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Abstract

Apoptosis is regulated by several signaling pathways which are extensively linked by crosstalks. Boolean or logical modeling
has become a promising approach to capture the qualitative behavior of such complex networks. Here we built a large-
scale literature-based Boolean model of the central intrinsic and extrinsic apoptosis pathways as well as pathways
connected with them. The model responds to several external stimuli such as Fas ligand, TNF-a, UV-B irradiation, interleukin-
1B and insulin. Timescales and multi-value node logic were used and turned out to be indispensable to reproduce the
behavior of the apoptotic network. The coherence of the model was experimentally validated. Thereby an UV-B dose-effect
is shown for the first time in mouse hepatocytes. Analysis of the model revealed a tight regulation emerging from high
connectivity and spanning crosstalks and a particular importance of feedback loops. An unexpected feedback from Smac
release to RIP could further increase complex Il formation. The introduced Boolean model provides a comprehensive and
coherent description of the apoptosis network behavior. It gives new insights into the complex interplay of pro- and
antiapoptotic factors and can be easily expanded to other signaling pathways.
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Introduction

Apoptosis 1s the prototype of programmed cell death and an
essential process in multicellular organisms. It is necessary during
embryogenesis, tissue growth, differentiation and homeostasis as a
protective mechanism to remove superfluous or malfunctioning
cells from the organism [1-5]. Errors in cell death regulation can
result in diseases like Alzheimer and Parkinson when uncontrolled
apoptosis occurs or cancer if apoptosis is repressed [6,7]. Apoptosis
can be induced by several signal transduction pathways that are
tightly regulated and linked to other cellular events such as
inflammatory responses and proliferation. The understanding of
these signaling pathways is thought to provide novel solutions for
the treatment of many diseases. However, a large number of
participating components, their complex dependencies and
multiple biological stimuli make the analysis of small network
parts difficult and often less expressive. Therefore some mathe-
matical models have already been presented covering broader
structures.

For example Huber ¢ al. presented the web service APOPTO-
CELL based on 52 ordinary differential equations [ODEs] to
calculate the susceptibility of cells to undergo apoptosis in response
to an activation of the mitochondrial apoptotic pathway [8]. The
power of ODE based modeling concerning dynamic simulation
and system analysis is without controversy. However, the use of

@ PLoS Computational Biology | www.ploscompbiol.org

ODE models for larger networks is limited due to limited
biological data. The parameter identification for ODE models is
in the very most cases dependent on quantitative measurements
which still are a systems biology bottle neck. Another approach is
the use of Petri nets [9,10], however, the required nput for
parameterization is still relatively high due to the need of defining
transition rules.

In this study, we present a Boolean network of apoptosis.
Boolean or logical networks are well suited to reproduce the
qualitative behavior of extensive networks even with a limited
amount of experimental data. Boolean logic is the algebra of two
values, e.g. “l and 0” or “true and false” or “on and off”” [11] and
was first shown to be applicable to electrical relay circuits [12].
Furthermore, it can also be applied to biological systems, and
signal flow networks can be described reasonable by a logical
approach [13]. The Boolean formalism is especially useful for
qualitative representation of signaling and regulatory networks
where activation and inhibition are the essential processes [14]. In
a Boolean representation, the biological active state of a species
can be translated into the “on” state whereas the inactive state is
represented by the “off” state. Enzymes play the role of switching
other enzymes and genes “on” and “off’. Applying Boolean
algebra to a signaling network results in an interaction network,
analogous to electrical circuits, which can be conveniently
represented by logical interaction graphs. Boolean operations
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Author Summary

Apoptosis is one of the most investigated topics in the life
sciences, especially as this kind of programmed cell death
has been linked to several diseases. The strong desire to
understand the function and regulation of apoptosis is
unfortunately confronted with its complexity and its high
degree of cross linking within the cell. Therefore we apply
the so-called logical or Boolean mathematical modeling
approach to comprehensively describe the numerous
interactions in the apoptotic network. Classical Boolean
modeling assumes that a certain cellular signal is either
present (on) or absent (off). We use extensions of classical
Boolean models, namely timescale constants and multi-
value nodes, which allow the model to emulate typical
apoptotic features. The mathematical model describes for
the first time the numerous relevant interactions and
signals that control apoptosis in a single and coherent
framework. The logical model of apoptosis provides
valuable information about the topology of the network
including feedback loops and crosstalk effects. Proper
investigation of the mutual interactions between species
points towards hubs in the network with outstanding
relevance. These species are of special interest concerning
experimental intervention as well as drug target search.
The model we present here is easy to use and freely
available.

and graphs are described in detail in the Materials and methods
section.

