to Definition 4.1. So
↔Z

tb⊆↔tb. ut

6. Rooted Timed Branching Bisimilarity as a Congruence

6.1. Rooted Timed Branching Bisimilarity

In this section, we prove that a rooted version of the timed branching bisimulation as defined in Defi-
nition 4.1 is a congruence over a given basic process algebra with sequential, alternative, and parallel
composition. Like (untimed) branching bisimilarity, timed branching bisimilarity is not a congruence
over most process algebras from the literature. A rootedness condition has been introduced for branch-
ing bisimilarity to remedy this imperfection [4, 14]. First, we provide a related definition of rooted timed
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branching bisimulation in Definition 6.1. Following, we introduce the transition rules of a basic process
algebra, encompassing atomic actions, including τ and δ, and the alternative, sequential, and parallel
composition process operators. After that, the congruence proof is presented.

Definition 6.1. (Rooted timed branching bisimulation)
Assume a TLTS (S, T ,U). A binary relation B ⊆ S × S is a rooted timed branching bisimulation if
s B t implies:

1. if s
`−→u s

′, then t
`−→u t

′ with s′ ↔u
tb t
′;

2. if t
`−→u t

′, then s
`−→u s

′ with s′ ↔u
tb t
′;

3. s ↓ iff t ↓;

4. U(s, u) iff U(t, u).

Two states s and t are rooted timed branching bisimilar, denoted by s ↔rtb t, if there is a rooted timed
branching bisimulation B with s B t.

Note that↔rtb⊆↔tb. A rooted timed branching bisimulation relation is a timed branching bisimu-
lation relation, where in cases 1 to 4 of Definition 4.1 ‘ =⇒u ’ constitutes zero τ -steps, and in cases 5 and
6 n = 0.

6.2. A Basic Process Algebra

In the following, x, y are variables, p, q, r are process terms, and s, t are process terms or
√

, with
√

a
special state representing successful termination.

Here, we present a basic process algebra, which we will use in subsequent sections in our congruence
proof. It is based on the process algebra BPAρδU [1]. (For the sake of simplicity, the integration oper-
ator, which allows alternative composition over a possibly infinite range of time elements, is not taken
into account here.) We consider the following transition rules for the process algebra used, where the
synchronisation of two actions a and b resulting in an action c is denoted by a | b = c. Whenever two
actions a and b should never synchronise, we define that a | b = δ.

Termination : √ ↓ Atomic :
a(u)

a−→u
√

Alt1 :
x

a−→u x
′

x+ y
a−→u x

′
Alt2 :

x
a−→u
√

x+ y
a−→u
√

Alt3 :
y

a−→u y
′

x+ y
a−→u y

′
Alt4 :

y
a−→u
√

x+ y
a−→u
√

Seq1 :
x

a−→u x
′

x·y a−→u x
′·y

Seq2 :
x

a−→u
√

x·y a−→u y



14 Wan Fokkink et al. / Is Timed Branching Bisimilarity a Congruence Indeed?

Par1 :
x

a−→u x
′ U(y, u)

x || y a−→u x
′ || y

Par2 :
y

a−→u y
′ U(x, u)

x || y a−→u x || y′

Par3 :
x

a−→u
√ U(y, u)

x || y a−→u y
Par4 :

y
a−→u
√ U(x, u)

x || y a−→u x

Par5 :
x

a−→u x
′ y

b−→u y
′ a | b = c c 6= δ

x || y c−→u x
′ || y′

Par6 :
x

a−→u
√

y
b−→u y

′ a | b = c c 6= δ

x || y c−→u y
′

Par7 :
x

a−→u x
′ y

b−→u
√

a | b = c c 6= δ

x || y c−→u x
′

Par8 :
x

a−→u
√

y
b−→u
√

a | b = c c 6= δ

x || y c−→u
√

U(
√
, 0)

U(a(u), v) if v ≤ u
U(δ(u), v) if v ≤ u
U(x·y, v)⇔ U(x, v)

U(x+ y, v)⇔ U(x, v) ∨ U(y, v)

U(x || y, v)⇔ U(x, v) ∧ U(y, v)

In order to obtain a clean BNF grammar, process terms with decreasing time stamps, like a(2)·b(1),
are allowed. Note that this process term is timed branching bisimilar to a(2)·δ(2).

6.3. Congruence Proof for Sequential Composition

First, we prove that rooted timed branching bisimilarity is a congruence for the sequential composition
operator (see Theorem 6.1).

