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Abstract. This paper presents an algebraic approach of some many-valued generalizations

of modal logic. The starting point is the de�nition of the [0, 1]-valued Kripke models, where

[0, 1] denotes the well known MV-algebra.

Two types of structures are used to de�ne validity of formulas: the class of frames and the

class of �n-valued frames. The latter structures are frames in which we specify in each world

u the set (a subalgebra of �n) of the allowed truth values of the formulas in u.

We apply and develop algebraic tools (namely, canonical and strong canonical extensions)

to generate complete modal n + 1-valued logics and we obtain many-valued counterparts of

Shalqvist canonicity result.

1. Introduction

When one looks backwards in the history of modern logic, one can notice that modal logics

and many-valued logics are born approximatively at the same time. It even appears that some

logicians, such as �ukasiewicz, de�ned many-valued systems in order to deal with modalities

(see chapter 21 of [20]). By considering a third truth value, they meant to express that a formula

can, for example, be possible without being true.

Nevertheless, these two types of formalisms followed their own ways. They are indeed two

generalizations of propositional calculus with very di�erent properties.

On the one hand, mathematicians studied many-valued logics (as de�ned by J. �ukasiewicz

in [27]; see [28] for an English translation and [8] for a monograph on the subject) through their

algebraic form: the class of MV-algebras that was de�ne d by C.C. Chang in 1958 (see [5]

and [6]) in order to obtain an algebraic proof of the completeness result for the in�nite-valued

�ukasiewicz logic.

On the other hand, modal logics were also studied through their algebraic disguises, which

are the Boolean algebras with operators (introduced in [24] and [25]). But the success of modal

logics among the communities of mathematicians, computer scientists and philosophers is a

consequence of the relational semantics introduced in the sixties by S. Kripke (see [26]). With

Kripke semantic, also called possible worlds semantic, a formula is possible in a world w if

there is a world accessible to w in which the formula is true. From then on, in their approach of

modal logic, mathematicians have been focusing their attention on the connection between the

algebraic and the relational semantics. This approach allowed a great simpli�cation of the proof

of the completeness of normal modal logics through the construction of the so-called canonical

model (see [32] for example).
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This paper presents some many-valued generalizations of modal logic. Many authors have

already initiated such studies (see [10, 11, 12, 30, 2, 3]). As each of these authors realized, since

the success of modal logic is a consequence of its Kripke semantic, it is wise to consider this

semantic as a starting point for many-valued generalizations of modal logic.

The diversity of the many-valued modal systems that have already been introduced proves

that the principle of �keeping Kripke semantic� still allows a lot of freedom in the de�nitions.

Indeed, there are many ways for the generalization of Kripke models to a many-valued realm.

Nevertheless, these generalizations can be classi�ed in two (non exclusive) classes: the class of

the Kripke models in which propositional variables are evaluated in a set with more than two

elements and the class of the Kripke models in which the accessibility relation is many-valued.

Facing these possibilities, the logician may combine several criteria to determine the approach

he wants to follow. His choice can be guided by the applications he wishes to develop for his

systems (as in [12]), by the theme of the results that are to be obtained in priority (translation

between modal formulas and �rst order formulas for example), by the tools he wishes to apply

(algebras, coalgebras, model theory, . . . ), by his intuition and his abilities.

In our case, we were guided by the will to consider many-valued Kripke models for which

the existing algebraic tools could be applied or generalized. Hence, we have decided to base our

approach on �ukasiewicz logics. The Kripke models that we consider are models with a crisp

relation in which variables have their truth value in the MV-algebra [0, 1]. Since the variety of

MV-algebras shares a lot of properties with the variety of Boolean algebras, we hoped to �nd

in this variety the properties required for an algebraic approach that would lead, at least, to a

completeness result.

The �rst part of the paper, sections 2 � 6, contains essentially the results of an unpublished

paper [21] of the authors. In this part, we de�ne the [0, 1]-valued Kripke models and their

corresponding modal many-valued logics. We then de�ne the varieties of the modal many-

valued algebras that give an algebraic semantic with respect to which any modal many-valued

logic is complete. This result is a step towards the construction of the canonical model of any

modal many-valued logic and towards Proposition 5.6 that shows that the valuation map in the

canonical model extends nicely to formulas. This construction leads us to completeness results

for the modal many-valued logics and Kripke models, i.e., to syntactic characterizations of the

smallest modal many-valued logic (Proposition 6.4 and Proposition 6.6). In this regard, the

reader may feel a bit unsatis�ed with the results we obtain about in�nitely valued logics since

these results involve an in�nitary deduction rule.

The second part of the paper focuses on the problem of completeness of modal n + 1-valued

logics with regard to classes of structures. Two types of structures are considered, giving rise

to two types of completeness: the frames and strong Kripke completeness on the one hand

and the �n-valued frames and Kripke completeness on the other hand. A frame is a structure

with a single binary relation (the accessibility relation). An �n-valued frame (where �n is the

subalgebra {0, 1
n , . . . ,

n−1
n , 1} of [0, 1] for any strictly positive integer n) is a frame in which we

have speci�ed in each world the set of the allowed truth values (a subalgebra of �n) for the

propositions in this world.

These completeness problems are approached in a syntactic way with the algebraic tool. In

section 8, we obtain Kripke completeness results by studying preservation of equations through

canonical extensions (algebras are considered as expanded distributive lattices). We obtain a

many-valued equivalent (Theorem 8.26) of the Sahlqvist canonicity result by slightly adapting

the proof of the corresponding result for Boolean modal logic that is presented in [32].
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Strong Kripke completeness results are then obtained in section 9 by studying preservation

of equations through a new type of extension, called the strong canonical extension. The main

result of this section is Theorem 9.16 that identi�es a subfamilly of Sahlqvist equations that

are preserved under strong canonical extension and thus, that de�ne strongly canonical logics.

2. A relational semantic for modal [0, 1]-valued logics

Most of the authors who have recently studied modal extensions of many-valued systems agree

on the necessity to develop systems that admit a Kripke style semantic (see [2, 10, 11, 30]). We

follow that reasonable rule and start by introducing a suitable notion of Kripke model.

Let us denote by Prop an in�nite set of propositional variables, by LMV the language {→,¬}
where → is binary and ¬ is unary, by � a unary symbol and by Form the set of formulas de�ned

inductively by the following rules:

(1) Prop ⊆ Form;

(2) if φ and ψ are in Form then ¬φ, φ→ ψ and �φ are in Form.

The intended meaning of φ→ ψ and ¬ψ is clear (these formulas have their usual �ukasiewicz

meaning) and �φ can be read, for example, as �necessarily φ�.

In the sequel, we use some standard abbreviations: the formula φ ⊕ ψ stands for ¬φ → ψ,

the formula ψ � φ for ¬(¬ψ ⊕ ¬φ), the formula φ ∨ ψ for (φ → ψ) → ψ, the formula φ ∧ ψ for

¬(¬φ ∨ ¬ψ) and ♦φ for ¬�¬φ.
The classical de�nition of a Kripke model can easily be extended to a [0, 1]-valued realm.

We consider that the real unit interval [0, 1] is endowed with the �ukasiewicz implication and

negation: x→ y = min(1, 1−x+ y) and ¬x = 1−x. If n is a strictly positive integer, we denote

by �n the subset {0, 1
n , . . . ,

n−1
n , 1} of [0, 1]. Note that �n is closed for → and ¬.

De�nition 2.1. Amany-valued Kripke model (or simply amany-valued model)M = 〈W,R,Val〉
is given by a non empty setW , an accessibility relation R ⊆W×W and a map Val : W×Prop→
[0, 1]. If n is a positive integer such that Val(W,Prop) ⊆ �n, then we call M an n + 1-valued

Kripke model.

A frame F = 〈W,R〉 is given by an non empty set W and an accessibility relation R on W . A

modelM = 〈W ′, R′,Val〉 is based on the frame F = 〈W,R〉 if W = W ′ and R = R′.

If M = 〈W,R,Val〉 is a many-valued Kripke model, we extend inductively the map Val to

formulas of Form by the following rules:

• Val(w, φ→ ψ) = Val(w, φ)→ Val(w,ψ) and Val(w,¬φ) = ¬Val(w, φ),

• Val(w,�φ) =
∧
{Val(w′, φ) | (w,w′) ∈ R},

for any formulas φ and ψ of Form and any world w of W (where
∧

is the in�mum in [0, 1]).

We writeM, w |= φ or simply w |= φ (and say that φ is true at w) whenever Val(w, φ) = 1,

andM |= φ whenever w |= φ for any w in W . In that case, we say that φ is true inM. If Γ is

a set of formulas that are true in a modelM, thenM is a model of Γ. If F is a frame and φ is

a formula that is true in any model based on F, we say that φ is valid in F and write F |= φ. If

φ is true in any n+ 1-valued model based on F, we write F |=n φ (or even F |= φ if the context

is clear).

Note that the 2-valued Kripke models coincide with the Kripke models of normal modal

logics (then the operation ⊕ matches up with the supremum ∨). More general Kripke models,

in which the accessibility relation can be many-valued, are considered in [2]. In the sequel, we

prove that there is another class of structures that turns out to be richer than the class of frames.
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Proposition 2.2. If τ is an increasing unary term of the language LMV ( i.e., a unary term

whose interprepation on any MV -algera is an increasing map), then the formulas

�(p→ q)→ (�p→ �q), �(p ∧ q)↔ �p ∧�q, �τ(p)↔ τ(�p)

are tautologies, i.e., they are true in any many-valued Kripke model.

The idea of using these models as a semantic for modal many-valued logics is not new. See

[30] for example.

3. �ukasiewicz modal many-valued logics

The purpose of this section is to introduce a family of modal many-valued logics and their

corresponding algebras in order to tackle completeness results through canonicity. We refer to

[8, 22] for an introduction to �ukasiewicz logic and to [1, 4, 7] for an introduction to modal

logic.

The modal theory of a frame is captured in the concept of a modal many-valued logic.

De�nition 3.1. A modal many-valued logic is a set L of formulas of Form that is closed under

modus ponens, uniform substitution, the necessitation rule (RN) (if φ ∈ L then �φ ∈ L) and

that contains

• an axiomatic base of �ukasiewicz many-valued logic (p → (q → p), (p → q) → ((q →
r)→ (p→ r)), ((p→ q)→ q)→ ((q → p)→ p), (¬p→ ¬q)→ (q → p) for example);

• the axiom (K) of modal logic: �(p→ q)→ (�p→ �q),
• the formulas �(p⊕ p)↔ �p⊕�p and �(p� p)↔ �p��p,
• the formula �(p⊕ pm)↔ (�p⊕ (�p)m) for every positive integer m.

