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Abstract

Let [a, b] be any bounded closed real interval. The class of all continuous, nondecreasing,
associative functions M : [a, b]2 → [a, b] fulfilling the boundary conditions M(a, a) = a and
M(b, b) = b is described.
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1 Introduction

Let E be any real interval, finite or infinite. A two-place function M : E2 → E is said to be
associative if it fulfils the following equation

M(M(x, y), z) = M(x,M(y, z)) ∀x, y, z ∈ E. (1)

A large number of papers deal with the associativity functional equation (1), especially in the
field of real numbers (for a list of references see Aczél [2, Section 6.2]). In complete generality its
investigation naturally constitutes a principal subject of algebra. Many researchers tried to solve
it, even under some additional conditions.

Let [a, b] be a bounded closed real interval. In this paper, we intend to describe the family
of continuous, nondecreasing (in each variable), associative functions M : [a, b]2 → [a, b] fulfilling
the boundary conditions M(a, a) = a and M(b, b) = b. This family contains all the continuous
t-norms and t-conorms which are often used as aggregation tools in fuzzy sets theory, see Fodor
and Roubens [8].

The paper is organized as follows. In Section 2, we simply mention the well-known description
of the family of continuous, strictly increasing, associative functions. In Section 3, we recall
some characterizations involving continuous, nondecreasing, associative functions. In Section 4,
we present the main result as well as some corollaries. In Section 5, we investigate the case of
idempotent functions. Finally, in Section 6, we examine the particular case of continuous t-norms
and t-conorms.

Before entering the subject, we need to introduce some useful concepts: A semigroup (E, M)
is a set E with an associative operation M defined on it. An element e ∈ E is

a) an identity for M if M(e, x) = M(x, e) = x for all x ∈ E,
b) a zero (or annihilator) for M if M(e, x) = M(x, e) = e for all x ∈ E,
c) an idempotent for M if M(e, e) = e.

For any semigroup (E,M), it is clear that there is at most one identity and at most one zero for
M in E, and both are idempotents.

In this paper, for any real interval E, we denote by E◦ the interior of E, that is the corre-
sponding open interval.
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2 Case of strict increasing functions

Aczél [1] investigated the general continuous, strictly increasing (in each variable), real solution
on E2 of the associativity equation. He proved the following (see also [2, Section 6.2]).

Theorem 2.1 Let E be a real interval, finite or infinite, which is open on one side. A function
M : E2 → E is continuous, strictly increasing, and associative if and only if there exists a
continuous and strictly monotonic function f : E → IR such that

M(x, y) = f−1[f(x) + f(y)] ∀x, y ∈ E. (2)

It was also proved that the function f occuring in (2) is determined up to a multiplicative
constant, that is, with f(x) all functions g(x) = r f(x) (r ∈ IR0) belongs to the same M , and only
these.

Moreover, the function f is such that, if e ∈ E then

M(e, e) = e ⇔ f(e) = 0. (3)

Indeed, if M(e, e) = e then, by (2), we have 2f(e) = f(e), hence f(e) = 0. Conversely, suppose
f(e) = 0. By (2), we have 0 = 2f(e) = f(M(e, e)). Since f is strictly monotonic, we have
M(e, e) = e.

By (3) and because of strict monotonicity of f , there is at most one idempotent for M (which
is, actually, the identity). Moreover, we can notice that every continuous, strictly increasing,
associative function is also symmetric (i.e. M(x, y) = M(y, x) for all x, y ∈ E). The sum (f(x) =
x) and the product (f(x) = log x) are well-known examples of continuous, strictly increasing,
associative functions.

According to Ling [10], any semigroup (E,M) satisfying the hypotheses of Theorem 2.1 is
called Aczélian.

3 Archimedean semigroups

Some authors tempted to generalize Theorem 2.1 by relaxing the strict increasingness into nonde-
creasingness. But it seems that the class of continuous, nondecreasing, associative functions has
not been described yet. However, under some additional conditions, results have been obtained.