We give an example to show that if p0 ↔u
tb q0 and p1 ↔u

tb q1, then not necessarily p0·p1 ↔u
tb q0·q1.

Example 6.1. Let p0 = q0 = a(1), p1 = τ(0)·b(1), q1 = b(1), and u = 0. Clearly, a(1) ↔0
tb a(1).

Also, τ(0)·b(1) ↔0
tb b(1). However, clearly, a(1)·τ(0)·b(1) ↔0

tb a(1)·b(1) does not hold.

From Example 6.1, it follows that the standard approach to prove that untimed rooted branching
bisimilarity is a congruence, i.e. take the smallest congruence closure and prove that this yields a branch-
ing bisimulation (see [5]), fails for timed rooted branching bisimilarity when considering sequential
composition. This motivates the usage of p1 ↔rtb q1 in Definition 6.2.

Definition 6.2. (Relation Cu)
Let Cu ⊆ S × S for u ∈ Time denote the smallest relation such that:
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1. ↔u
tb ⊆ Cu;

2. if p0 Cu q0 and p1 ↔rtb q1, then p0·p1 Cu q0·q1;

3. if p0 Cu
√

and p1 ↔rtb q1, then p0·p1 Cu q1;

4. if
√
Cu q0 and p1 ↔rtb q1, then p1 Cu q0·q1.

The proof of the following key lemma is presented in the appendix, in Section A.1.

Lemma 6.1. The relations Cu constitute a timed branching bisimulation.

Theorem 6.1. If p0 ↔rtb q0 and p1 ↔rtb q1, then p0·p1 ↔rtb q0·q1.

Proof:
By Definition 6.1, we distinguish four cases:

1. Let p0·p1
`−→u s. By the transition rules, we can distinguish two cases:

(a) p0
`−→u p

′
0 and s = p′0·p1. Since p0 ↔rtb q0, q0

`−→u t with p′0 ↔u
tb t. By the transition

rules, we can distinguish two cases:

i. Either t 6= √ and q0·q1
`−→u t·q1. By Lemma 6.1, p′0·p1 ↔u

tb t·q1.

ii. Or t =
√

and q0·q1
`−→u q1. By Lemma 6.1, p′0·p1 ↔u

tb q1.

(b) p0
`−→u
√

and s = p1. Since p0 ↔rtb q0, q0
`−→u t with

√ ↔u
tb t. By the transition rules,

we can distinguish two cases:

i. Either t 6= √ and q0·q1
`−→u t·q1. By Lemma 6.1, p1 ↔u

tb t·q1.

ii. Or t =
√

and q0·q1
`−→u q1. Since p1 ↔rtb q1, p1 ↔u

tb q1.

2. Let q0·q1
`−→u t. Similar to the previous case.

3. Let U(p0·p1, u). Then U(p0, u). Since p0 ↔rtb q0, U(q0, u). This means that U(q0·q1, u).

4. Let U(q0·q1, u). Similar to the previous case.
ut

6.4. Congruence Proof for Alternative Composition

Next, we prove that rooted timed branching bisimilarity is a congruence for the alternative composition
operator.

Theorem 6.2. If p0 ↔rtb q0 and p1 ↔rtb q1, then p0 + p1 ↔rtb q0 + q1.

Proof:
By Definition 6.1, we distinguish four cases:
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1. Let p0 + p1
`−→u s. By the transition rules, we can distinguish two cases:

(a) p0
`−→u s. Since p0 ↔rtb q0, q0

`−→u t with s↔u
tb t. Then q0 + q1

`−→u t.

(b) p1
`−→u s. Similar to the previous case.

2. Let q0 + q1
`−→u t. Similar to the previous case.

3. Let U(p0 + p1, u). Since U(p0 + p1, u), either U(p0, u) or U(p1, u). Since p0 ↔rtb q0 and
p1 ↔rtb q1, either U(q0, u), or U(q1, u), respectively. Hence, U(q0 + q1, u).

4. Let U(q0 + q1, u). Similar to the previous case.
ut

6.5. Congruence Proof for Parallel Composition

Finally, we indicate how to prove that rooted timed branching bisimilarity is a congruence for the parallel
composition operator. This proof largely follows the one for sequential composition.