There are different interesting approaches concerning the
specific calculation and simulation of Boolean networks. Chaves
et al. presented a hybrid model of the NF-xB module combining
Boolean and ODE based modeling [15]. Calzolari et al. analyzed
an apoptosis gene network with identical topology but different
link strengths chosen by random distribution [16]. For the specific
cell type of cytotoxic T lymphocytes Zhang et al. built a Boolean
model relating the input antigen stimulation with the output
apoptosis [17]. They use an asynchronous updating strategy and
show multiple simulations with different updating orders. Recent-
ly, Mai et al. presented a Boolean apoptosis model including 40
nodes and connecting two inputs, namely TNF and growth factor,
to the output DNA damage [18]. They calculated their network
with the impressive number of 10.000 random initial states to
simulate towards apoptosis or stable surviving.

We chose a different approach to avoid some known problems
concerning logical models. In this study, the logical steady state
[LSS] of variables with a unique LSS for a given input setting is
determined. For the computation of LSSs the software tool
CellNetAnalyzer [CNA] is used. The propagation of signals
through the network is thereby calculated by iterative derivation of
partial LSSs for smaller subnets based on already identified partial
LSS until no further ones can be found [19]. There is no need to
simulate the network many times or to perform statistical analyses.
CNA has previously been used to describe and analyze large-scale
Boolean models of biological networks. This tool is also useful to
predict and verify experimental data, examine the structure and
the hierarchy of the system as well as the relevance of its
components [19-21]. Not least, manual analysis and the
identification of network wide dependencies become error-prone
for large logical networks. Therefore, construction and analysis of
the logical interaction hypergraph model is achieved more reliable
in this study using CNA. Special features of the CNA are described
in the Materials and methods section since they are used to reveal
essential properties of the network structure and thereby deduce
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biological conclusions on the complex signaling network of
apoptosis.

The large-scale Boolean network constructed in this study is
based on extensive literature research. It simulates apoptotic signal
transduction pathways in response to various input stimuli and
allows a comprehensive evaluation and analysis of the different
pathways (Figure 1). We considered the intrinsic and extrinsic
apoptotic pathways and their crosstalks as well as the survival and
metabolic insulin pathways. We show that the extension and
refinement of the logical formalism with multi-value logic and so
called timescale constants allows the capturing of dynamical
features such as threshold behavior, feedback loops and reaction
delays and thereby a correct description of the global signaling
behavior. The states of several network nodes are experimentally
validated for different inputs in order to prove the coherence of the
model. In this context a dose dependent effect of UV irradiation
concerning apoptosis induction is demonstrated on mouse
hepatocytes. Finally, the model is analyzed with regard to its
internal connectivity and crosstalks with a special attention on
significant feedback loops and gene regulatory effects.

Results/Discussion

General model properties

The model is a logical interaction hypergraph, which is a
connection of logic gates, and comprises 86 nodes and 125
interactions (Figure 1). Abbreviations and descriptions of the
network nodes are given in Text SI. Text S1 also lists all equations
of the model including the respective timescale constants, literature
references and organisms from which the information was derived.
Due to the number of included interactions in the model we refer
to the given literature references for detailed information about the
biological processes.