First, we state a representation theorem attributed very often to Ling [10]. In fact, her main
theorem can be deduced from previously known results on topological semigroups, see Faucett [6]
and Mostert and Shields [11]. Nevertheless, the advantage of Ling’s approach is twofold: treating
two different cases in a unified manner and establishing elementary proofs.

Theorem 3.1 Let E = [a, b]. A function M : E2 → E is continuous, nondecreasing, associa-
tive and fulfils

M(b, x) = x ∀x ∈ E (4)
M(x, x) < x ∀x ∈ E◦ (5)

if and only if there exists a continuous strictly decreasing function f : E → [0, +∞], with f(b) = 0,
such that

M(x, y) = f−1[min(f(x) + f(y), f(a)) ] ∀x, y ∈ E. (6)
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The requirement that E be closed is not really a restriction. If E is any real interval, finite or
infinite, with right endpoint b (b can be +∞), then we can replace condition (4) by

lim
t→b−

M(t, t) = b, lim
t→b−

M(t, x) = x ∀x ∈ E.

Any function f solving equation (6) is called an additive generator (or simply generator) of
M . Moreover, we can easily see that any function M of the form (6) is symmetric and conjunctive
(i.e. M(x, y) ≤ min(x, y) ∀x, y ∈ E).

Condition (4) expresses that b is a left identity for M . It turns out, from (6), that b acts as
an identity, and a as a zero. Condition (5) simply expresses that there are no idempotents for
M in ]a, b[; indeed, by nondecreasingness and (4), we always have M(x, x) ≤ M(b, x) = x for all
x ∈ [a, b].

Depending on whether f(a) is finite or infinite (recall that f(a) ∈ [0, +∞]), M takes a well-
defined form (see Fodor and Roubens [8, Section 1.3] and Schweizer and Sklar [12]):

• f(a) < +∞ if and only if M has zero divisors (i.e. ∃x, y ∈]a, b[ such that M(x, y) = a).
In this case, there exists a continuous strictly increasing function g : [a, b] → [0, 1], with
g(a) = 0 and g(b) = 1 such that

M(x, y) = g−1[max(g(x) + g(y)− 1, 0)] ∀x, y ∈ [a, b]. (7)

To see this, it suffices to set g(x) := 1− f(x)/f(a).

• limt→a+ f(x) = +∞ if and only if M is strictly increasing on ]a, b[. In this case, there exists
a continuous strictly increasing function g : [a, b] → [0, 1], with g(a) = 0 and g(b) = 1 such
that

M(x, y) = g−1[g(x) g(y)] ∀x, y ∈ [a, b], (8)

To see this, it suffices to set g(x) := exp(−f(x)).

Of course, Theorem 3.1 can also be written under a dual form as follows.

Theorem 3.2 Let E = [a, b]. A function M : E2 → E is continuous, nondecreasing, associa-
tive and fulfils

M(a, x) = x ∀x ∈ E (9)
M(x, x) > x ∀x ∈ E◦ (10)

if and only if there exists a continuous strictly increasing function f : E → [0, +∞], with f(a) = 0,
such that

M(x, y) = f−1[min(f(x) + f(y), f(b)) ] ∀x, y ∈ E. (11)

Here again, E can be any real interval, even infinite. The functions M of the form (11)
are symmetric and disjunctive (i.e. M(x, y) ≥ max(x, y) ∀x, y ∈ E). There are no interior
idempotents. The left endpoint a acts as an identity and the right endpoint b acts as a zero.

Once more, two mutually exclusive cases can be examined:

• f(b) < +∞ if and only if M has zero divisors (i.e. ∃x, y ∈]a, b[ such that M(x, y) = b).
In this case, there exists a continuous strictly increasing function g : [a, b] → [0, 1], with
g(a) = 0 and g(b) = 1 such that

M(x, y) = g−1[min(g(x) + g(y), 1)] ∀x, y ∈ [a, b]. (12)

To see this, it suffices to set g(x) := f(x)/f(b).
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• limt→b− f(x) = +∞ if and only if M is strictly increasing on ]a, b[. In this case, there exists
a continuous strictly increasing function g : [a, b] → [0, 1], with g(a) = 0 and g(b) = 1 such
that

M(x, y) = g−1[1− (1− g(x)) (1− g(y))] ∀x, y ∈ [a, b], (13)

To see this, it suffices to set g(x) := 1− exp(−f(x)).