Definition 6.3. (Relation Du)
Let Du ⊆ S × S for u ∈ Time denote the smallest relation such that:

1. ↔u
tb ⊆ Du;

2. if p0 Du q0 and p1 Du q1, then p0 || p1 Du q0 || q1;

3. if p0 Du
√

and p1 Du q1, then p0 || p1 Du q1;

4. if p0 Du q0 and p1 Du
√

, then p0 || p1 Du q0;

5. if
√
Du q0 and p1 Du q1, then p1 Du q0 || q1;

6. if p0 Du q0 and
√
Du q1, then p0 Du q0 || q1;

7. if p0 Du
√

and p1 Du
√

, then p0 || p1 Du
√

;

8. if
√
Du q0 and

√
Du q1, then

√
Du q0 || q1.

The proofs of the following two lemmas are presented in the appendix, in Sections A.2 and A.3. For
the sake of presentation, in the proofs of Lemma 6.3 and Theorem 6.3, all cases that involve successful
termination have been discarded.

Lemma 6.2. If p Du q and U(p, u), then U(q, u).

Lemma 6.3. The relations Du constitute a timed branching bisimulation.

Theorem 6.3. If p0 ↔rtb q0 and p1 ↔rtb q1, then p0 || p1 ↔rtb q0 || q1.

Proof:
By Definition 6.1, we distinguish four cases:
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1. Let p0 || p1
`−→u s. By the transition rules, we can distinguish three cases (eight if we consider

successful termination):

(a) p0
`−→u p

′
0 and s = p′0 || p1. Since p0 ↔rtb q0, q0

`−→u t with p′0 ↔u
tb t. Since we do

not consider successful termination (t 6= √), by the transition rules, q0 || q1
`−→u t || q1. By

Lemma 6.3, p′0 || p1 ↔u
tb t || q1.

(b) p1
`−→u p

′
1 and s = p0 || p′1. Similar to the previous case.

(c) p0 || p1
`−→u p

′
0 || p′1 with `0, `1 ∈ Act such that p0

`0−→u p
′
0, p1

`1−→u p
′
1, and `0 | `1 = `.

Since p0 ↔rtb q0, q0
`0−→u t0 with p′0 ↔u

rtb t0. Since p1 ↔rtb q1, q1
`0−→u t1 with p′1 ↔u

rtb t1.
Since we do not consider successful termination (t0 6=

√
and t1 6=

√
), by the transition

rules, q0 || q1
`−→u t0 || t1. By Lemma 6.3, p′0 || p′1 ↔u

tb t0 || t1.

2. Let q0 || q1
`−→u t. Similar to the previous case.

3. Let U(p0 || p1, u). Then U(p0, u) and U(p1, u). Since p0 ↔rtb q0 and p1 ↔rtb q1, U(q0, u) and
U(q1, u). This means that U(q0 || q1, u).

4. Let U(q0 || q1, u). Similar to the previous case.
ut

7. Conclusions

Equivalence and congruence properties for timed semantics are often claimed, but hardly ever proved.
In this paper, we showed that this is a dangerous practice: two closely related definitions for timed
branching bisimilarity are shown to violate transitivity, in case of a dense time domain. We resolved
this problem by strengthening the semantic definition; the timed branching bisimulation relation must
be established explicitly when time progresses. We showed that in case of a discrete time domain, the
earlier notion of timed branching bisimilarity by Van der Zwaag and our strengthened notion coincide.
Finally, we went on to prove that our notion constitutes a congruence, for a simple timed process algebra
with timed actions and alternative/sequential/parallel composition.

Does our strengthened notion have practical relevance? Probably not. The strengthened condi-
tion, that the timed branching bisimulation relation must be established explicitly when time progresses,
makes it very hard to check our version of timed branching bisimilarity. But our results do offer useful
insights into timed semantics: why transitivity may fail, and how equivalence and congruence can be
proved, for weak versions of timed bisimulation.

Acknowledgements: The referees are thanked for their constructive comments, which led to consider-
able improvements in the presentation of the paper.

A. Proofs of Three Lemmas

This appendix contains the proofs of three lemmas for the congruence result.
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A.1. Proof of Lemma 6.1

The proof consists of three parts (plus three symmetric parts).

A If s Cu t and s
`−→u s

′, then we must prove, that

i either ` = τ and s′ Cu t,

ii or t=⇒u t̂
`−→u t

′ with s Cu t̂ and s′ Cu t′.

We apply induction on the structure of s and t. Since s Cu t, by Definition 6.2, we can distinguish
four cases.

Firstly, s ↔u
tb t. The proof obligation follows directly from the definition of timed branching

bisimilarity.