As usual, we write `L φ and say that φ is a theorem of L whenever φ ∈ L and denote by K the

smallest modal many-valued logic. If in addition L contains an axiomatic base of the n+1-valued

�ukasiewicz logic, we say that L is a modal �n-valued logic and we denote by Kn the smallest

of these logics.

It is easy to prove that if C is a class of frames, then the modal theory of C (i.e., the set of

formulas that are true in any model based on a frame of C) is a modal many-valued logic.

Note that, according to Proposition 2.2, many-valued Kripke models form a sound semantic

for K. Let us also remark that, as it will appear clearly in the sequel of the paper (in the proof of

Proposition 5.6), we only use the last family of axioms as a kind of conservative law for � with

respect to in�nitely great elements. Moreover Proposition 6.4 provides an axiomatization of the

�nitely-valued logics without this family of axioms (and this explains why we have added the

axiom �(p⊕ p)↔ �p⊕�p even if it is equivalent to �(p⊕ pm)↔ (�p⊕ (�p)m) with m = 1).

We can easily obtains the following theorems and admissible rules of K.

Proposition 3.2. The following formulas are theorems of K:

�(p→ q)→ (♦p→ ♦q), ♦(p⊕ q)→ (♦p⊕ ♦q),
(�p ∧ ♦q)→ ♦(p ∧ q), �(p ∧ q)→ (�p ∧�q)
(�p��q)→ �(p� q).

Moreover, the following rules are derivable in K:

(1)
φ↔ ψ

�φ↔ �ψ
,

(2)
φ1 � · · · � φn → ψ

�φ1 � · · · ��φn → �ψ
.



EXT. �UKASIEWICZ LOGICS WITH A MODALITY: ALG. APPROACH TO RELATIONAL SEMANTICS 5

Proof. The proofs are simple adaptations of the two-valued proofs. �

Note that at this point of our development, we are not able to determine if the formula

(�p ∧ �q) → �(p ∧ q) is in K or in Kn (for n ≥ 2). We shall conclude latter, thanks to

a completeness result, that it is a theorem of Kn for any n. On the contrary, the formula

�(p� q)→ �p��q is not a theorem of Kn for any n ≥ 2 since it is not a Kn-tautology.

De�nition 3.3. If Γ ∪ {φ} is a set of formulas and if L is a many-valued modal logic, we say

that φ is deducible from Γ in L and write Γ `L φ (or simply Γ ` φ when L = K or L = Kn

according to the context) if there is a �nite subset {φ1, . . . , φr} of Γ and some positive integers

m1, . . . ,mr such that `L (φm1
1 � · · · � φmrr )→ φ.

4. Modal many-valued algebras and the algebraic semantic

We introduce the varieties of modal many-valued algebras and state the completeness result

for modal many-valued logics and algebras. This somehow obvious result can be seen as a step

towards the construction of the canonical model and possible completeness theorems for many-

valued modal logics and many-valued Kripke models. We refer the reader to [8] or [18] for an

introduction to the variety of MV-algebras.

De�nition 4.1. If L is a modal many-valued logic then an L-algebra is an algebra A over the

language LMMV = {→,¬,�, 0, 1} that satis�es the equations naturally induced by the formulas

of L. We denote byMMV (resp. MMVn) the variety of K-algebras (resp. the variety of Kn-

algebras). Members of MMV (resp. MMVn) are simply called modal many-valued algebras

or MMV-algebras (resp. modal �n-valued algebras or MMVn-algebras) and the operation � is

called a dual operator.

A modal many-valued logic L is often given by a set Γ of axioms, i.e., the logic L is de�ned

as the smallest modal many-valued logic that contains K ∪ Γ, and is denoted by K + Γ.

Since the most commonly used axiomatization of the varietyMV of MV-algebras is given over

the language {⊕,�,¬, 0, 1}, we preferably use this language instead of LMV (with the help of

the equation (¬φ⊕ ψ) = (φ→ ψ) that de�nes → from {¬,⊕} inMV). Thus, an MMV-algebra

is an algebra A = 〈A,⊕,�,¬,�, 0, 1〉 of type (2, 2, 1, 1, 0, 0) such that

• the reduct of A to the language {⊕,�,¬, 0, 1} is an MV-algebra (i.e., A satis�es the

equations ¬¬x = x, x⊕1 = 1, ¬0 = 1, x�y = ¬(¬x⊕¬y), (x�¬y)⊕y = (y�¬x)⊕x);
• the algebra A satis�es the equations �(x→ y)→ (�x→ �y) = 1, �(x⊕x) = �x⊕�x,
�(x� x) = �x��x and �(x⊕ xm) = (�x⊕ (�x)m) for every positive integer m.

Similarly, an MMVn-algebra is an MMV-algebra whose reduct to the language of MV-algebras

is a member of the variety HSP(�n) = ISP(�n).

Recall that on an MV-algebra A, the relation ≤ de�ned by

x ≤ y if x→ y = 1

is a bounded distributive lattice order on A with x ∨ y = (x→ y)→ y and x ∧ y = ¬(¬x ∨ ¬y).

It is not the object of this paper to study the varieties of MMV-algebras in details.

De�nition 4.2. A �lter of an MMV-algebra A is a �lter of its MV-algebra reduct (i.e., a non

empty increasing subset of A that contains y whenever it contains x and x→ y). If X is a subset

of A, we denote by 〈X〉 the �lter generated by X, i.e., the smallest �lter of A that contains X.
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We denote by FL the the Lindenbaum - Tarski algebra of L, i.e., the set of formulas modulo

L-equivalence. If φ is a formula, we denote by φL its class in FL. If Γ is a set of formulas, we

denote by ΓL the set {φL | φ ∈ Γ}.

Recall that the lattice of �lters of an MV-algebra A is isomorphic to the lattice of congruences

of A. The congruence θF associated to a �lter F by this isomorphism is de�ned by (x, y) ∈ θF
if (x→ y)� (y → x) ∈ F . As usual, we denote by A/F the quotient A/θF .

For our purpose, the next result is fundamental, albeit an obvious one.

Lemma 4.3. If L is a modal many-valued logic, and Γ ∪ {φ} is a set of formulas then Γ `L φ

if and only if (φL, 1) ∈ θ〈ΓL〉.

In the sequel, when no confusion is possible, we denote by φ the element φL of FL et by Γ the

subset ΓL of FL.

De�nition 4.4. Assume that A is an MMV-algebra. An algebraic valuation on A is a map

a� : Prop→ A. An algebraic valuation a� on A is extended inductively to formulas in the obvious

way.

An algebraic model 〈A, a�〉 is given by anMMV-algebra A and an algebraic valuation a� on

A. A formula φ is true in an algebraic model 〈A, a�〉, in notation 〈A, a�〉 |= φ, if aφ = 1.

The following result is a consequence of Lemma 4.3.

Lemma 4.5. If L is a modal many-valued logic then a formula φ belongs to L if and only if φ

is true in any algebraic model 〈A, a�〉 where A is an L-algebra.

5. Construction of the canonical model

Here comes the �rst main contribution of the paper. Recall that the variety of MV-algebras is

the variety generated by the algebra 〈[0, 1],⊕,�,¬, 0, 1〉 and that an MV-algebra A is simple if

and only if it is an isomorphic copy of a subalgebra of [0, 1]. Moreover, two isomorphic subalgebras

of [0, 1] are necessarily equal and the isomorphism is the identity. We can thus state the following

well known lemma, which will enable us to de�ne a valuation on the canonical model. A �lter

of an MV-algebra A is maximal if it is maximal among the proper �lters of A.

Lemma 5.1. A �lter F of an MV-algebra A is maximal if and only if there is a necessarily

unique embedding f : A/F → [0, 1].

Let us initiate the construction of the canonical model of a modal many-valued logic in the

usual way. The universe of the model is the set of the maximal �lters of FL. In order to simplify

the expression of our results, it is better to use Lemma 5.1 to identify the set of the maximal

�lters of FL with the setMV(FL, [0, 1]) of the homomorphisms of MV-algebras from FL to [0, 1].

The canonical model of a logic L appears as the canonical Kripke model associated to a special

algebraic model.

De�nition 5.2. If A is an MMV-algebra, the canonical frame A+ of A is the frame

A+ = 〈WA+
, RA+〉

where

(1) the universe WA+
of A+ is the setMV(A, [0, 1]) of the homomorphisms of MV-algebras

from A to [0, 1];
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(2) the accessibility relation RA+ is de�ned by

(u, v) ∈ RA+ if ∀ a ∈ A (u(�a) = 1⇒ v(a) = 1).

If a� : Prop → A is an algebraic valuation, the canonical Kripke-model associated to the

algebraic model 〈A, a�〉 is the modelM〈A,a�〉 based on the canonical frame of A and de�ned by

ValM〈A,a�〉(u, p) = u(ap)

for any propositional variable p and any element u ofMV(A, [0, 1]).

These constructions allow us to associate a canonical frame and a canonical model to a modal

many-valued logic L.

De�nition 5.3. The canonical frame associated to a modal many-valued logic L is the canonical

frame associated to the L-algebra FL. The canonical model associated to L is the canonical model

associated to the algebraic model 〈FL, a�〉 de�ned by ap = pL for any propositional variable p.

Note that the de�nition of the canonical model for K1 coincides with the classical de�nition

of the canonical model for the smallest Boolean modal logic (if we identify any maximal �lter F

of FK1 with the quotient map πF : FK1 → {0, 1} and if we identify the Boolean valuation map

Val : Prop→ P(WK1
) with its characteristic function).

The main result of this section is that the map ValL extends to formulas. Before considering

the proof of this result, we need the following de�nition.

De�nition 5.4. We denote by D the subset of Q that contains the numbers that can be written

as a �nite sum of powers of 2. If r is in D ∩ [0, 1], we denote by τr a composition of the terms

x⊕x and x�x such that τr(x) < 1 for every x ∈ [0, r[ and τr(x) = 1 for every x ∈ [r, 1]. A proof

of the existence of such terms can be found in [30] for example. Furthermore, we can always

choose τr such that τr(x) belongs to {0, 1} for every x ∈ �n (but this choice is not independent

of n).

Lemma 5.5. If L is a modal many-valued logic and if u, v ∈ WL, then (u, v) ∈ RL if and only

if u ◦� ≤ v.

Proof. The right to left part of the assertion is clear. Let us prove the left to right part and

suppose that there is a φ in FL, a v in RLu and an r in D ∩ [0, 1] such that v(φ) < r ≤ u(�φ).

It follows that

τr(v(φ)) = v(τr(φ)) < 1 and 1 = τr(u(�φ)) = u(τr(�φ)) = u(�τr(φ)),

which is a contradiction since uRLv. �

Proposition 5.6. Assume that A is an MMV-algebra.

(1) If a belongs to A and if u is inMV(A, [0, 1]), then u(�a) =
∧
{v(a) | v ∈ Ru}.