Any semigroup fulfilling the assumptions of Theorem 3.1 or 3.2 is called Archimedean, see
Ling [10]. In other words, when E is a real interval, the semigroup (E, M) is said to be Archimedean
if M is continuous, nondecreasing, and associative, one endpoint of E is an identity for M , and
there are no idempotents for M in E◦. We can make a distinction between conjunctive and
disjunctive Archimedean semigroups depending on whether the identity is the right endpoint of E
or the left endpoint of E, respectively. An Archimedean semigroup is called properly Archimedean
or Aczélian if every additive generator f is unbounded; otherwise it is improperly Archimedean.

Ling [10, Section 6] proved that every Archimedean semigroup is obtainable as a limit of
Aczélian semigroups.

4 The main result

We now intend to describe the family Aa,b of continuous, nondecreasing, associative functions
M : [a, b]2 → [a, b] fulfilling the boundary conditions M(a, a) = a and M(b, b) = b. For all
θ ∈ [a, b], we define Aa,b,θ as the subset of functions M ∈ Aa,b such that M(a, b) = M(b, a) = θ.
The extreme cases Aa,b,a and Aa,b,b will play an important role in the sequel. From now on, ∧
and ∨ will stand, respectively, for the minimum and maximum operations.

Theorem 4.1 M ∈ Aa,b if and only if there exists α, β ∈ [a, b] and two functions Ma,α∧β,α∧β ∈
Aa,α∧β,α∧β and Mα∨β,b,α∨β ∈ Aα∨β,b,α∨β such that, for all x, y ∈ [a, b],

M(x, y) =





Ma,α∧β,α∧β(x, y), if x, y ∈ [a, α ∧ β]
Mα∨β,b,α∨β(x, y), if x, y ∈ [α ∨ β, b]
(α ∧ x) ∨ (β ∧ y) ∨ (x ∧ y), otherwise.

Proof. (Sufficiency) We can easily see that the functions M defined in the statement are
continuous, nondecreasing and fulfil the boundary conditions. The only property we have to
prove is associativity.

Assume α ≤ β (the other case can be treated similarly) and let x, y, z ∈ [a, b]. Let us show
that (1) holds.

1. If y, z ≤ α then

• if x ≤ α then M = Ma,α,α and M(M(x, y), z) = M(x,M(y, z));

• if x > α then M(M(x, y), z) = M(α, z) = α = M(x,M(y, z)).

2. The case y, z ≥ β can be treated similarly.

3. In the remaining cases,

• if z ≤ α and y > α then M(x, y) ≥ α and M(M(x, y), z) = α = M(x, α) =
M(x,M(y, z));

• if z ≥ β and y < β then M(x, y) ≤ β and M(M(x, y), z) = β = M(x, β) =
M(x,M(y, z));

• if α ≤ z ≤ β then M(M(x, y), z) = z = M(x, z) = M(x,M(y, z)).
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(Necessity) Set α = M(b, a), β = M(a, b) and suppose α ≤ β. The other case can be treated
similarly.

We have

M(α, a) = M(b, α) = α, (14)
M(a, β) = M(β, b) = β. (15)

Indeed, we have for instance, M(α, a) = M(M(b, a), a) = M(b,M(a, a)) = M(b, a) = α.
We have

M(x, y) = α ∀x, y ∈ [a, b], y ≤ α ≤ x, (16)
M(x, y) = β ∀x, y ∈ [a, b], x ≤ β ≤ y, (17)

Indeed, we have for instance, by nondecreasingness and (14), α = M(b, α) ≥ M(x, y) ≥ M(α, a) =
α.