There are eight input nodes, namely glucagon, insulin, TNF-o
[TNF], Fas ligand [FasL], interleukin-1 [IL-1], UV-B irradiation
[UV] and two special nodes for applying Smac mimetics and for
simulating type II apoptotic signaling. Smac mimetics are
promising reagents that sensitize cells for apoptosis via the
neutralization of inhibitor of apoptosis proteins (IAPs such as
XIAP, cIAP1, cIAP2, etc.) [22,23]. They are considered as a
separate node. The input node “Type 2 receptor ligand’ [T2RL)]
allows simulating apoptosis via the mitochondrial type II pathway
in contrast to the type I pathway which proceeds via a direct
activation of the caspase cascade [24]. The T2RL node is
experimentally represented in this study by human Jurkat T cells
treated with Fas ligand. Recently, the type I and type II pathways
were shown to operate in the same cell type but under different
culturing conditions suggesting that cells are able to switch
between both ways depending on external stimuli [25]. However,
the molecular mechanism of the switch itself has not yet been
uncovered. Therefore, an additional node P representing some
unknown protein or mechanism is introduced here to model the
switch behavior. Another specialty is the ‘housekeeping’ node,
which shall reproduce constitutively expressed genes (Figure 1, in
green). The output node of the model is apoptosis.

Timescales facilitate integrated modeling and distinctive
analysis

It was shown that dynamic processes can also be captured in
logical networks by introducing time delays to the logical functions
[13]. An equivalent function is provided in CNA where processes
can be assigned to different timescales. These timescales are
constants that specify in which state a certain node can become
active. Simulating a network at timescale T=x means that all
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Figure 1. Boolean apoptosis model. The network map as it is also used for CNA is shown. The influence of the housekeeping node is depicted in
green color. In addition stimuli and nodes which have been experimentally validated to prove the coherency of the model are indicated by yellow
filled background (compare Table 2). Logical AND connections are represented by blue spheres. Activating arcs are represented by black arrows and

inhibiting arcs by red lines with a bar.
doi:10.1371/journal.pcbi.1000595.9001

interactions with a timescale constant T=x are considered, but
interactions with timescale constant T>x are omitted. The
apoptosis model contains six timescales {t} ={0, 2, 3, 4, 5, 10}
which are not numbered consecutively such that additional
timescales can be easily inserted.

Rapid, easily reversible signaling effects like phosphorylation
that are based on fast protein interactions can thus be separated
from long-term effects like gene expression and protein synthesis.
However, we use the so called timescale function not only for an
approximate discretization of signaling events to time segments but
also to separate functional groups of interactions such as feedback
loops. As we calculate the logical steady state, no transition rules
for any updating strategy have to be assumed which would be
afflicted with high uncertainty. There are no disadvantages
connected with extensive defining of timescales concerning the
simulation of the network. However, every timescale can be used
to generate a snapshot of the network and accomplish its separate
analysis. So for example, the topology of the network including
only early signaling events or the specific influence of feedback
loops can be analyzed by assigning separate timescales to them.
Overall the introduction of timescales to the logical formalism
allows to describe different signaling effects and gene regulatory
mechanisms in one unifying model but to analyze them separately.

All interactions of the apoptosis model with their respective
timescales are listed in Text S1. The first timescale T =0 is reserved
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for the housekeeping interactions that activate nodes which are
constantly active and represent constitutively expressed genes.
Timescale T=0 contains 7 interactions and symbolizes the state of
the cell before stimulation. However, note that interactions of the
housekeeping node with other nodes activated later are set to the
later timescale. Also the input and output arcs are assigned to T=0
(11 interactions including multilevel inputs). On the second
timescale T=2 only early TNF signaling events take place which
include TNF signal transduction towards the formation of
complex I (5 interactions). The internalization of complex I was
described to be slow in comparison to other signaling processes.
An additional timescale T= 3 is assigned to further interactions of
the TNF pathway that are required for complex II formation (5
interactions). 73 interactions referring to signaling transduction
events except the early events of the TNF pathway take place at
t=4. An additional timescale T=5 is introduced to model
feedback loops (9 interactions). Assigning a separate timescale to
feedback loops allows their separate analysis which is very
reasonable considering their impact on the system. The final
timescale T=10 is reserved for modeling gene expression in
response to signaling events and includes 15 interactions.

As an example, some node values for different timescale
scenarios after combined stimulation of the apoptosis model with
TNF and smac-mimetics are shown in Table 1. All references
underlying the according interactions can be found in Text SI.
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Table 1. Timescale scenarios after combined TNF and smac-
mimetics stimulus.