(2) If a� is an algebraic valuation on A, then ValM〈A,a�〉(u, φ) = u(aφ) for any φ in Form.

(3) If L is a modal many-valued logic, then ValML
(u, φ) = u(φ) for any φ in Form.

Proof. The second result is a consequence of the �rst one and the third result is a consequence

of the second one. Let us prove the �rst statement. Assume that A is an MMV-algebra, that a

belongs to A and that u belongs toMV(A, [0, 1]). We have to prove that

(5.1) u(�a) =
∧

v∈RLu

v(a).
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The inequality ≤ is obtained thanks to Lemma 5.5.

Now, suppose that the equality does not hold in (5.1), but just the strict inequality <. Then,

there is an r in D ∩ [0, 1] such that

u(�a) < r ≤
∧

v∈RLu

v(a).

It means that for any v ∈ RLu, the maximal �lter v−1(1) of FL contains τr(a) and that the �lter

�−1u−1(1) does not contain τr(a).

But, since (u, v) ∈ RL if and only if �−1u−1(1) ⊆ v−1(1), if follows that the maximal �lters

of FL that contain �−1u−1(1) are exactly the v−1(1) with v ∈ RLu, while each of these maximal

�lters contains τr(a). It means that the class of τr(a) in FL/�−1u−1(1) is in�nitely great, so

that τr(a)⊕ τr(a)m belongs to �−1u−1(1) for every positive integer m. We deduce that

1 = u(�(τr(a)⊕ τr(a)m)) ≤ u(τr(�a)⊕ (τr(�a))m),

for any positive integer m, so that u(τr(�a)) is in�nitely great in u(FL). Since u(FL) is a

subalgebra of [0, 1], we obtain that u(τr(�a)) = 1, a contradiction. �

6. Completeness for K and Kn

Proposition 5.6 is the building stone of completeness results for modal many-valued logics and

classes of models.

De�nition 6.1. Let L be a modal many-valued logic, let Γ ∪ {φ} be a set of formulas and K

be a class of models. The formula φ is a local semantic consequence of Γ over K, in notation

K |=Γ φ, if for every element w of any modelM of K, the formula φ is true at w inM whenever

Γ is true at w inM.

6.1. Modal �nitely-valued logics. The �rst family of systems that admit the many-valued

Kripke models as a complete semantic is the family of the �n-valued ones.

Theorem 6.2. If Γ∪{φ} is a set of formulas and if L is an �n-valued logic, then Γ `L φ if and

only if φ is a local semantic consequence of Γ over the class of the models of L.

Proof. The left to right part of the statement is proved in Proposition 6.6 below.

For the right to left part, note that the MV-algebra reduct of the algebra FL is a member of

HSP(�n) = ISP(�n) and so is semi-simple. Now, the fact that φ is a local semantic consequence

of Γ in the canonical model of L means that for any u in MV(FL, [0, 1]), if Γ ⊆ u−1(1) then

φ ∈ u−1(1). It means equivalently that φ belongs to any maximal �lter extending 〈Γ〉 and so

that φ belongs to 〈Γ〉 thanks to the semi-simplicity of the MV-reduct of FL. �

Note that by considering n = 1, the preceding proposition boils down to the (strong) com-

pleteness result for Boolean modal logic and Kripke semantic.

We have announced in section 4 the following result which is an application of the preceding

completeness theorem.

Proposition 6.3. If n is a positive integer then `Kn �(p ∧ q)↔ (�p ∧�q).

Moreover, we can simplify the axiomatization 3.1 of Kn. We can indeed get rid o� the family

of axioms that expresses the conservative law of � with respect to in�nitely great elements. This

result was �rst obtained by the authors in the unpublished paper [21]. An other proof was also

obtained in [2].
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Proposition 6.4. If MVn denotes the n+ 1-valued �ukasiewicz logic and if K′n = MVn +

�(p→ q)→ (�p→ �q) + �(p⊕ p)↔ (�p⊕�p) + �(p� p)↔ (�p��p), then Kn = K′n.

Proof. In the proof of Proposition 5.6 with L = Kn, we can deduce directly that u(�τr(φ)) = 1

from the fact that τr(φ) is in�nitely great in FKn/�
−1u−1(1), since FKn/�

−1u−1(1) has no non

trivial in�nitely great element. It means that Proposition 5.6 stands with L = K′n and that

`K′n φ for any formula φ that is true in any �n-valued Kripke model. We can thus conclude the

proof since for any positive integer m, the formula �(p⊕pm)→ (�p⊕ (�p)m) is a tautology. �

6.2. In�nitary modal many-valued logics. Unfortunately, when we consider a logic L that

has an algebra FL whose MV-reduct is not known to be semi-simple, a completeness result cannot

be so easily obtained. This situation occurs for example for the logic K.

For extensions of K, we can obtain completness results by introducing a new in�nitary de-

duction rule.

De�nition 6.5. If Γ ∪ {φ} is a subset of Form and if L is a modal many-valued logic, we write

Γ `∞L φ if Γ `L φ⊕ φm for any m in N0.

So, a length of a proof Γ `∞L φ is necessarily in�nite. Note that if Γ `L φ then Γ `∞L φ. We

can then state the following completeness result.

Proposition 6.6. If L is a logic, if Γ ∪ {φ} is a set of formulas, then Γ `∞L φ if and only if φ

is a local semantic consequence of Γ in the class of the models of L.

Proof. Assume that Γ `∞L φ. If m belongs to N0, then there are some γ1, . . . , γr in Γ and some

m1, . . . ,mr in N such that `L (γr11 � · · · � γmrr ) → φ ⊕ φm. Since the class of the models of L

forms a sound semantic for L, we can deduce that if M = 〈W,R,Val〉 is a model of L and if

M, u |= Γ thenM, u |= φ⊕ φm for any m ∈ N0. We have obtained that the element Val(u, φ) is

in�nitely great in [0, 1], which means that it is equal to 1.

Now, assume that φ is a local semantic consequence of Γ in the class of the many-valued

Kripke models of L. Since the canonical model of L is a model of L, it follows that φ is in any

maximal �lter that extends 〈Γ〉 in FL or equivalently that φ is in�nitely great in FL/〈Γ〉. Thus,
the element φ ⊕ φm belongs to 〈Γ〉 for any m in N0. We conclude thanks to Lemma 4.3 that

Γ `L φ⊕ φm for any m in N0 and eventually that Γ `∞L φ. �

7. Kripke completeness and strong Kripke completeness

The previous section is concerned with completeness results for modal many-valued logics

and classes of Kripke models. In this section, we introduce for �n-valued logics two notions of

completeness with respect to classes of structures.

7.1. Two types of structures � two types of completeness. The �rst notion, called strong

Kripke completeness is a direct adaptation to our many-valued realm of the de�nition of Kripke

completeness for Boolean modal logics.

De�nition 7.1. A modal �n-valued logic L is strongly Kripke complete if there is a class K

of frames such that L = {φ ∈ Form | ∀F ∈ K,F |=n φ}.

The reader used to classical modal logic would probably have called Kripke complete a logic

that we call strongly Kripke complete, i.e., a logic which is complete with respect to a class of

frames. But, as it will appear after De�nition 7.5, the vocabulary we introduce is coherent.
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In the de�nition of the Kripke semantic for modal �n-valued logics, the many-valued nature

of the language that we use appears only in the valuation of the models, not in their underlying

frame. One thus may guess that, besides frames, there should exist a type of structures in which

this many-valued nature is embodied and that is appropriate for obtaining completeness results.

These structures are called �n-valued frames. We denote by div(n) the set of the positive divisors

of the element n of N.

De�nition 7.2. An �n-valued frame is a structure 〈W, {rm | m ∈ div(n)}, R〉 where
(1) the structure 〈W,R〉 is a frame,

(2) rm is a subset of W for any m ∈ div(n),

(3) rn = W and rm ∩ rk = rgcd(m,k) for any k,m in div(n),

(4) Rrm ⊆ rm for any m in div(n).

If F = 〈W, {rm | m ∈ div(n)}, R〉 is an �n-valued frame, we denote by (F)# its underlying

frame 〈W,R〉. Moreover, a modelM = 〈W ′, R′,Val〉 is based on F ifM is based on (F)# and if

Val(u, p) belongs to �m for any u in rm and any m in div(n).

A formula φ is valid at u in the �n-valued frame F, in notation F, u |= φ ifM, u |= φ for any

modelM based on F. The formula φ is valid in F, in notation F |= φ, if it is valid at any u in F.

If F is a frame, the trivial �n-valued frame based on F is the �n-valued frame F′ = 〈W, {rm |
m ∈ div(n)}, R〉 de�ned by

(1) (F′)# = F,

(2) rn = W ,

(3) rm = ∅ for any m in div(n) \ {n}.

Roughly speaking, an �n-valued frame is a frame in which we specify in every world u a set

of allowed truth values in u. With regard to its underlying frame, the satisfaction relation in an

�n-valued frame is widened since we have restricted the set of the possible valuations that can

be added to the latter structure in order to obtain a model.

Examples of �n-valued frames can be obtained by adding structure on the canonical frame

associated to an MMVn-algebra A, as in the following de�nition.

De�nition 7.3. If A is an MMVn-algebra, the canonical �n-valued frame A×n associated to A

is the structure

A×n = 〈WA×n
, {rA×nm | m ∈ div(n)}, RA×n 〉,

where

(1) the structure 〈WA×n
, RA×n 〉 is the canonical frame associated to A,

(2) for any positive divisorm of n, the set r
A×n
m contains the homomorphisms that are valued

in �m:

r
A×n
m = {u ∈MV(A, [0, 1]) | u(A) ⊆ �m}.

We prove that canonical �n-valued frames deserve their names, i.e., that R(r
A×n
m ) ⊆ (r

A×n
m ).

Lemma 7.4. Assume that A belongs to MMVn. The structure A×n is an �n-valued frame.

As a consequence, the canonical model associated to an algebraic model 〈A, a�〉 is based on the

canonical �n-valued frame associated to A.

Proof. Let us assume ad absurdum that there is a u in r
A×n
m for which the set Ru ∩A×n \ r

A×n
m

is not empty. Now, since the subalgebras of �n are the algebras �m with m in div(n), we can
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�nd an m′ in div(n) such that

1

m′
=
∧
{v(x) | v ∈ Ru \ rA×nm , x ∈ A and v(x) 6= 0}.

Obviously, the integer m′ is not a divisor of m and we can �nd a v ∈ Ru \ rA×nm and a a in A

such that v(a) = 1
m′ .