We have

M(a, y) = y ∀y ∈ [a, β] (18)
M(b, y) = y ∀y ∈ [α, b] (19)

Indeed, for instance, if z increases from a to β, M(a, z) increases continuously from a to β. Using
the intermediate-value theorem, this implies that: ∀y ∈ [a, β], ∃z ∈ [a, β] such that y = M(a, z)
and

M(a, y) = M(a,M(a, z)) = M(M(a, a), z) = M(a, z) = y.

To end the proof, we have to prove that

M(x, y) = y ∀x ∈ [a, b] ∀y ∈ [α, β].

Indeed, by nondecreasingness and (18)–(19), we simply have y = M(a, y) ≤ M(x, y) ≤ M(b, y) =
y.

As we can note, the previous characterization partitions the definition set [a, b]2 into several
pieces. On each one of them, M takes a well defined form. Figure 1 presents graphics showing
this partition and the corresponding values of the function.

Now, our task consists in describing the two families Aa,b,a and Aa,b,b. For this purpose,
consider a proposition.

Proposition 4.1 For any continuous, nondecreasing, associative functions M : [a, b]2 →
[a, b], the following assertions are equivalent:

i) b is an identity for M
ii) a is a zero, and b is an idempotent for M

iii) M(a, b) = M(b, a) = a, and b is an idempotent for M

The assertions remain equivalent if the endpoints a and b are exchanged.

Proof. i) or ii) ⇒ iii) Trivial.
iii) ⇒ ii) For all x ∈ [a, b], we have M(a, x) ≤ M(a, b) = a, so that M(a, x) = a.
iii) ⇒ i) If z increases from a to b, M(b, z) increases continuously from a to b. Using the

intermediate-value theorem, this implies that: ∀x ∈ [a, b], ∃z ∈ [a, b] such that x = M(b, z) and

M(b, x) = M(b, M(b, z)) = M(M(b, b), z) = M(b, z) = x.

We can prove similarly that M(x, b) = x for all x ∈ [a, b].

Before going on, we need to introduce the concept of ordinal sum, well-known in the theory of
semigroups (see e.g. [10]).
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Figure 1: Description of Aa,b

Definition 4.1 Let K be a totally ordered set and {(Ek,Mk) | k ∈ K} be a collection of disjoint
semigroups indexed by K. Then the ordinal sum of {(Ek,Mk) | k ∈ K} is the set-theoretic union
∪k∈KEk under the following binary operation:

M(x, y) =
{

Mk(x, y), if ∃ k ∈ K such that x, y ∈ Ek

min(x, y), if ∃ k1, k2 ∈ K, k1 6= k2 such that x ∈ Ek1 and y ∈ Ek2.

The ordinal sum is a semigroup under the above defined operation.

Now, let us turn to the description of Aa,b,a. Mostert and Shields [11, p. 130, Theorem B]
proved the following.

Theorem 4.2 A function M : [a, b]2 → [a, b] is continuous, associative, and is such that a
acts as a zero and b as an identity if and only if

• either
M(x, y) = min(x, y) ∀x, y ∈ [a, b],

• or there exists a continuous strictly decreasing function f : [a, b] → [0, +∞], with f(b) = 0,
such that

M(x, y) = f−1[ min(f(x) + f(y), f(a)) ] ∀x, y ∈ [a, b].

(conjunctive Archimedean semigroup)

• or there exist a countable index set K ⊆ IN, a family of disjoint open subintervals {]ak, bk[ | k ∈
K} of [a, b] and a family {fk | k ∈ K} of continuous strictly decreasing function fk : [ak, bk] →
[0, +∞], with fk(bk) = 0, such that, for all x, y ∈ [a, b],

M(x, y) =
{

f−1
k [min(fk(x) + fk(y), fk(ak)) ], if ∃ k ∈ K such that x, y ∈ [ak, bk]

min(x, y), otherwise.

(ordinal sum of conjunctive Archimedean semigroups and one-point semigroups)
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M is continuous and associative
E = [a, b]

a = zero, b = identity
������������9 ?

