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ABSTRACT
We propose a natural generalisation of asynchronous bounded
delay (ABD) network models. The commonly used ABD
models assume a known bound on message delay. This as-
sumption is often too strict for real-life applications. To
this end we introduce a novel probabilistic network model,
called asynchronous bounded expected delay (ABE), which
requires a known bound on the expected message delay.
While the conditions of ABD networks restrict the set of
possible executions, in ABE networks all asynchronous exe-
cutions are possible, but executions with extremely long de-
lays are less probable. The ABE model captures asynchrony
that occurs in sensor networks and ad-hoc networks.

Categories and Subject Descriptors: C.2.1 Computer-
communication Networks: Network Architecture and De-
sign, D.4.7 Organization and Design: Distributed systems.

General Terms: Algorithms, Performance, Theory.

Keywords: ABD networks, probabilistic algorithms, anony-
mous networks.

1. INTRODUCTION
The two main network models are synchronous and asyn-

chronous. In synchronous network all nodes proceed simul-
taneously in global rounds. While this model allows for effi-
cient algorithms, the assumptions are typically too strict for
practical applications. The asynchronous network model,
on the other hand, requires only that every message will
eventually be delivered. The assumptions of this model are
generally too weak to study the time complexity of algo-
rithms.

For the development of practically usable, efficient algo-
rithms we need to find a golden mean between synchronous
and asynchronous networks. A possible approach is asyn-
chronous bounded delay (ABD) networks [3, 5], where a
fixed bound on the message delivery time is assumed. While
this assumption allows for efficient synchronisation, it brings
ABD networks closer to synchronous than to asynchronous
networks. The ABD model is a nice theoretical framework,
but the assumption of a bounded message delay is often hard
to satisfy in real-life networks.

We propose a probabilistic model, that we call asynchronous
bounded expected delay (ABE) networks. The ABE network
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model extends asynchronous networks with the assumption
that a bound on the expected message delay is known. Thus,
we strengthen the asynchronous networks model with a min-
imal requirement for analysing the time complexity of algo-
rithms. Surprisingly, this assumption suffices for the devel-
opment of efficient algorithms. For asynchronous rings, the
lower bound on the message complexity for leader election is
known to be Ω(n · log n). In [2], a leader election algorithm
for anonymous, unidirectional ABE rings of known size n

has been developed, having both (average) linear time and
message complexity. So its efficiency is comparable to the
most optimal leader election algorithms known for anony-
mous, synchronous rings [4].

We briefly elaborate on the benefits of the ABE network
model. In practice, the message delay is often unbounded.
The reasons for an unbounded delay are multifarious; to
name a few:

(i) message queueing due to limited network bandwidth
and peaks in the network load,

(ii) dynamic message routing,

(iii) message retransmission due to loss or corruption of
messages transmitted via physical channels.

We shed a bit more light on the case (iii). Messages sent via
a physical channel may get lost or corrupted, for example,
due to material imperfections or signal inferences. Since
message transmission is unreliable, all we can settle for is
a probability p of successful transmission. To ensure that a
message arrives at its destination, it may need to be retrans-
mitted (possibly multiple times) until the transmission has
been successful. The number of necessary retransmissions
for a message cannot be bounded: with probability (1− p)k

a message requires more than k retransmissions, and thus
the message delay is unbounded. While the message delay
cannot be bounded, from the probability p we can derive the
average number of needed retransmissions and thereby the
average message delay. In particular, the average number
of transmissions is kavg =

P

∞

k=0(k + 1) · (1 − p)k · p = 1
p
.

If a successful transmission takes one time unit, the average
message delay is 1

p
as well.

2. ABE NETWORKS
We introduce the model of ABE networks, which strength-

ens asynchronous networks with the assumption of a known
bound on the expected message delay. This strengthening
allows one to analyse the (average) time complexity of algo-
rithms.
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At first glance it may appear superfluous to consider a
bound on the expected delay, instead of the expected delay
itself. We briefly motivate our choice. First, when determin-
ing the expected delay for real-world networks, one needs to
take into account parameters such as material properties,
environmental radiation, electromagnetic waves, etc. Fre-
quently, these values change over time, or cannot be calcu-
lated precisely. Thus we have to cope with ranges for each of
these parameters, and consequently, the best we can deduce
is an upper bound on the expected message delay. Second,
the links in a network are typically not homogeneous and
often have different expected delays. Then the maximum of
these delays can be chosen as an upper bound, instead of
having to deal with different delays for ever link.