Secondly, s = p0·p1 and t = q0·q1, with p0 Cu q0 and p1 ↔rtb q1. Since p0·p1
`−→u s

′, by the
transition rules, we can distinguish two cases:

1. Let p0
`−→u p

′
0 and s′ = p′0·p1. Since p0 Cu q0, by Definition 6.2, we can distinguish four

cases:

(a) p0 ↔u
tb q0. Since p0

`−→u p
′
0, by Definition 4.1, we can again distinguish two cases:

i ` = τ and p′0 ↔u
tb q0. Then p′0·p1 Cu q0·q1.

ii q0 =⇒u q̂
`−→u t0, with p0 ↔u

tb q̂ and p′0 ↔u
tb t0. Then,

∗ either t0 6=
√

and q0·q1 =⇒u q̂·q1
`−→u t0·q1, p0·p1 Cu q̂·q1 and

p′0·p1 Cu t0·q1;

∗ or t0 =
√

and q0·q1 =⇒u q̂·q1
`−→u q1, p0·p1 Cu q̂·q1 and

p′0·p1 Cu q1.

(b) p0 = p00·p01 and q0 = q00·q01 with p00 Cu q00 and p01 ↔rtb q01. Since p00·p01
`−→up

′
0,

by the transition rules, either p00
`−→up

′
00 with p′0 = p′00·p01, or p00

`−→u
√

and p′0 = p01.

In the first case, since p00 Cu q00 and p00
`−→u p

′
00, by induction,

i either ` = τ and p′00 Cu q00. Then p′00·p01·p1 Cu q00·q01·q1.

ii or q00 =⇒u q̂00
`−→u t00, with p00 Cu q̂00 and p′00 Cu t00. Then,

∗ either t00 6=
√

and q00·q01 =⇒u q̂00·q01
`−→u t00·q01, so

q00·q01·q1 =⇒u q̂00·q01·q1
`−→u t00·q01·q1. Furthermore p00·p01·p1 Cu q̂00·q01·q1

and p′00·p01·p1 Cu t00·q01·q1.

∗ or t00 =
√

and q00·q01 =⇒u q̂00·q01
`−→u q01, so

q00·q01·q1 =⇒u q̂00·q01·q1
`−→u q01·q1. Furthermore

p00·p01·p1 Cu q̂00·q01·q1 and p′00·p01·p1 Cu q01·q1.

In the second case, since p00 Cu q00 and p00
`−→u
√

, by induction,

i either ` = τ and
√
Cu q00. Then p01·p1 Cu q00·q01·q1.

ii or q00 =⇒u q̂00
`−→u t00 with p00 Cu q̂00 and

√
Cu t00. Then,
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∗ either t00 6=
√

and q00·q01·q1 =⇒u q̂00·q01·q1
`−→u t00·q01·q1. Furthermore

p00·p01·p1 Cu q̂00·q01·q1 and p01·p1 Cu t00·q01·q1.

∗ or t00 =
√

and q00·q01·q1 =⇒u q̂00·q01·q1
`−→u q01·q1. Furthermore

p00·p01·p1 Cu q̂00·q01·q1 and p01·p1 Cu q01·q1.

(c) p0 = p00·p01 with p00 Cu
√

and p01 ↔rtb q0. Since p00·p01
`−→u p

′
0, by the transition

rules, either p00
`−→u p

′
00 with p′0 = p′00·p01, or p00

`−→u
√

and p′0 = p01. In the first
case, since p00 Cu

√
, by induction, ` = τ and p′00 Cu

√
. Then p′00·p01·p1 Cu q0·q1.

In the second case, since p00 Cu
√

, by induction, ` = τ . Moreover, p01·p1 Cu q0·q1.

(d) q0 = q00·q01 with
√
Cu q00 and p0 ↔rtb q01. Since p0 ↔rtb q01 and p0

`−→u p
′
0, by

induction, q01
`−→u q

′
01 with p′0 ↔u

tb q
′
01. Then p′0·p1 Cu q00·q′01·q1.

2. Let p0
`−→u
√

and s′ = p1. Since p0 Cu q0, by induction,

i either ` = τ and
√
Cu q0. Then p1 Cu q0·q1.

ii or q0 =⇒u q̂0
`−→u t0 with p0 Cu q̂0 and

√
Cu t0. Then,

∗ either t0 6=
√

and q0·q1 =⇒u q̂0·q1
`−→u t0·q1. Furthermore p0·p1 Cu q̂0·q1 and

p1 Cu t0·q1.