XXXXXXXXXXXXz
Archimedean Idempotent Ordinal sums
M(x, x) < x M(x, x) = x M(x, x) ≤ x

no idempotents in ]a, b[ all idempotents general case

f−1[min(f(x) + f(y), f(a))] min(x, y)

? ?
Properly Archimedean Improperly Archimedean

g−1[g(x) g(y)] g−1[max(g(x) + g(y)− 1, 0)]

f(a) = +∞
strict on ]a, b[

f(a) < +∞
zero divisors in ]a, b[

-

6

Arch.

Arch.

Arch.min

min

x

y

Figure 2: Description of Aa,b,a

By Proposition 4.1, Aa,b,a is the family of continuous, nondecreasing, associative functions
M : [a, b]2 → [a, b] such that a acts as a zero and b as an identity. Consequently, the description
of the family Aa,b,a is also given by Theorem 4.2 (see also Figure 2). Moreover, it turns out
that all functions fulfilling the assumptions of this result are also symmetric, nondecreasing and
conjunctive.

Theorem 4.2 can also be written under a dual form as follows.

Theorem 4.3 A function M : [a, b]2 → [a, b] is continuous, associative, and is such that a
acts as an identity and b as a zero if and only if

• either
M(x, y) = max(x, y) ∀x, y ∈ [a, b],

• or there exists a continuous strictly increasing function f : [a, b] → [0, +∞], with f(a) = 0,
such that

M(x, y) = f−1[min(f(x) + f(y), f(b)) ] ∀x, y ∈ [a, b].

(disjunctive Archimedean semigroup)

• or there exist a countable index set K ⊆ IN, a family of disjoint open subintervals {]ak, bk[ | k ∈
K} of [a, b] and a family {fk | k ∈ K} of continuous strictly increasing function fk : [ak, bk] →
[0, +∞], with fk(ak) = 0, such that, for all x, y ∈ [a, b],

M(x, y) =
{

f−1
k [ min(fk(x) + fk(y), fk(bk)) ], if ∃ k ∈ K such that x, y ∈ [ak, bk]

max(x, y), otherwise.

(ordinal sum of disjunctive Archimedean semigroups and one-point semigroups)

As above, we can see thatAa,b,b is the family of continuous, nondecreasing, associative functions
M : [a, b]2 → [a, b] such that a acts as an identity and b as a zero. The description of the family
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M is continuous and associative
E = [a, b]

a = identity, b = zero
������������9 ?

XXXXXXXXXXXXz
Archimedean Idempotent Ordinal sums
M(x, x) > x M(x, x) = x M(x, x) ≥ x

no idempotents in ]a, b[ all idempotents general case

f−1[min(f(x) + f(y), f(b))] max(x, y)

? ?
Properly Archimedean Improperly Archimedean

g−1[g(x) + g(y)− g(x) g(y)] g−1[min(g(x) + g(y), 1)]

f(b) = +∞
strict on ]a, b[

f(b) < +∞
zero divisors in ]a, b[

-

6

Arch.

Arch.

Arch.max

max

x

y

Figure 3: Description of Aa,b,b

Aa,b,b is thus given by Theorem 4.3 (see also Figure 3). Moreover, all functions fulfilling the
assumptions of this result are also symmetric, nondecreasing and disjunctive.

Theorems 4.1, 4.2 and 4.3, taken together, give a complete description of the family Aa,b.
Imposing some additional conditions leads to the following immediate corollaries.

Corollary 4.1 M ∈ Aa,b and is strictly increasing (in each variable) if and only if there exists
a continuous strictly increasing function g : [a, b] → [0, 1], with g(a) = 0 and g(b) = 1 such that

• either
M(x, y) = g−1[g(x) g(y)] ∀x, y ∈ [a, b],

• or
M(x, y) = g−1[g(x) + g(y)− g(x) g(y)] ∀x, y ∈ [a, b].

Corollary 4.2 M ∈ Aa,b and is symmetric if and only if there exist α ∈ [a, b] and two
functions Ma,α,α ∈ Aa,α,α and Mα,b,α ∈ Aα,b,α such that, for all x, y ∈ [a, b],

M(x, y) =





Ma,α,α(x, y), if x, y ∈ [a, α]
Mα,b,α(x, y), if x, y ∈ [α, b]
α, otherwise.