Definition 1 We call a network asynchronous bounded ex-
pected delay (ABE) if the following holds:

1. A bound δ on the expected message delay (network
latency) is known. (We assume that the delays of dif-
ferent messages are stochastically independent.)

2. Let t be a real time. We assume that bounds 0 <

slow ≤ shigh on the speed of the local clocks are known.
That is, for every node A the following holds for the
local clock CA:

slow · (t2 − t1) ≤ |CA(t2) − CA(t1)| ≤ shigh · (t2 − t1) .

3. A bound γ on the expected time to process a local
event is known.

In comparison with ABD networks, the ABE network
model relieves the assumption of a strict bound on the mes-
sage delay. The assumption is weakened to a bound on
the expected message delay. Thereby we obtain a proba-
bilistic network model which, as discussed above, covers a
wide range of real-world networks to which the ABD net-
work model is not applicable. Thus, we advocate the model
of ABE networks as a natural and useful extension of the
asynchronous network model.

To conclude this section, we discuss synchronisers for ABE
networks. A synchroniser is an algorithm to simulate a syn-
chronous network on another network model. A well-known
impossibility result [1] states that asynchronous networks
cannot be synchronised with fewer than n messages per
round (ever node needs to send a message every round).
This of course destroys the message complexity when run-
ning synchronous algorithms in an asynchronous network.
The more efficient ABD synchroniser by Tel et al. [6] relies
on knowledge of the bounded message delay. As in asyn-
chronous networks the message delay in ABE networks is
unbounded (although we assume a bound on the expected
delay). In a slogan: every execution of an asynchronous net-
work is also an execution of an ABE network. The difference
is that huge message delays in ABE networks are less prob-
able. Hence, the impossibility result [1] for asynchronous
networks carries over to ABE networks, and we obtain the
following theorem:

Theorem 1 ABE networks of size n cannot be synchronised
with fewer than n messages per round.

Hence, we cannot run synchronous algorithms in ABE net-
works without losing the message complexity.

Although ABE networks are very close to asynchronous
networks, it turns out the model allows for the development
of efficient algorithms.

3. AN ELECTION ALGORITHM
FOR ANONYMOUS RINGS

We present an election algorithm for anonymous, unidirec-
tional ABE rings. The algorithm is parameterised by a base
activation parameter A0 ∈ (0, 1). The order of messages is
arbitrary between any pair of nodes.

During execution of the algorithm every node is in one of
the following states: idle, active, passive or leader; in the ini-
tial configuration all nodes are idle. Moreover, every node A

stores a number d(A), initially 1. The messages sent between
the nodes are of the form 〈hop〉, where hop ∈ {1, . . . , n} is
the hop-counter of the message. Every node A executes the
following algorithm:

• If A is idle, then at every clock tick, with probability
1 − (1 − A0)

d(A), A becomes active, and in this case
sends the message 〈1〉.

• If A receives a message 〈hop〉, it sets d(A) = max(d(A),
hop). In addition, depending on its current state, the
following actions are taken:

(i) If A is idle, then it becomes passive and sends the
message 〈d(A) + 1〉.

(ii) If A is passive, it sends the message 〈d(A) + 1〉.

(iii) If A is active, then it becomes leader if hop = n,
and otherwise it becomes idle, purging the mes-
sage in both cases.

In other words, messages travel along the ring and ‘knock
out’ all idle nodes on their way. That is, idle and passive

nodes forward messages; by forwarding a message, idle nodes
are turned passive. If a message has knocked out an idle node
(at any point during its lifetime), we refer to the message
as knockout message. If a message hits an active node, then
it is purged, and the active node becomes idle, or is elected
leader if hop = n (that is, if the node itself is originator of
the message).

The value d(A) stores the highest received hop-count for
every node. It indicates that d(A) − 1 predecessors are
passive. A higher value of d(A) increases the probability

that a node A becomes active. By taking 1− (1−A0)
d(A) as

wake-up probability for nodes A, we achieve that the overall
wake-up probability for all nodes stays constant over time.
This ensures that the algorithm has linear time and message
complexity. For details the reader is referred to [2].
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