Let us recall that the universe of A×n can be equipped with a Boolean topology in such a way

that the evaluation map

eA : A ↪→
∏

u∈A×n

u(A) : a 7→ (u(a))u∈A×n

is a Boolean representation of A such that the set r
A×n
m is a closed set for this topology (see

Proposition 3.2 in [29] for example). We can thus construct a clopen set Ω containing v and

included in A×n \ r
A×n
m . Then the element

b = a|Ω ∪ 1|A×n\Ω

belongs to A. It follows that

u(�b) =
∧

w∈Ru
w(b) =

∧
w∈Ru∩Ω

w(a) = v(a) =
1

m′

which is a contradiction since u ∈ rA×nm . �

We can now turn to the de�nition of Kripke completeness.

De�nition 7.5. A modal �n-valued logic L is Kripke complete if there is a class K of �n-valued

frames such that L = {φ ∈ Form | ∀F ∈ K, F |= φ}.

Our choice in the vocabulary is now totally justi�ed by the fact that the notion of strongly

Kripke complete logic is de�nitely stronger than the notion of Kripke complete logic. Indeed,

if L is a modal �n-valued logic and if K is a class of frames such that

L = {φ ∈ Form | ∀F ∈ K, F |=n φ},

then it follows obviously that if K ′ denotes the class of the trivial �n-valued frames based on the

frames of K,

L = {φ ∈ Form | ∀F ∈ K ′, F |= φ}.

Moreover, the following example proves that there exists a logic that is Kripke complete without

being strongly Kripke complete.

Example 7.6. The logic L = Kn + �(p ∨ ¬p) is Kripke complete but is not strongly Kripke

complete for n > 1.

The completeness part is proved in Example 8.28 below.

Let us prove that L is not strongly Kripke complete. Proceed ad absurdum and assume that

K is a class of frames such that L = {φ | K |=n φ}. Then, K contains a frame whose accessibility

relation is not empty. Otherwise, the formula �φ belongs to L for any φ, while �(p ∧ ¬p) does

not belong to L.

So, let us denote by F a frame with non empty accessibility relation, by M = 〈W,R,Val〉 a
model based on F and by u, v two elements of W such that (u, v) ∈ R. SinceM, u |= �(p∨¬p),
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it follows that Val(p, v) ∈ {0, 1}. Then, if we denote byM′ = 〈W,R,Val′〉 the model based on F

de�ned by

Val′(q, w) =

{
Val(q, w) if q 6= p or w 6= v,
1
n if q = p and w = v,

it appears that �(p ∨ ¬p) is not true at u inM′, which is the desired contradiction.

As expected, there are algebraic counterpart to these notions of completeness. In order to

obtain them, we have to introduce the complex algebras.

7.1.1. Complex algebras. The complex algebras that we introduce are designed to embody the

�n-valued modal theory of the various kind of Kripke structures. There is no mystery in these

constructions: the complex algebra associated to a structure is the algebra of all the possible

valuations on that structure.

De�nition 7.7. Assume that F = 〈W,R〉 is a frame. The �n-complex algebra of F is the algebra

F+n = 〈�Wn ,⊕,¬,�R, 0, 1〉,

where the operations ⊕,¬, 0, 1 are de�ned pointwise and the operation �R is de�ned by

�Rα(u) =
∧
{α(v) | v ∈ Ru}.

Assume now that F = 〈W, {rm | m ∈ div(n)}, R〉 is an �n-valued frame. The �n-tight complex

algebra of F is the algebra

F×n = 〈
∏
{�su | u ∈W},⊕,¬,�R, 0, 1〉

where su = gcd{m ∈ div(n) | u ∈ rm} for any u in W and where the operations are de�ned

exactly as in the de�nition of the �n-complex algebra of a frame.

If K is a class of frames we denote by Cm(K) the class of the �n-complex algebras of the

elements of K and by Var(K) the variety generated by Cm(K). Similarly, if K is a class

of �n-valued frames, we denote by Cmn(K) the class of the �n-tight complex algebras of the

structures of K and by Varn(K) the variety generated by Cmn(K). Finally, if A is a class of

MMVn-algebras, we denote by Str(A) the class of the frames whose �n-complex algebra belongs

to A and we denote by Strn(A) the class of the �n-valued frames whose �n-tight complex algebra

belongs to A.

The following lemma, whose proof is routine, explains how complex algebras embody modal

theories.

Lemma 7.8. Assume that φ is an LMMV -formula.

(1) If F is a frame, then F+n belongs toMMVn and F |=n φ if and only if F+n |= φ = 1.

(2) If F is an �n-valued frame, then F×n belongs to MMVn and F |= φ if and only if

F×n |= φ = 1.

We may also note the following result which, albeit obvious, is central for the development of

strong Kripke completeness results. If A is an MV-algebra, we denote by B(A) the Boolean

algebra of the idempotent elements of A, i.e., the subalgebra of the elements of A that satisfy

the equation x⊕ x = x.

Lemma 7.9. If F is an �n-valued frame, then F×n is a complete subalgebra of F+n and B(F×n)

coincides with B(F+n).

We now turn to the algebraic counterpart of (strong) Kripke completeness.
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De�nition 7.10. A variety A of MMVn-algebras is complete if there is a class K of �n-valued

frames such that A = Varn(K).

The variety A is strongly complete if there is a class K of frames such that A = Var(K).

Of course, a variety A is complete if and only if A = Var(StrnA), i.e., if and only if A is

generated by its �n-tight complex algebras. It is strongly complete if and only if A = Var(StrA),

i.e., if and only if A is generated by its �n-valued complex algebras.

Once again, a strongly complete variety is a complete variety (since the �n-tight complex

algebra of an �n-valued frame is a subalgebra of the �n-valued complex algebra of its underlying

frame).

Proposition 7.11. Assume that L is a modal �n-valued logic.

(1) The logic L is Kripke complete if and only if the variety of L-algebras is complete.

(2) The logic L is strongly Kripke complete if and only if the variety of L-algebras is strongly

complete.

Proof. (1) Assume that L =
⋂
{{φ ∈ Form | F |= φ} | F ∈ K} for some class K of �n-valued

frames. Then, the variety MMVL of L-algebras is the variety of the algebras that satisfy the

equations that are valid in F×n for every F in K. Equivalently, the varietyMMVL is generated

by K.

The proof of (2) is similar. �

7.2. Completeness through canonicity. Kripke completeness results can be obtained through

canonicty.

De�nition 7.12. A modal �n-valued logic L is canonical if L is valid in the canonical �n-valued

frame associated to FL(X) for any set X. The logic L is strongly canonical if L is valid in the

canonical frame associated to FL(X) for any set X.

Any canonical logic L is Kripke-complete. Indeed, in that case, the logic L coincides with the

set of formulas that are valid in the canonical �n-valued frame associated to FL(ω). The same

line of argument can be used to prove that any strongly canonical logic L is strongly Kripke

complete.

Canonicity and strong canonicity can be treated in an algebraic way.

7.2.1. Canonical varieties. Proposition 5.6 allows us to construct two extensions of an MMVn-

algebra A.

Lemma 7.13. If A is an MMVn-algebra then the algebra (A×n)×n is an extension of A.

Proof. We already now that the evaluation map

eA : A→ (A×n)×n : a 7→ (u(a))u∈A×n

is an embedding from the MV-reduct of A to the MV-reduct of (A×n)×n . The �rst item of

Proposition 5.6 states that this map is an MMV-homomorphism. �

De�nition 7.14. Assume that A is an MMVn-algebra. The canonical extension of A is the

algebra (A×n)×n . The strong canonical extension of A is the algebra (A+)+n .

If A is a variety of MMVn-algebras then A is canonical if A contains the canonical extension

of any of its algebras. It is strongly canonical if it contains the strong canonical extension of any

of its members.
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The reader familiar with the algebraic aspects of classical modal logics should not be surprised

by these de�nitions as we have mimicked the construction of the canonical extension of a Boolean

algebra with an operator (as de�ned in [24] and [25]). Actually, as we will realize later, there

is more than a similitude between our approach of canonical extension and the Boolean one.

Indeed, these constructions are both two particular cases of the construction of the canonical

extension of an expanded bounded distributive lattice. This connection will enable us to give

a proof of the following result which states that (strongly) canonical varieties are the algebraic

counterpart of (strongly) canonical logics.

Proposition 7.15. Assume that L is a modal �n-valued logic.

(1) The logic L is canonical if and only if the variety of L-algebras is canonical.

(2) The logic L is strongly canonical if and only if the variety of L-algebras is strongly

canonical.

8. Canonicity in MMVn, a syntactic approach

In this section, we approach the problem of canonicity in a syntactic way. Our goal is to

produce a class of equations that de�ne canonical varieties.

This famous approach was initiated by Jónsson and Tarski in their seminal work [24] and

[25] about canonical extensions of Boolean algebras with operators. This technique led Jónsson

to an algebraic proof of the canonicity of the Sahlqvist equations (see [23]).

Since then, the theory of canonical extensions was extended to bounded distributive lattices

with operators in [14], bounded distributive lattices with monotone maps in [15], bounded dis-

tributive expansions in [16] and �nally to lattice expansions in [13]. These results are the building

stones of the syntactic approach of canonicity for various classes of logics including, as we shall

see, modal �n-valued logics.

The main result of this section is Theorem 8.26 which is the �n-valued counterpart of the

Shalqvist canonicity result.

8.1. Canonical extensions of bounded distributive lattice expansions. We �rst recall

the theory of canonical extensions for bounded distributive lattice expansions. Our goal is to

make this paper self-contained. Our approach is so purely expository. To guide us, we follow the

paper [16] in which the proofs of the results we expose can be found.

8.1.1. Canonical extension of bounded distributive lattices. We denote by DL the variety of

bounded distributive lattices.

De�nition 8.1. A complete lattice A is doubly algebraic if it is algebraic and if its order dual

Aα is algebraic. If A is a complete lattice, we denote respectively by J∞(A) and M∞(A) the set

of the completely join irreducible elements of A and the set of the completely meet irreducible

elements of A. The set of the �nite joins of elements of J∞(A) is denoted by J∞ω (A) and the set

of the �nite meets of elements of M∞(A) is denoted by M∞ω (A) (so that 0 belongs to J∞ω (A)

but does not belong to J∞(A) and 1 belongs to M∞ω (A) but does not belong to M∞(A)).

In the variety of bounded distributive lattices, the class of doubly algebraic lattices can be

characterized in di�erent ways.

Lemma 8.2. Assume that A is a complete DL. Then, the following conditions are equivalent.

(1) A is doubly algebraic,

(2) A is algebraic and every element of A is a join of elements of J∞(A),
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(3) A is completely distributive and every element of A is a join of elements of J∞(A),

(4) there is a poset P such that A is isomorphic to the lattice of isotone maps from P to the

two element chain.

The canonical extension of a DL can be described in two di�erent ways. We use the following

as a de�nition.

De�nition 8.3. The canonical extension Aσ of a DL A is de�ned, up to isomorphism, as the

lattice of isotone maps from the Priestley dual of A to the two element chain.