∗ or t0 =
√

and q0·q1 =⇒u q̂0·q1
`−→u q1. Furthermore p0·p1 Cu q̂0·q1 and p1 Cu q1.

Thirdly, s = p0·p1, with p0 Cu
√

and p1 ↔rtb t. Since p0·p1
`−→u s

′, by the transition rules, we
can distinguish two cases:

1. p0
`−→u p

′
0 and s′ = p′0·p1. Since p0 Cu

√
, by induction, ` = τ and p′0 Cu

√
. Then

p′0·p1 Cu t.

2. p0
`−→u
√

and s′ = p1. Since p0 Cu
√

, by induction, ` = τ . And p1 ↔rtb t clearly implies
p1 Cu t.

Fourthly, t = q0·q1, with
√
Cu q0 and s ↔rtb q1. Since

√ ↓, by induction, q0 =⇒u t0 ↓. Clearly,

t0 =
√

. Since s↔rtb q1, s
`−→u s

′ implies q1
`−→u t

′ with s′ ↔u
tb t
′. So q0·q1 =⇒u q1

`−→u t
′.

B If s Cu t and s ↓, then we must prove, that t=⇒u t
′ ↓, with s Cu t′.

We apply induction on the structure of s and t. Since s Cu t, by Definition 6.2, we can distinguish
four cases:

Firstly, s ↔u
tb t. The proof obligation follows directly from the definition of timed branching

bisimilarity.

Secondly, s = p0·p1 and t = q0·q1, with p0 Cu q0 and p1 ↔rtb q1. This case is vacuous, since
s = p0·p1 contradicts s ↓.
Thirdly, s = p0·p1, with p0 Cu

√
and p1 ↔rtb t. This case is vacuous, since s = p0·p1 contradicts

s ↓.
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Fourthly, t = q0·q1, with
√
Cu q0 and s ↔rtb q1. This case is vacuous, since s ↓ and s ↔rtb q1

implies q1 ↓, which is not possible.

C If s Cu t and u ≤ v and U(s, v), then we must prove, that for some n ≥ 0 there are t0,. . .,tn ∈ S
with t = t0 and U(tn, v), and u0,. . . , un ∈ Time with u = u0 and v = un, such that for i < n,
ti =⇒ui ti+1 and s Cw ti+1 for ui ≤ w ≤ ui+1.

We apply induction on the structure of s and t. Since s Cu t, by Definition 6.2, we can distinguish
four cases:

Firstly, s ↔u
tb t. The proof obligation follows directly from the definition of timed branching

bisimilarity.

Secondly, s = p0·p1 and t = q0·q1, with p0 Cu q0 and p1 ↔rtb q1. Since U(p0·p1, v), also
U(p0, v). Since p0 Cu q0 and u ≤ v, by induction, for some n ≥ 0 there are q̂0, . . . , q̂n ∈ S with
q0 = q̂0 and U(q̂n, v), and u0, . . . , un ∈ Time with u = u0 and v = un, such that for i < n,
q̂i =⇒ui q̂i+1 and p0 Cw q̂i+1 for ui ≤ w ≤ ui+1. Clearly, t = q̂0·q1 and U(q̂n·q1, v), and for i < n,
q̂i·q1 =⇒ui q̂i+1·q1 and p0·p1 Cw q̂i+1·q1 for ui ≤ w ≤ ui+1.

Thirdly, s = p0·p1 with p0 Cu
√

and p1 ↔rtb t. Since U(s, v), also U(p0, v). Since v > u, by
case C, this contradicts p0 Cu

√
, so this case is vacuous.

Fourthly, t = q0·q1 with
√
Cu q0 and s ↔rtb q1. Since

√
Cu q0, by case C, q0 =⇒u

√
and

¬U(q0, v) for v ≥ u. So q0·q1 =⇒u q1. Since s ↔rtb q1 and U(s, v), also U(q1, v). Clearly, the
proof obligation holds with n = 1.

A.2. Proof of Lemma 6.2

By Definition 6.3, we can distinguish six cases (the last two of Definition 6.3 are not applicable):

1. p↔u
tb q. Then it follows immediately from Definition 4.1, case 6, that U(q, u).5

2. p = p0 || p1 and q = q0 || q1, with p0 Du q0 and p1 Du q1. Since U(p0 || p1, u), we have
U(p0, u) and U(p1, u). Therefore, by induction, U(q0, u) and U(q1, u). From this, it follows
that U(q0 || q1, u).

3. p = p0 || p1, with p0 Du
√

and p1 Du q. Since U(p0 || p1, u), we have U(p1, u). Therefore, by
induction, U(q, u).