=0 =2 t=3 =4 =5 =10
FADD 1 1 1 1 1 1
TNFR-1 0 1 1 1 1 1
smac 0 0 1 1 1 1
RIP-deubi 0 0 1 1 1 1
smac-XIAP 0 0 0 1 1 1
complex1 0 0 0 0 0 1
complex2 0 0 0 0 0 1
apoptosis 0 0 0 0 0 1
doi:10.1371/journal.pcbi.1000595.t001

Note that the node complex?2 is activated by the interaction RIP-
deubi+FADD+compl = comp2. The node FADD is set to level 1
by the housekeeping node on timescale T=0. At timescale T=2
TNF receptor 1 is activated by the input TNF. The input smac-
mimetics activates smac and thereby RIP-deubi at timescale T = 3.
At timescale T =4 for example the complex smac-XIAP is build. In
this setting there is no influence by feedback loops on timescale
©=1>5. At timescale T= 10 upregulation of TRAF2 via NF-«xB leads
to complex! formation and thereby to complex? formation and
finally apoptosis.

Modeling of feedback loops

A feedback loop is a circular path in a signed directed graph. In
general, feedback loops provide a challenge for Boolean networks
as they can lead to oscillations or multistability. In this case no
definite logical steady state can be assigned for the affected nodes
and they remain unevaluated in CNA. We excluded 13
interactions because of this implication from the logical steady
state analysis which are listed and numbered in Text S1. However,
these reactions are included in all other computational analysis
and can be included in logical steady state computation again very
easily by removing the according check mark in the CNA menu
Network Composer. 'The omission of these 13 interactions has the
benefit of getting a definite simulation result for every possible
input setting. Of course the network is changed thereby but this is
not disadvantageous as the impact of these particular interactions
on the logical steady state analysis is biologically not significant as
discussed in the following paragraph.

Four of these 13 interactions represent positive feedback loops
which would even enhance an existing activation status in a
dynamical model (no. 7-9, 13); however, the respective node is
already in the “on” state in the logical model when the feedback
would become active. As the Boolean model is not quantitative the
feedback loop would not have an impact on the biological result
anyway. Three negative feedbacks excluded from logical steady
state computation involve the fine-tuning of C3*pl7 and Raf
activity in a dynamical model, but they do not affect the activation
level in the logical model for the same reason (no. 2, 5, 6). Five
negative feedback loops govern NF-kB signaling back to its initial
configuration and thereby inactivate NF-kB (no. 1, 3, 10-12) and
the negative feedback loop towards IRS-P inhibits the signal as
well (no. 4). However, the switching off of the network is generally
excluded in this model because we restrict ourselves to the critical
events of apoptosis. Consequently the respective validation
experiments described below are performed in the corresponding
time period of the first response of every node.
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Multi-value logic allows threshold behavior

A promising feature of CNA is the possibility to use multi-value
logic, which is equivalent to the discretization of the “on” state and
was shown to be applicable to logical models of biological systems
[13]. Biochemical decisions are often made in increments caused
by thresholds that are essential for setting boundaries between
different states in living cells. This is especially true for apoptotic
processes [26-28]. We show here for a comprehensive network
that the use of multi-value logic in the description of biological
systems allows us to model several distinct active states. Multi-
value nodes thereby don’t substitute quantitative modeling, but the
different node value levels are defined by qualitative properties.
This is a general idea of our modeling approach and we name it
the functional definition of node values. Assigning different effects
to different active states is equivalent to biological threshold
behavior. CNA therefore allows the specification of so called non-
monotone arcs. In non-monotone interactions multi-value coeffi-
cients are assigned to the participating species. Non-monotone
interactions can only be active if the specified species coefficients
are matched exactly by the species state. For example, consider the
two non-monotone interactions 1 A=1B and 2 A=1 C. In this
case 1 A will not activate 1 C und also 2 A will not activate 1 B, so
the two distinct levels of A can be employed in different further
interactions representing different biological effects.