Hence, the canonical extension of a bounded distributive lattice is a doubly algebraic lattice.

We denote by DL+ the class of doubly algebraic lattices.

It turns out that it is more convenient to characterize the canonical extension Aσ of a dis-

tributive lattice A by properties involving A and Aσ. This characterization requires the following

de�nitions.

De�nition 8.4. Assume that A is a sublattice of a DL+ B. The lattice A is a separating

sublattice of B if for any p in J∞(B) and u in M∞(B) such that p ≤ u, the interval [p, u]

contains an element of A.

The sublattice A is compact in B if for any subset S and T of A such that
∧
S ≤

∨
T , there

are a �nite subset S′ of S and a �nite subset T ′ of T such that
∧
S′ ≤

∨
T ′.

Proposition 8.5. If A is a DL, then A is a compact separating sublattice of its canonical

extension Aσ. Moreover if B is a DL+ that contains A as a separating compact sublattice, then

there is a unique isomorphism f from Aσ to B such that f �A= idA.

We denote by Aα the order dual of A for any poset A.

Lemma 8.6. If A1, . . . , An are DLs then
(1) (A1

α)σ is equal to (Aσ1 )
α
,

(2) (A1 × · · · ×An)σ is equal to Aσ1 × · · · ×Aσn.

8.1.2. Canonical extensions of DL-maps. The theory of canonical extension provides two ways

to extend maps between DLs. These two extensions lead to two de�nitions of the canonical

extension of a bounded distributive lattice expansion (non lattice operations are considered as

maps between DLs).
To de�ne and study these extensions, we need to introduce two families of topologies.

De�nition 8.7. Assume that A is a DL. A closed element of Aσ is an element that can be

obtained as a meet of elements of A. An open element of Aσ is an element that can be obtained

as a join of elements of A. We denote by K(Aσ) the set of the closed elements of Aσ and by

O(Aσ) the set of the open elements of Aσ.

The topologies ι↑, ι↓ and ι are de�ned on Aσ as the topologies that have respectively for base

the sets [p), (u] and [p) ∩ (u] where p ranges in J∞ω (Aσ) and u ranges in M∞ω (Aσ).

The topologies σ↑, σ↓ and σ are de�ned on Aσ as the topologies that have respectively for

base the sets [p), (u] and [p) ∩ (u] where p ranges in K(Aσ) and u ranges in O(Aσ).

A continuous map f : 〈Aσ, s〉 → 〈Bσ, t〉 where s and t are among theses topologies is said to

be (s,t)-continuous.

Note that ι↑ ⊆ σ↑, ι↓ ⊆ σ↓ and ι ⊆ σ. Recall that if (X, τ) is a topological space, if Y is a

dense subset of X and if B is a DL+, then for any map f : Y → B, the map lim infτf is de�ned
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by

lim infτf : X → C : x 7→
∨
{
∧
f(U ∩ Y ) | x ∈ U ∈ τ}

and lim supτf by

lim supτf : X → C : x 7→
∧
{
∨
f(U ∩ Y ) | x ∈ U ∈ τ}.

We can use the density of any DL in its canonical extension to de�ne canonical extensions of

DL-maps.

De�nition 8.8. If f : A→ B is a map between two DLs A and B then the maps fσ : Aσ → Bσ

and fπ : Aσ → Bσ are de�ned by

fσ = lim infσf and fπ = lim supσf.

These maps are called the lower (canonical) extension of f and the upper (canonical) extension

of f respectively. The map f is smooth if fσ = fπ.

Lemma 8.9. Assume that f : A→ B is a map between two DLs A and B.

(1) The map fσ is the largest (σ, ι↑)-continuous extension of f to Aσ and fπ is the smallest

(σ, ι↓)-continuous extension of f to Aσ.

(2) The map f is smooth if and only if fσ is (σ, ι)-continuous.

(3) If f admits a (σ, ι)-continuous extension g : Aσ → Bσ then f is smooth and fσ = g.

Order preserving properties are translated through canonical extensions to continuity proper-

ties.

De�nition 8.10. A map f : A1 × · · · × An → B between DLs A1, . . . , An, B is a (complete)

lattice operator or simply a (complete) operator if f is (completely) join preserving in each of its

coordinate. It is a dual (complete) operator if f : Aα1 × · · · ×Aαn → Bα is a (complete) operator.

Assume that L is an expansion of the language {⊕,�,¬, 0, 1} with unary operation symbols.

We denote by MVOLn the variety of MVn-algebras with lattice L-operators, i.e., the variety of

algebras A over the language L whose MV-reduct belongs to MVn and such that any unary

operation symbol that belongs to L \ {¬} is interpreted as a lattice operator on A.

Lemma 8.11. Assume that f : A→ B is a map between two DLs A and B.

(1) If f is isotone then fσ is isotone and is (σ↑, ι↑)-continuous.

(2) If f is an operator then fσ is a complete operator and is (ι↑, ι↑)-continuous.

(3) If f is join preserving then fσ is completely join preserving and is (σ↓, σ↓)-continuous.

(4) If f is meet preserving and join preserving then fσ is (σ, σ)-continuous.

It is also important to compare the canonical extension of a composition of maps with the

composition of the canonical extensions of these maps. Indeed, these comparisons are extensively

used in the study of stability of equations through canonical extensions.

Lemma 8.12. Assume that f : B → C and g : A→ B are two maps between DLs A, B and C.

(1) If f and g are isotone maps then (fg)σ ≤ fσgσ.
(2) If fσgσ is (σ, ι↑)-continuous then (fg)σ ≥ fσgσ.
(3) If fσgσ is (σ, ι↓)-continuous then (fg)σ ≤ fσgσ.
(4) If f is join preserving and meet preserving then (fg)σ = fσgσ.

(5) If g is join preserving and meet preserving then fσgσ ≤ (fg)σ.

(6) If g is join preserving, meet preserving and onto then (fg)σ = fσgσ.
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8.1.3. Distributive lattice expansions. The canonical extension of a bounded distributive expan-

sion is built on the canonical extension of its lattice reduct.

De�nition 8.13. If A = 〈A, {fi | i ∈ I}〉 is a bounded distributive expansion of the DL A,

then the canonical extension Aσ of A is the algebra 〈Aσ, {fσi | i ∈ I}〉 and the dual canonical

extension Aπ is the algebra 〈Aσ, {fπi | i ∈ I}〉.

Assume that A is a bounded lattice expansion. The set of the terms t whose term function tA

satis�es (tA)σ = tA
σ

is of particular interest. Indeed if t and s are two such terms and if tA = sA

it follows that tA
σ

= (tA)σ = (sA)σ = sA
σ

. Thus, if the equation s = t is satis�ed in A, it is also

satis�ed in Aσ. This piece of argument justi�es the following de�nition.

De�nition 8.14. Assume that L is an expansion of the language {∨,∧, 0, 1} of bounded distribu-

tive lattices. We denote by DLEL the variety of the bounded distributive lattice L-expansions,
i.e., the variety of the algebras over the language L whose reduct to {∨,∧, 0, 1} is a DL.

If A belongs to DLEL, an L-term t is expanding on A if (tA)σ ≤ tA
σ

. It is contracting on A

if (tA)σ ≥ tAσ and stable on A if (tA)σ = tA
σ

.

A subvariety A of DLEL is canonical if it contains the canonical extension of its members

and if the canonical extension of an L-homomorphism between two algebras of A is an L-
homomorphism.

Here is an example of expanding term.

Lemma 8.15. Assume that A is a DLEL and that t is an L-term. If for any operation symbol

f that occurs in t, the map fA is isotone, then t is expanding on A.

Thanks to Theorem 3.15 and Theorem 3.22 in [16], we obtain the following result.

Proposition 8.16. The varietyMVn is canonical. Moreover,

Aσ ∼=
∏
{u(A) | u ∈MV(A,�n)}

for any A inMVn.

Corollary 8.17. If A is an MVn-algebra, there is a unique isomorphism φ : B(A)σ → B(Aσ)

with φ(a) = a for any a in B(A). Moreover, this map φ is an homeomorphism between

〈B(A)σ, s(B(A)σ)〉 and 〈B(Aσ), s(Aσ)�B(Aσ)〉 for any s in {ι↑, ι↓, ι, σ↑, σ↓, σ}.

Proof. We may for example obtain the isomorphism φ thanks to Proposition 8.16 and the unicity

of φ follows from Proposition 8.5 . Clearly, this isomorphism sends closed, open, completely meet

irreducible and completely join irreducible elements to closed, open, completely meet irreducible

and completely join irreducible elements respectively and conversely.

Then, if p belongs to K(Aσ), it follows that B(Aσ) ∩ [p) = B(Aσ) ∩ [n.p) and φ−1(B(Aσ) ∩
[p)) = [φ−1(n.p)). Since n.p = n.

∧
{a | p ≤ a ∈ A} =

∧
{n.a | p ≤ a ∈ A} is a closed element of

Aσ, we have proved that φ : 〈B(A)σ, σ↑(B(A)σ)〉 → 〈B(Aσ), σ↑(Aσ)�B(Aσ)〉 is continuous.
Now, if p belongs to K(B(A)σ), then φ([p)) = [φ(p)) which proves that φ−1 is continuous and

so that φ is an homeomorphism.

We proceed in a similar way for the other topologies. �

The next result states that if A is an MMVn-algebra then Aσ is isomorphic to the �n-tight

complex algebra of its �n-valued frame. It means that the two notions of canonical extension

introduced for an MMVn-algebra in De�nition 7.14 and De�nition 8.13 coincide, so that the

vocabulary we have introduced is coherent.
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Proposition 8.18. Assume that A is an MMVn-algebra. For any α in Aσ and any u in

MV(A,�n),

(�σα)(u) =
∧
{α(v) | v ∈ Ru}.

Consequently, the algebra Aσ is isomorphic to (A×n)×n and the varietyMMVn is canonical.

Proof. Let us denote by �R the operation de�ned on Aσ by

(�Rα)(u) =
∧
{α(v) | v ∈ Ru}

for any α in Aσ and any u inMV(A,�n). We already know that �R and �σ are extensions of

�A. Now, if p is a closed element of Aσ, it follows that

�σp =
∧
{�a | p ≤ a ∈ Aσ} = �Rp,

since �R is completely meet preserving. Then, if α belongs to Aσ,

�σα =
∨
{�σp | α ≥ p ∈ K(Aσ)}

=
∨
{�Rp | α ≥ p ∈ K(Aσ)}.

If u belongs toMV(A,�n), we obtain that (�σα)(u) is equal to∨
{(�Rp)(u) | α ≥ p ∈ K(Aσ)},

so to ∨
{
∧
{p(v) | (u, v) ∈ R} | α ≥ p ∈ K(Aσ)}

and to ∧
{
∨
{p(v) | α ≥ p ∈ K(Aσ)} | (u, v) ∈ R}.