4. p = p0 || p1, with p0 Du q and p1 Du
√

. Similar to the previous case.

5. q = q0 || q1, with
√
Du q0 and p Du q1. By Definition 6.3,

√ ↔u
tb q0. Since q0 6=

√
, it follows

from Definition 4.1, case 3, that U(q0, u). Since U(p, u), by induction, U(q1, u). From U(q0, u)
and U(q1, u), it follows that U(q0 || q1, u).

6. q = q0 || q1, with p Du q0 and
√
Du q1. Similar to the previous case.

5Note that this holds due to ‘u ≤ v’ and ‘n ≥ 0’ in case 6, because in the original definition of Van der Zwaag, we would have
δ(1)↔Z,2

tb δ(2); see footnote 3.
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A.3. Proof of Lemma 6.3

In this proof of Lemma 6.3, all cases that involve successful termination have been discarded. We point
out that the full proof contains at least 528 different cases.

The proof consists of two parts (plus two symmetric parts); the proof consists of three parts (plus
three symmetric parts) if we would take into account successful termination.

A If s Du t and s
`−→u s

′, then we must prove, that

i either ` = τ and s′ Du t,

ii or t=⇒u t̂
`−→u t

′ with s Du t̂ and s′ Du t
′.

We apply induction on the structure of s and t. Since s Du t, by Definition 6.3, we can distinguish
two cases (eight if we consider successful termination).

Firstly, s ↔u
tb t. The proof obligation follows directly from the definition of timed branching

bisimilarity.

Secondly, s = p0 || p1 and t = q0 || q1, with p0 Du q0 and p1 Du q1. Since p0 || p1
`−→u s

′, by the
transition rules, we can distinguish three cases (eight if we consider successful termination):

1. Let p0
`−→u p

′
0, U(p1, u) and s′ = p′0 || p1. By Lemma 6.2, since U(p1, u), also U(q1, u).

Since p0 Du q0, by Definition 6.3, we can distinguish two cases (eight if we consider suc-
cessful termination):

(a) p0 ↔u
tb q0. Since p0

`−→u p
′
0, by Definition 4.1, we can again distinguish two cases:

i ` = τ and p′0 ↔u
tb q0. Then p′0 || p1 Du q0 || q1.

ii q0 =⇒u q̂
`−→u t0, with p0 ↔u

tb q̂ and p′0 ↔u
tb t0. Then, since U(q1, u) (and we do

not consider successful termination, hence t0 6=
√

), it follows that

q0 || q1 =⇒u q̂ || q1
`−→u t0 || q1, p0 || p1 Du q̂ || q1 and p′0 || p1 Du t0 || q1.

(b) p0 = p00 || p01 and q0 = q00 || q01 with p00 Du q00 and p01 Du q01. Since p00 || p01
`−→u

p′0, by the transition rules (not considering successful termination), either p00
`−→u p

′
00

and U(p01, u) with p′0 = p′00 || p01, or p01
`−→u p

′
01 and U(p00, u) with p′0 = p00 || p′01,

or p00 || p01
`−→u p

′
00 || p′01 with p′0 = p′00 || p′01 if there exist `0, `1 ∈ Act such that

p00
`0−→u p

′
00, p01

`1−→u p
′
01, and `0 | `1 = `.

In the first case, by Lemma 6.2, since U(p01, u), also U(q01, u). Since p00 Du q00 and

p00
`−→u p

′
00, by induction,

i either ` = τ and p′00 Du q00. Then p′00 || p01 || p1 Du q00 || q01 || q1.

ii or q00 =⇒u q̂00
`−→u t00, with p00 Du q̂00 and p′00 Du t00. Then (we do not consider

successful termination here, hence t00 6=
√

), q00 || q01 =⇒u q̂00 || q01
`−→u t00 || q01,

so, since U(q01 || q1, u), q00 || q01 || q1 =⇒u q̂00 || q01 || q1
`−→u t00 || q01 || q1. Fur-

thermore p00 || p01 || p1 Du q̂00 || q01 || q1 and p′00 || p01 || p1 Du t00 || q01 || q1.
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The second case is similar to the first case.
In the third case, since p00 Du q00, p00

`0−→u p
′
00, and `0 6= τ (since `0 | `1 =

`), by induction, q00 =⇒u q̂00
`0−→u t00, with p00 Du q̂00 and p′00 Du t00. Similarly,

since p01 Du q01, p01
`1−→u p

′
01, and `1 6= τ (since `0 | `1 = `), by induction,

q01 =⇒u q̂01
`0−→u t01. Then (we do not consider successful termination here, hence

t00 6=
√

and t01 6=
√

), it follows that q00 || q01 =⇒u q̂00 || q̂01
`−→u t00 || t01. Since

U(q1, u), q00 || q01 || q1 =⇒u q̂00 || q̂01 || q1
`−→u t00 || t01 || q1. Furthermore

p00 || p01 || p1 Du q̂00 || q̂01 || q1 and p′00 || p′01 || p1 Du t00 || t01 || q1.