Corollary 4.3 M ∈ Aa,b and has exactly one identity element in [a, b] if and only if M ∈
Aa,b,a ∪ Aa,b,b.

5 Idempotent functions

Now, we investigate the case of idempotent functions (i.e. M(x, x) = x for all x ∈ [a, b]). Although
we have seen in Section 2 that there is no continuous, strictly increasing, associative functions
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β
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1

y

α

β

Figure 4: Representation on [0, 1]2 of M(x, y) = (α ∧ x) ∨ (β ∧ y) ∨ (x ∧ y) in case of α ≤ β

which are idempotent, the class of continuous, nondecreasing, idempotent, associative functions is
not empty and its description can be deduced from Theorem 4.1. However, Fodor [7] had already
obtained this description in a more general framework. In his result, E can be any connected
order topological space. In particular, E can be an arbitrary real interval, even infinite.

Theorem 5.1 Let E be a real interval, finite or infinite. A function M : E2 → E is continu-
ous, nondecreasing, idempotent, and associative if and only if there exist α, β ∈ E such that

M(x, y) = (α ∧ x) ∨ (β ∧ y) ∨ (x ∧ y) ∀x, y ∈ E. (20)

Notice that, by distributivity of ∧ and ∨, M can be written also in the equivalent form:

M(x, y) = (β ∨ x) ∧ (α ∨ y) ∧ (x ∨ y) ∀x, y ∈ E.

On the basis of (20), the graphical representation of M can be drawn, see Figure 4.
Before Fodor [7], the symmetric case was obtained by Fung and Fu [9] and in a revisited way

by Dubois and Prade [5]. Now, the result can be formulated as follows.

Theorem 5.2 Let E be a real interval, finite or infinite. A function M : E2 → E is symmet-
ric, continuous, nondecreasing, idempotent, and associative if and only if there exists α ∈ E such
that

M(x, y) = median(x, y, α) ∀x, y ∈ E (21)

CzogaÃla and Drewniak [4] have examined the case when M has an identity element e ∈ E.
They obtained the following.

Theorem 5.3 Let E be a real interval, finite or infinite.
i) If M : E2 → E is nondecreasing, idempotent, associative, and has an identity element e ∈ E,
then there is a nonincreasing function g : E → E with g(e) = e such that, for all x, y ∈ E,

M(x, y) =





x ∧ y, if y < g(x)
x ∨ y, if y > g(x)
x ∧ y or x ∨ y, if y = g(x).
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ii) If M : E2 → E is continuous, nondecreasing, idempotent, associative, and has an identity
element e ∈ E, then M = min or max.

Fodor [7] showed that the previous result still holds in the more general framework of connected
order topological spaces.

6 Triangular norms and conorms

In fuzzy set theory, one of the main topics consists in defining fuzzy logical connectives which are
appropriate extensions of logical connectives AND, OR and NOT in the case when the valuation
set is the unit interval [0, 1] rather than {0, 1} (see e.g. [8]).

Fuzzy connectives modelling AND and OR are called triangular norms (t-norms for short)
and triangular conorms (t-conorms) respectively, see [3, 12].

Definition 6.1 i) A t-norm is a symmetric, nondecreasing, associative function T : [0, 1]2 →
[0, 1] having 1 as identity.

ii) A t-conorm is a symmetric, nondecreasing, associative function S : [0, 1]2 → [0, 1] having
0 as identity.

The family of continuous t-norms is nothing less than the class A0,1,0, and the family of
continuous t-conorms is the classA0,1,1. These families have been described in Section 4. Moreover,
in this context, Corollary 4.3 gives a characterization of their union.

Corollary 6.1 M ∈ A0,1 and has exactly one identity element in [0, 1] if and only if M is a
continuous t-norm or a continuous t-conorm.

We will not stress on this topic of t-norms and t-conorms. For a good survey and references,
see Fodor and Roubens [8].
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