This last element is by de�nition equal to∧
{α(v) | (u, v) ∈ R}

and eventually to (�Rα)(u).

Let us now assume that h : A → B is an MMV-homomorphism. We have to prove that

hσ : Aσ → Bσ is an MMV-homomorphism. According to Proposition 8.16, we just have to prove

that hσ�σ = �σhσ. This result is obtained thanks to the sequence of identities

hσ�σ = (h�)σ = (�h)σ = �σhσ

in which the second identity is trivial, the �rst one is obtained by item (4) of Proposition 8.12

and the third one by item (1) and item (5) of the same Proposition. �

Now that we know that quotient maps are preserved through canonical extensions, it is a

routine argument to prove the �rst item of Proposition 7.15.

8.2. Sahlqvist canonicity result for the varietyMMVn. Sahlqvist equations were �rst

introduced in [31] as a family of equations that de�ne canonical logics. The algebraic treatment

of this canonicity result was considered in [23]. This success lead mathematicians to consider so

called �Sahlqvist equations� in wider contexts (e.g., [17, 19, 9]).

Here, we adapt the classical canonicity result of Sahlqvist equations to the �n-valued realm.

The algebraic approach makes this adaptation quite painless.

For our purposes, it is important to set the set of primitive operations that we consider to

de�ne algebras. So, we are going to denote by LMMV the set {�,∨,¬,�, 0, 1} where �, ∨ are

binary, the symbols ¬ and � are unary and 0 and 1 are constants.
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The language LMMV d is the language LMMV ∪{⊕,∧,♦}, where ⊕ and ∧ are binary and ♦ is

unary.

The operations ⊕, �, ¬, 0, 1 are intended to be interpreted as the MV-algebra operations.

Unless stated otherwise, we do not require any special property on the operation �. But, when
we deal with algebras and terms of the language LMMV d , we restrict to algebras that satisfy the

following equations

(8.1) x ∧ y = ¬(¬x ∨ ¬y), x⊕ y = ¬(¬x� ¬y) and ♦x = ¬�¬x.

More generally, if g : B1× · · · ×Bk → A is a map (a term function for example), then we denote

by gd the map

gd : B1 × · · · ×Bk → A : (x1, . . . , xk) 7→ ¬g(¬x1, . . . ,¬xk).

The map gd is called the dual map of g, or simply the dual of g. The key idea is that by applying

equations (8.1) to an LMMV -term τ , we are able to produce an equivalent LMMV d -term τ ′ that

contains a considerably smaller number of negation symbols. This idea is made clear in the

sequel.

The following vocabulary was introduced in [23, 19].

De�nition 8.19. Let L be the language LMMV or LMMV d . An L-term τ is

• positive primitive if it is a constant term (i.e., without variable) or if it is equal to

f(x1, . . . , xk) for a k-ary operation f of L \ {¬};
• strictly positive if no variable of τ is in the scope of a negation symbol (thus, the negation

symbols have constant terms as arguments);

• positive if every variable of τ is in the scope of an even number of negation symbols;

• negative if every variable of τ is in the scope of an odd number of negation symbols.

If A is a class of L-algebras, two terms τ and τ ′ are said A-equivalent (or simply equivalent if

A is the variety of L-algebras) if the term functions τA and τ ′A are equal on every algebra A of

A (that satis�es, following our convention, equations (8.1) if L = LMMV d).

The following result is Theorem 6 in [19].

Lemma 8.20. Assume that τ is an n-ary term over LMMV or LMMV d .

(1) The term τ is equivalent to a positive (resp. negative) term if and only if τd is equivalent

to a positive (resp. negative) term.

(2) If σ1, . . . , σn are terms then (τ(σ1, . . . , σn))d = τd(σd1 , . . . , σ
d
n).

(3) If τ is an LMMV d-term then it is equivalent to an LMMV d-term written in standard

form, that is an LMMV d-term in which the negation symbols appear next to constant

terms or directly next to variables.

De�nition 8.21. Let us denote by Ψ0 the smallest set of LMMV -terms that contains the positive

primitive terms and that is closed under substitution, and by Ψ the smallest set of LMMV d -

terms that contains the positive primitive terms and their dual terms and which is closed under

substitution.

Once again, the following result can be found in [19].

Proposition 8.22. With the previous notations,

(1) an LMMV -term is equivalent to a strictly positive LMMV -term if and only if it is equiv-

alent to a term of Ψ0,
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(2) an LMMV -term is equivalent to a positive LMMV -term if and only if it is equivalent to

a term of Ψ,

(3) an LMMV -term is equivalent to a negative LMMV -term if and only if it is equivalent to

the negation of a term of Ψ.

We are now ready to de�ne the family of Sahlqvist equations for the modal �n-valued logics.

De�nition 8.23. A boxed atom is a variable preceded by a string of boxes.

A Sahlqvist equation is an equation φ ≤ ψ where

• ψ is a positive term,

• φ is a term (called a Sahlqvist antecedent) constructed from boxed atoms, constants

and negative terms with lattice operators of LMMVd (such as �, ⊕, ∨ and ∧).

Note that we allow to construct Sahlqvist antecedents with MV-operators since these are

lattice operators.

Surprisingly, there is a proof of our Sahlqvist equivalent that is an easy adaptation of the

proof of the Sahlqvist canonicity result for Boolean algebras proposed in [32]. It is the proof

that we now develop.

The following result is to DLEL what Theorem 7.20 (ii) in [32] is for expanded Boolean

algebras.

Lemma 8.24. Assume that A is a DLEL and that t is an L-term. If every operation symbol

that occurs in t is interpreted as a lattice operator on A then t is stable on A.

Proof. Lemma 8.15 says that the term t is expanding on A. Let us prove by induction on the

number of operation symbols that occur in t that t is contracting on A. The base case is trivial.

Let us then assume that t = s(u1, . . . , uk) where s is an operation symbol that is interpreted as

a lattice operator on A and where u1, . . . , uk are terms constructed with connectives that are

interpreted as lattice operators on A. It follows that

tA
σ

= (sA)σ ◦ (uA
σ

1 , . . . , uA
σ

k ) ≤ (sA)σ ◦ ((uA1 )σ, . . . , (uAk )σ)

thanks to induction hypothesis. The map (sA)σ is (ι↑, ι↑)-continuous since sA is a lattice oper-

ator. Similarly, the map (uAi )σ is (σ↑, ι↑)-continuous for any i in {1, . . . , k} since uAi is isotone.

Consequently, the map

(sA)σ ◦ ((uA1 )σ, . . . , (uAk )σ)

turns out to be (σ↑, ι↑) continuous. The result then follows from the second item of Proposition

8.12. �

The following result is to DLEL what Theorem 7.20 (iii) in [32] is for expanded Boolean

algebras.

Lemma 8.25. Let A be a DLEL and t be a term. If t = s(u1, . . . , uk) where for every operation

symbol f that occurs in s, the map fA is a lattice operator and where all the connectives in each

of the ui are ∧-preserving operation on A, then τ is stable on A.

Proof. Lemma 8.15 says that t is expanding on A. Let us prove that it is contracting. We have

tA
σ

= sA
σ

◦ (uA
σ

1 , . . . , uA
σ

k ) = (sA)σ ◦ ((uA1 )σ, . . . , (uAk )σ),
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thanks to the two preceding lemmas. Then, since each of the ui is (σ↑, ι↑)-continuous and since

(sA)σ = sA
σ

is (ι↑, ι↑)-continuous, we obtain that (sA)σ◦((uA1 )σ, . . . , (uAk )σ) is (σ↑, ι↑)-continuous

and so that

(sA)σ ◦ ((uA1 )σ, . . . , (uAk )σ) ≤ (sA(uA1 , . . . , u
A
k ))σ

thanks to the second item of Proposition 8.12. �

The preceding developments lead us to the canonicity of Sahlqvist equations.

Theorem 8.26. Every Sahlqvist equation is canonical over the varietyMVOLn .

Proof. We �rst consider the case of an equation φ(β1, . . . , βk) ≤ ψ where ψ is a positive term,

the βi are boxed atoms and φ is constructed only with lattice operators.

Let A be an algebra ofMVOLn . According to the preceding lemma, the term φ(β1, . . . , βk) is

stable on A. Now, it follows from Proposition 8.22 and Lemma 8.15 that the term ψ is (equivalent

to) an expanding term on A. Thus, the term φ(β1, . . . , βk)→ ψ is stable on A.

Then, consider any Sahlqvist equation

φ(β1, . . . , βk, ψ
′
1, . . . , ψ

′
q) ≤ ψ′

where the βi and φ are as above, the ψ′i are negative and ψ
′ is a positive term. This equation is

equivalent to

¬ψ′ � φ(β1, . . . , βk, ψ
′
1, . . . , ψ

′
q) = 0.

Hence, any Sahlqvist equation is equivalent to an equation of the kind

φ(β1, . . . , βk,¬ψ1, . . . ,¬ψq) = 0

where φ and the βi as are above and the ψi belongs to Ψ. Since φ is isotone, this equation is in

turn equivalent to the quasi-equation

(x1 ≤ ¬ψ1, . . . , xq ≤ ¬ψq)⇒ φ(β1, . . . , βk, x1, . . . , xq) = 0

where the xi are new variables or, equivalently, to

(x1 � ψ1 = 0, . . . , xq � ψq = 0)⇒ φ(β1, . . . , βk, x1, . . . , xq) = 0.

We now introduce a new lattice operator E in the language and interpret it as the global modality:

EA(x) =

{
1 if x > 0,

0 if x = 0.

Then, the latter quasi-equation is equivalent to the equation

φ(β1, . . . , βk, x1, . . . , xq) ≤ E(x1 � ψ1) ∨ · · · ∨ E(xq � ψq)

which belongs to the family of equations considered in the �rst part of the proof. �

If we apply Proposition 7.15 to the preceding theorem, we obtain the following completeness

result.

Proposition 8.27. If φ is a formula constructed only with ∨,∧,⊕,� and ♦, if the term asso-

ciated to ψ is positive and if βi is a boxed atom or a formula whose associated term is negative

for any i in {1, . . . , k} then Kn + φ(β1, . . . , βk)→ ψ is a Kripke complete logic.

The reader may note that surprisingly, to obtain Proposition 8.27, we had to temporarily

allow lattice (non MV-)operators in the language L.
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Example 8.28. The equation x ⊕ x = x is canonical since it is equivalent to the Sahlqvist

equation x ⊕ x ≤ x. So, the logic Kn + (p ⊕ p) ↔ p is canonical. This logic is equal to K1

and hence, is not strongly Kripke complete. Note that this result can be generalized: if m is

a positive divisor of n then the �n-valued logic Km = Kn + (m+ 1)x↔ mx+ {(pxp−1)m+1 ↔
(m + 1)xp | p is prime, p < n and p 6∈ div(n)} is Kripke-complete with respect to the class of

the �n-valued frames F = 〈W, {rk | k ∈ div(n)}, R〉 that satisfy rk = W if k is a multiple of m

and rk = ∅ otherwise and with an empty accessibility relation R.