2. Let p1
`−→u p

′
1, U(p0, u) and s′ = p0 || p′1. This case is similar to the previous case.

3. Let p0 || p1
`−→u p

′
0 || p1 with `0, `1 ∈ Act such that p0

`0−→u p
′
0, p1

`1−→u p
′
1, and `0 | `1 = `.

Since p0 Du q0, p0
`0−→u p

′
0, and `0 6= τ (since `0 | `1 = `), by induction, q0 =⇒u q̂0

`0−→u t0,

with p0 Du q̂0 and p′0 Du t0. Similarly, since p1 Du q1, p1
`1−→u p

′
1, and `1 6= τ (since

`0 | `1 = `), by induction, q1 =⇒u q̂1
`1−→ut1. Then (we do not consider successful termination

here, hence t0 6=
√

and t1 6=
√

), it follows that q0 || q1 =⇒u q̂0 || q̂1
`−→ut0 || t1. Furthermore

p0 || p1 Du q̂0 || q̂1 and p′0 || p′1 Du t0 || t1.

B If s Du t and u ≤ v and U(s, v), then we must prove, that for some n ≥ 0 there are t0,. . .,tn ∈ S
with t = t0 and U(tn, v), and u0,. . . , un ∈ Time with u = u0 and v = un, such that for i < n,
ti =⇒ui ti+1 and s Dw ti+1 for ui ≤ w ≤ ui+1.

We apply induction on the structure of s and t. Since s Du t, by Definition 6.3, we can distinguish
two cases (eight if we consider successful termination).

Firstly, s ↔u
tb t. The proof obligation follows directly from the definition of timed branching

bisimilarity.

Secondly, s = p0 || p1 and t = q0 || q1, with p0 Du q0 and p1 Du q1. Since U(p0 || p1, v),
also U(p0, v) and U(p1, v). Since p0 Du q0 and u ≤ v, by induction, for some n ≥ 0 there
are q̂0, . . . , q̂n ∈ S with q0 = q̂0 and U(q̂n, v), and u0, . . . , un ∈ Time with u = u0 and
v = un, such that for i < n, q̂i =⇒ui q̂i+1 and p0 Dw q̂i+1 for ui ≤ w ≤ ui+1. Similarly,
since p1 Du q1 and u ≤ v, by induction, for some m ≥ 0 there are q̂ ′0, . . . , q̂

′
m ∈ S with

q1 = q̂′0 and U(q̂′m, v), and u′0, . . . , u
′
m ∈ Time with u = u′0 and v = u′m, such that for i < m,

q̂′i =⇒u′i
q̂′i+1 and p1 Dw q̂′i+1 for u′i ≤ w ≤ u′i+1. Clearly, these two sequences for q̂0, . . . , q̂n

and for q̂′0, . . . , q̂
′
m can in a straightforward fashion be transformed into a sequence, such that for

k = n+m there are q̄0, . . . , q̄k ∈ S and q̄′0, . . . , q̄
′
k ∈ S with q0 = q̄0, U(q̄k, v), q1 = q̄′0, U(q̄′k, v),

and u0, . . . , uk ∈ Time with u = u0 and v = uk, such that for i < k, q̄i || q̄′i =⇒ui q̄i+1 || q̄′i+1 and
p0 || p1 Dw q̄i+1 || q̄′i+1 for ui ≤ w ≤ ui+1.