Similarly, the equation �(x ⊕ x) ≤ �x is a Sahlqvist equation. Hence, the logic Kn +

�(p⊕ p)→ �p is canonical. It is easy to realize that this is the logic that we have considered in

Example 7.6.

9. Strong canonicity in MMVn, a syntactic approach

The main result of this section is Theorem 9.16 which gives a subfamily of the family of the

Sahlqvist equations made of strongly canonical equations.

De�nition 9.1. If A is an MVn-algebra, we denote by A
τ the strong canonical extension of A,

i.e., the product MVn-algebra �A+n
n .

The last item of the following lemma means that the strong canonical extension of an MVn-

algebra A can be de�ned, up to isomorphism, as the maximal extension of A that is a complete

and completely distributive MVn-algebra and whose algebra of idempotents is isomorphic to the

canonical extension of the algebra of idempotents of A. We will use this fact to extend maps

between MVn-algebras to maps between their strong canonical extensions.

Lemma 9.2. If A is an MVn-algebra, then

(1) the algebra Aτ is an MVn-algebra and Aτ is an extension of Aσ,

(2) the lattice reduct of Aτ is a DL+,

(3) the Boolean algebras B(Aτ ) and B(Aσ) are isomorphic by a unique isomorphism that

�xes B(A),

(4) if B is a complete and completely distributive MVn-algebra that is an extension of A

such that B(B) is isomorphic to B(Aσ) by a necessarily unique isomorphism l : B(B)→
B(Aσ) �xing B(A), then there is a unique embedding φ : B → Aτ that �xes the elements

of B(Aσ) (up to the isomorphism l and the isomorphism of item (3)).

Proof. The proofs of (1), (2), (3) are easy. The map φ in (4) can be obtained as a composition

of the various maps involved.

Let us prove that this map is unique. Assume that ψ satis�es the desired conditions. Then,

for any x in B, the element ψ(x) is fully determined by the element (τ1/n(ψ(x)), . . . , τn/n(ψ(x)))

of (B(Aτ ))n. Now, for any i in {1, . . . , n}, we have τi/n(ψ(x)) = ψ(τi/n(x)) = l(τi/n(x)). Thus,

the equality of ψ and φ follows from the fact that l is unique. �

Lemma 9.3. If A1, . . . , Ak are MVn-algebras then (A1 × · · · ×Ak)τ = Aτ1 × · · · ×Aτk.

Proof. The proof is direct. �

We now introduce a way to extend maps between two MVn-algebras to maps between their

strong canonical extensions. Unfortunately, the de�nition we adopt will not provide an extension

for any map. Recall that in an MVn-algebra A, any element x is completely determined by the

n-uple (τ1/n(x), . . . , τn/n(x)) of elements of B(A). Hence, if A and B are two MV-algebras and
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if f ′ : B(A)→ B(B) is a map, then we can de�ne a map f : A→ B by de�ning f as the unique

map that satis�es τi/n(f(x)) = f ′(τi/n(x)) for any x in A and any i in {1, . . . , n}.
This is the way we follow to de�ne an extension fτ : Aτ → Bτ of a map f : A → B

between two MVn-algebras A and B. Thus, the building block of the extension fτ is a map

f ′ : B(Aτ ) → B(Bτ ). Since B(Aτ ) is isomorphic to B(Aσ) and to B(A)σ, we may ride on

the existing constructions and de�ne f ′ as one of the maps (f �B(A))
σ or fσ �B(Aσ). Of course,

in either case, the proposed map f ′ has to be valued in B(Bτ ). A natural way to ful�ll this

condition is to ensure that

(9.1) ∀ x ∈ A, f(x⊕ x) = f(x)⊕ f(x)

for the �rst case and that

(9.2) ∀x ∈ Aσ, fσ(x⊕ x) = fσ(x)⊕ fσ(x)

for the second case. Condition (9.2) implies obviously (9.1). Let us denote the unary term x⊕ x
by τ⊕. Now, if (τ⊕ ◦ f)σ = τσ⊕ ◦ fσ and (f ◦ τ⊕)σ = fσ ◦ τσ⊕, then, for any map f that satis�es

(9.1), we have

fσ ◦ τσ⊕ = (f ◦ τ⊕)σ = (τ⊕ ◦ f)σ = τσ⊕ ◦ fσ

and so (9.1) implies (9.2). So, We are naturally lead to a problem about composition of canonical

extensions that can be solved thanks to the tools that we have previously developed.

Lemma 9.4. Assume that f : A→ B is a map between two MVn-algebras A and B.

(1) The identity τσ⊕ ◦ fσ = (τ⊕ ◦ f)σ and the inequality fσ ◦ τσ⊕ ≤ (f ◦ τ⊕)σ are satis�ed.

(2) If f is an isotone map then the inequality fσ ◦ τσ⊕ ≥ (f ◦ τ⊕)σ is satis�ed.

Proof. The identity τσ⊕ ◦ fσ = (τ⊕ ◦ f)σ is a consequence of item (4) of Proposition 8.12. The

inequality fσ ◦ τσ⊕ ≤ (f ◦ τ⊕)σ is an application of item (5) of the same Proposition. The last

inequation is a consequence of item (1) of this Proposition. �

Recall that the map fτ : Aτ → Bτ that we want to de�ne has to be an extension of f . The

following lemma states that our methods of construction of fτ provide an extension of f only if

f commutes with τ⊕ and τ�.

Lemma 9.5. Assume that f : A→ B is a map between two MVn-algebras A and B.

(1) If fσ(B(Aσ)) ⊆ B(Bσ) and if f ′ : Aτ → Bτ denotes the map de�ned by τi/n(f ′(x)) =

fσ �B(Aσ) (τi/n(x)) for any x in Aτ and any i in {1, . . . , n} then f ′�A= f if and only if

f(τi/n(x)) = τi/n(f(x)) for any i in {1, . . . , n}.
(2) If f(B(A)) ⊆ B(B) and if f ′ : Aτ → Bτ denotes the map de�ned by τi/n(f ′(x)) =

f �σB(A) (τi/n(x)) for any x in Aτ and any i in {1, . . . , n} then f ′ �A= f if and only if

f(τi/n(x)) = τi/n(f(x)) for any i in {1, . . . , n}.
(3) The map f satis�es f(τi/n(x)) = τi/n(f(x)) for any i in {1, . . . , n} if and only if f(x�

x) = f(x)� f(x) and f(x⊕ x) = f(x)⊕ f(x) for any x in A.

Proof. (1) First assume that f ′ �A= f . If x belongs to A and i belongs to {1, . . . , n}, then τi/n(x)

belongs to B(A) and we obtain that

τi/n(f(x)) = τi/n(f ′(x)) = fσ �B(Aσ) (τi/n(x)) = f(τi/n(x))

since fσ �B(Aσ) is an extension of f �B(A).
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Conversely, if f(τi/n(x)) = τi/n(f(x)) for any x in A and any i in {1, . . . , n} then if x belongs

to A and i to {1, . . . , n},

τi/n(f ′(x)) = fσ �B(Aσ) (τi/n(x)) = f(τi/n(x)) = τi/n(f(x)).

Thus, f(x) and f ′(x) are equal.

(2) We proceed in a similar way.

(3) The right to left part of the statement is clear. For the left to right part we note that

for any i in {1, . . . , n}, the terms τi/n ◦ τ� and τi/n ◦ τ⊕ are equivalent on A to a term of

{τi/n | i ∈ {1, . . . , n}} �

The preceding lemmas give a justi�cation to the following de�nition.

De�nition 9.6. A map f : A → B between two MV-algebras A and B is an idemorphism if

f(x⊕ x) = f(x)⊕ f(x) and f(x� x) = f(x)� f(x) for any x in A.

Let us sum up brie�y the results we have obtained about the construction of fτ . We want to

ride on a map f ′ : B(Aτ ) → B(Bτ ) to de�ne an extension fτ : Aτ → Bτ of a map f : A → B.

We have identi�ed two candidates for the map f ′. These candidates are fσ �B(Aσ) and f �σB(A).

In both cases, the map fτ is an extension of f if and only if f is an idemorphism. We now prove

that in that case, if in addition f is isotone, then we do not have to choose between fσ �B(Aσ)

and f �σB(A).

Lemma 9.7. If f : A → B is an idemorphism between two MVn-algebras A and B such that

fσ(x⊕σ x) = fσ(x)⊕σ fσ(x) for any x in Aσ, then f �σB(A)= fσ �B(Aσ).

Consequently, if f : A→ B is an isotone idemorphism, then f �σB(A)= fσ �B(Aσ).

Proof. We already know that

fσ �B(Aσ): 〈B(Aσ), σ(Aσ)�B(Aσ)〉 → 〈B(Bσ), ι↑(Bσ)�B(Bσ)〉

is continuous. Up to the isomorphism and homeomorphism φ of Corollary 8.17, it means that

the map

fσ �B(Aσ): 〈B(A)σ, σ(B(A)σ)〉 → 〈B(B)σ, ι↑(B(B)σ)〉
is continuous. We conclude that fσ �B(Aσ)≤ f �σB(A) since f �σB(A) is the largest extension of

(f �B(A)) to B(A)σ that enjoys this property of continuity.

To obtain the other inequality, let us de�ne the map g : Aσ → Bσ by setting g(x) = y if

f �σB(A) (τi/n(x)) = τi/n(y) for all i ≤ n. Of course, the maps g and f �σB(A) coincide on B(Aσ).

Then, if we prove that g is (σ, ι↑)-continuous, we will obtain that g ≤ fσ on B(Aσ) so that

f �σB(A)≤ f
σ �B(Aσ).

Let us prove that g is (σ, ι↑)-continuous. Assume that p belongs to J∞ω (Bσ). We obtain

successively that

g−1([p)) =
⋂
{{x | τi/n(g(x)) ≥ τi/n(p)} | i ∈ {1, . . . , n}}

=
⋂
{{x | f �σB(A) (τi/n(x)) ≥ τi/n(p)} | i ∈ {1, . . . , n}}

=
⋂
{τ−1
i/n(f �σ−1

B(A) ([τi/n(p)))) | i ∈ {1, . . . , n}}.

Then, since τi/n(p) belongs to J∞ω (B(Bσ)) = J∞ω (B(B)σ), we can deduce from the (σ, ι↑)-

continuity of f �σB(A) that f �σ−1
B(A) ([τi/n(p))) is an open of σ(B(A)σ). The conclusion then
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follows from the fact that the map τA
σ

i/n = (τAi/n)σ is (σ(Aσ), σ(B(A)σ))-continuous since τAi/n is

both meet and join preserving. �

In the applications we develop in the sequel, the maps that we consider are isotone. Thus,

there is no need to distinguish f �σB(A) from fσ �B(Aσ).