B. Branching Tail Bisimulation

The notion of branching tail bisimulation from [2] is closely related to Van der Zwaag’s definition of
timed branching bisimulation. We show that in case of dense time, our counter-example (see Example
3.5) again shows that branching tail bisimilarity is not an equivalence relation.
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In the absolute time setting of Baeten and Middelburg, states are of the form<p, u> with p a process
algebraic term and u a time stamp referring to the absolute time. They give an operational semantics to
their process algebras such that if <p, u>

v7−→ <p, u+v> (where
v7−→ for v > 0 denotes a time step of

v time units), then <p, u>
w7−→ <p, u+w> for 0 < w < v; in our example this saturation with time

steps will be mimicked. The reflexive transitive closure of
τ−→ is denoted by � . The relation s

u7� s′ is

defined by: either s� ŝ
u7−→ s′, or s

v7� ŝ
w7� s′ with v + w = u.6

Branching tail bisimulation is defined as follows.7

Definition B.1. (Branching tail bisimulation [2])
Assume a TLTS in the style of Baeten and Middelburg. A symmetric binary relation B ⊆ S × S is a
branching tail bisimulation if s B t implies:

1. if s
`−→ s′, then

i either ` = τ and t� t′ with s B t′ and s′ B t′;

ii or t� t̂
a−→ t′ with s B t̂ and s′ B t′;

2. if s
`−→<
√
, u>, then t� t′ `−→<

√
, u> with s B t′;

3. if s
u7−→ s′, then

i either t� t̂
v7−→ t̂′

w7� t′ with v +w = u, s B t̂ and s′ B t′;

ii or t� t̂
u7−→ t′ with s B t̂ and s′ B t′.

Two states s and t are branching tail bisimilar, written s ↔BM
tb t, if there is a branching tail bisimulation

B with s B t.8

We proceed to transpose the TLTSs from Example 3.5 into the setting of Baeten and Middelburg. We
now have the following transitions, for i ≥ 0:

6Baeten and Middelburg also have a deadlock predicate ↑, which we do not take into account here, as it does not play a role in
our counter-example.
7Baeten and Middelburg define this notion in the setting with relative time, and remark that the adaptation of this definition to
absolute time is straightforward. Here we present this straightforward adaptation.
8The superscript BM refers to Baeten and Middelburg, to distinguish it from the notion of timed branching bisimulation as
defined in Definition 4.1.
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<p, 0>
τ−→<p0, 0> <q, 0>

τ−→<q0, 0>

<pi, 0>
τ−→<pi+1, 0> <qi, 0>

τ−→<qi+1, 0>

<pi+1, 0>
τ−→<pi, 0> <qi+1, 0>

τ−→<qi, 0>

<pi, u>
v−u7−→<pi, v>, 0 ≤ u < v ≤ 1

i+2 <qi, u>
v−u7−→<qi, v>, 0 ≤ u < v ≤ 1

<pi,
1
i+2>

τ−→<p′i,
1
i+2> <qi,

1
n>

a−→<
√
, 1
n>, n = 1, . . . , i+ 1

<p′i, u>
v−u7−→<p′i, v>, 1

i+2 ≤ u < v ≤ 1

<p′i,
1
n>

a−→<
√
, 1
n>, n = 1, . . . , i+ 1

<r, 0>
τ−→<r0, 0>

<ri, 0>
τ−→<ri+1, 0>

<ri+1, 0>
τ−→<ri, 0>

<ri, u>
v−u7−→<ri, v>, 1

i+2 ≤ u < v ≤ 1

<ri,
1
n>

a−→<
√
, 1
n>, n = 1, . . . , i+ 1

<r0, 0>
τ−→<r∞, 0>

<r∞, 0>
τ−→<r0, 0>

<r∞, u>
v−u7−→<r∞, v>, 0 ≤ u < v ≤ 1

<r∞, 1
n>

a−→<
√
, 1
n>, n ∈ �

<p, 0> ↔BM
tb <q, 0>, since <p,w> B <q,w> for w ≥ 0, <pi, w> B <qi, w> for w ≤ 1

i+2 , and
<p′i, w> B <qi, w> for w > 0 (for i ≥ 0) is a branching tail bisimulation.

Moreover, <q, 0> ↔BM
tb <r, 0>, since <q,w> B <r,w> for w ≥ 0, <qi, w> B <ri, w> for

w ≥ 0, <qi, 0> B <rj , 0>, and <qi, w> B <r∞, w> for w = 0∨w > 1
i+2 (for i, j ≥ 0) is a branching

tail bisimulation.
However, <p, 0> 6↔BM

tb <r, 0>, since p cannot simulate r. This is due to the fact that none of the
pi can simulate r∞. Namely, r∞ can idle until time 1. pi can only simulate this by executing a τ at time

1
i+2 , but the resulting process <p′i,

1
i+2> is not timed branching bisimilar to <r∞, 1

i+2>, since only the
latter can execute action a at time 1

i+2 .
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