De�nition 9.8. Assume that f : A→ B is an idemorphism between two MVn-algebras A and

B. The map fτ : Aτ → Bτ is de�ned by

∀ i ∈ {1, . . . , n}, τB
τ

i/n(fτ (x)) = f �σB(A) (τA
τ

i/n(x)),

and is called the strong canonical extension of f .

Lemma 9.9. Assume that f : A → B is an idemorphism between two MVn-algebras A and B.

Then fτ is an idemorphism. If f is an isotone map, a lattice operator, a dual lattice operator,

a join preserving map or a meet preserving map then fτ is an isotone map, a lattice operator, a

dual lattice operator, a join preserving map, a meet preserving map respectively.

Proof. These results are proved in a similar way. We present the proof for an idemorphism and

a lattice operator.

If f is an idemorphism and if x is an element of Aτ then for any i in {1, . . . , n} we obtain

successively, if we denote by l the element min[ i2n , 1] ∩ �n,

τi/n(fτ (x⊕ x)) = f �σB(A) (τi/n(x⊕ x))

= f �σB(A) (τl(x)),

and

τi/n(fτ (x)⊕ fτ (x)) = τl(f
τ (x))

= f �σB(A) (τl(x)).

We follow that line of argument to prove that fτ (x� x) = fτ (x)� fτ (x).

Then, let us assume that f : A1 × · · · × Ak → B is an idemorphism and a lattice operator.

We prove that fτ respects the join on the �rst argument. If x1 and x′1 belong to A1 and if

(x2, . . . , xk) belongs to A2 × · · · ×Ak then for any i in {1, . . . , n},

τi/n(fτ (x1 ∨ x′1, x2, . . . , xk)) = f �σB(A) (τi/n(x1 ∨ x′1, x2, . . . , xk))

= f �σB(A) (τi/n(x1 ∨ x′1), . . . , τi/n(xk))

= f �σB(A) ((τi/n(x1) ∨ τi/n(x′1), . . . , τi/n(xk)))

and so τi/n(fτ (x1 ∨ x′1, x2, . . . , xk)) is equal to

f �σB(A) ((τi/n(x1), . . . , τi/n(xk))) ∨ f �σB(A) (τi/n(x′1), . . . , τi/n(xk)))

since f �σB(A) is a lattice operator. This last element is in turn equal to

τi/n(fτ (x1, . . . , xk)) ∨ τi/n(fτ (x′1, . . . , xk)) = τi/n(fτ (x1, . . . , xk) ∨ fτ (x′1, . . . , xk))

according to the de�nition of fτ . �

Example 9.10. If A is an MVn-algebra then ∨A : A × A → A and ∧A : A × A → A are two

isotone idemorphisms. It is not hard to check that ∨τ = ∨Aτ and that ∧τ = ∧Aτ .
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Let us also remark that it is possible to regard the negation ¬ as an idemorphism. To do so,

let us consider ¬ as the map ¬ : Aα → A. Then, we can prove that the map ¬τ : Aτα → Aτ is

equal to the map ¬Aτ . Indeed, the map ¬τ : Aτα → Aτ is de�ned for every x in Aτα by

τA
τ

i/n(¬τx) = ¬�σB(A)α (τA
τα

i/n (x)) ∀ i ∈ {i, . . . , n}.

Then, it follows successively that

¬�σAα (τA
τα

i/n (x)) = ¬A
σα

(τA
τα

i/n (x))

= ¬A
τα

(τA
τα

i/n (x))

= τA
τ

i/n(¬A
τ

(x)).

Proposition 9.11. If � is a dual MV-operator on an MVn-algebra A then for any α in Aτ and

any u in A+

(�τα)(u) =
∧
{α(v) | v ∈ Ru}

where R denotes the canonical relation associated to �. Consequently, the map �τ is a dual

MV-operator.

Proof. Assume that α belongs to Aτ and u belongs to A+. For any i in {1, . . . , n} we obtain

successively since � is isotone that

(τi/n(�τα))(u) = (�σ(τi/n(α)))(u)

=
∧
{τi/n(α)(v) | v ∈ Ru}

= τi/n(
∧
{α(v) | v ∈ Ru}).

We then obtain that �τ is a dual MV-operator thanks to Lemma 7.8 for example. �

It is now time to give results about composition of τ -extensions. Once again, our results follow

from the results about composition of canonical extensions.

Proposition 9.12. Assume that f : B → C and g : A → B are two idemorphisms between the

MVn-algebras A, B and C. If ./ belongs to {≤,≥,=} and if (fg)�σB(A)./ f �
σ
B(A) g �

σ
B(A) then

(fg)τ ./ fτgτ .

Proof. Assume that (fg)�σB(A)./ f �
σ
B(A) g�

σ
B(A). If x belongs to Aτ and i belongs to {1, . . . , n},

we obtain successively

τi/n((fg)τ (x)) = (fg)�σB(A) (τi/n(x))

./ f �σB(A) (g�σB(A) (τi/n(x)))

= f �σB(A) (τi/n(gτ (x)))

= τi/n(fτgτ (x)),

which concludes the proof. �

In order to determine if a variety A of MMVn-algebras contains the τ -extension of any of its

element, it is useful to prove that if B is a quotient of theA-algebra A, then Bτ is a quotient of Aτ .
We �rst consider the more general problem of the conservation of homomorphisms: if f : A→ B

is an homomorphism between two A-algebras A and B, can we deduce that fτ : Aτ → Bτ is an

homomorphism?

We have to keep in mind that, unlike the case of canonical extension, the operation ⊕Aτ is

not obtained as the τ -extension of ⊕A since it is not an idemorphism.
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The result we obtain is more general than needed.

De�nition 9.13. An algebra A is an MVn-algebra with L-idemorphisms (resp. MVn-algebra

with L-lattice idemorphisms) if it is an L-algebra such that 〈A,⊕,�,¬, 0, 1〉 is an MVn-algebra

and if any operation g of L \ LMV is interpreted as an idemorphism (resp. and as a lattice

operator) gA on the MV-algebra reduct of A.

If A is an MVn-algebra with L-idemorphisms, the strong canonical extension Aτ of A is de�ned

as the L-algebra whose MV-reduct is the strong canonical extension of the MV-reduct of A and

that satis�es gA
τ

= (gA)τ for any operation symbol g in L \ LMV .

So, in the construction of strong canonical extensions of MVn-algebras, the algebras are con-

sidered more as expanded MV-algebras than expanded DLs.
An MMV-algebra is an example of an MV-algebra with a unary lattice idemorphism.

In the sequel, if f : A→ B is a map, we denote by f [k] the map f [k] : Ak → Bk : (a1, . . . , ak) 7→
(f(a1), . . . , f(ak)).

Lemma 9.14. Assume that A and B are MVn-algebras with L-lattice idemorphisms. For any

L-homomorphism f : A→ B the map fτ : Aτ → Bτ is an L-homomorphism.

Proof. First, assume that g is a k-ary operation of L\LMV interpreted as a lattice idemorphism

on the algebras Ak and Bk. If (x1, . . . , xk) belongs to (Aτ )k and i belongs to {1, . . . , n}, we
obtain successively on the one hand that

τi/n((fτ (gA)τ (x1, . . . , xk))) = (f �σB(A) g
A�σB(A)k)(τi/n(x1), . . . , τi/n(xk))

= (gB �σB(B)k f �
σ[k]
B(A))(τi/n(x1), . . . , τi/n(xk))

= τ i
n

((gB)τfτ [k](x1, . . . , xk)).

Let us now prove that fτ (x ⊕Aτ y) = fτ (x) ⊕Bτ fτ (y) for any x and y in Aτ . Let i be an

element of {1, . . . , n}. The equation

(9.3) τi/n(x⊕ y) = τi/n(x) ∨ (τ(i−1)/n(x) ∧ τ1/n(y)) ∨ · · · ∨ (τ1/n(x) ∧ τ(i−1)/n(y)) ∨ τi/n(y)

(where τ0 is de�ned as the constant term 1) is satis�ed in the variety of MVn-algebras. If x and

y belong to Aτ , then τi/n(fτ (x)⊕ fτ (y)) is equal, thanks to equation (9.3), to

τi/n(fτ (x))∨(τ(i−1)/n(fτ (x))∧τ1/n(fτ (y)))∨· · ·∨(τ1/n((fτ (x))∧τ(i−1)/n((fτ (y)))∨τi/n((fτ (y)),

which is in turn equal, by de�nition of fτ , to

fσ(τi/n(x))∨ (fσ(τ(i−1)/n(x))∧ fσ(τ1/n(y)))∨ · · · ∨ (fσ(τ1/n(x))∧ fσ(τ(i−1)/n(y)))∨ fσ(τi/n(y)).

Then, since fσ : Aσ → Bσ is an homomorphism of MV-algebras, this last element is equal to

fσ(τi/n(x) ∨ (τ(i−1)/n(x) ∧ τ1/n(y)) ∨ · · · ∨ (τ1/n(x) ∧ τ(i−1)/n(y)) ∨ τi/n(y)),

i.e., to

fσ(τi/n(x⊕ y)) = τi/n(fτ (x⊕ y)).

We proceed in a similar way to prove that fτ (¬x) = ¬f(x) for any x in Aτ . �

Note that thanks to the preceding result, it is now easy to give a proof of the second item of

Proposition 7.15.

Lemma 9.15. Assume that A is an MVn-algebra with L-operators.
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(1) If t is an L-term constructed with operations that are interpreted as isotone idemorphisms

on A then tA
τ ≥ (tA)τ .

(2) If t is an L-term constructed with operations that are interpreted as lattice idemorphisms

on A then tA
τ

= (tA)τ .

(3) If t = s(u1, . . . , uk) is an L-term where for every operation symbol f that appears in s

the map fA is a lattice idemorphism and where all the operations in each of the ui are

interpreted as meet preserving idemorphisms, then (tA
τ

) = (tA)τ .

Proof. The proofs are done by induction on the number of connectives in t with the help of

Proposition 9.12 and the corresponding results for canonical extensions. �

Theorem 9.16. Assume that φ ≤ ψ is a Sahlqvist equation over the language LMMV d where

• the term ψ is constructed only with the operations ¬, ∨, ∧, constants, modalities and

dual modalities,

• the term φ is constructed from boxed atoms, constants with the operations ∨, ∧ and

modalities.

The equation φ ≤ ψ is strongly canonical and thus the logic Kn + φ→ ψ is a Kripke-complete

logic.

Example 9.17. The equations �p → p, �p → ��p, p → �♦p are all strongly canonical and

hence de�ne strongly Kripke complete logics.
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