By default all nodes have been considered as single-value nodes
which only occur with the values 0 or 1. Notice that the use of
multi-value nodes increases the complexity of the interrelations in
the network considerably. However, several biological settings
could not be realized with single-value nodes and on that
condition the domain of some nodes has been expanded. There
are 14 non-monotone interactions in the apoptosis network as
listed in Text S1. Non-monotone interactions are involved in the
modeling of the FasL. pathway, which was reported to show
threshold behavior [29] and the modeling of NF-kB mediated
upregulation of anti-apoptotic proteins FLIP, XIAP and c-IAPs
[30,31]. The respective multi-value nodes are FasL, Fas, DISC*,
FLIP, C8*, C8*DISC, C3*p20, C3*pl17, XIAP and c-IAP that
occur with the coefficients {0, 1, 2}. Additionally, a multi-value
node for UV irradiation was added based on own experimental
results (see Figure 2).

Overall the steady states of the model reflect the following
behaviors, which would not be possible without using multi-value
nodes: (i) Apoptosis is not reached in the model by FasL in activity
state 1 [FasL (1)] but by FasL (2) reproducing the threshold
behavior of Fas signaling [26]. However, FasL (1) activates several
nodes in the network, and their influence and crosstalk with other
signaling pathways can be analyzed. (i) The nodes of anti-
apoptotic proteins FLIP, XIAP and c-IAPs can be set to zero
representing a knockout scenario but they also have graded effects
in their “on” state. For example, caspase-3 p20 (2) can be further
processed to the highly active caspase-3 pl7 form which ensues in
apoptosis if XIAP is low abundant as it is represented by XIAP (1).
However, if XIAP is upregulated to value “2” it prevents
processing and activation of caspase-3 pl7. (i) UV (1) leads to
apoptosis whereas UV (2) does not lead to apoptosis (see Figure 2).

Experimental validation of the model

After we built the mathematical model we performed extensive
experimental validation. The logical apoptosis model is based on a
vast number of different studies, which were performed in different
organisms and were in part highly focusing on important details.
Here, we show that the behavior that emerges from these
particular interactions in the model is coherent with experimental
data on the behavior of the whole network. Table 2 shows the

December 2009 | Volume 5 | Issue 12 | €1000595



ON/OFF and Beyond - A Boolean Model of Apoptosis

A 0] B UV UV
2 300600
il e B < p65/p50
ouv (1)
muv(2) [l [=)] N
o
o
3 ) 3 S |
| N | O — | N | 1
node NF-kB c-IAP FLIP C3*%pl7 apoptosis
node value | |0]0 1]1] 1]1 0]2 |
measure NF-kB c-lIAP2 FLIP C3*%pl7 itali
assay EMSA gRT-PCR gRT-PCR DEVDase !
repeats 1 3 3 3 Ofree oligo

Figure 2. Dose dependent NF-xB activation and apoptosis in response to UV irradiation. Two separate levels for the UV input node are
realized in the model. [A] The results for untreated cells and after weak UV (1) and strong UV (2) stimulation for each measure are shown in columns
in the upper half including standard deviation. Beneath the diagrams a table lists the according information about the model nodes and the
experiments. In particular, the simulation results as predicted by the model for the respective node values are given in the second row. All measures
are presented as fold increase and MTT assay results as percentage of vitality referred to untreated control, detailed information about each
experimental assay can be found in Materials and Methods. [B] The corresponding EMSA as evaluated in Fig. 2A is shown and the NF-kB bands are

assigned with arrows.
doi:10.1371/journal.pcbi.1000595.9002

model prediction for different proteins and stimuli which are
critical for apoptosis represented by the resulting logical steady
state values of the model for the final timescale T=10. The model
values of the input nodes are given in parentheses in Table 2 and
mock is represented by the logical steady state of the model
without activation of any input node.

In the experiments, two different cell types were used to account
for the distinct signaling mechanisms in cells using the type I
(mouse hepatocytes treated with FasL) and the type II (human
Jurkat T cells treated with FasL representing the T2RL node)
apoptotic pathways. The measured parameters/nodes of the
model are: NF-kB-DNA binding and IxB-o degradation for NF-
kB-signaling, activated caspase-3 [C3*p17] and the mRNA levels
of inhibitory proteins c-IAP, XIAP and FLIP for the caspase
cascade, Bid as member of the Bcl-2 family, the activation state of
c-Jun N-terminal kinase [JNK] and finally apoptosis as an output
signal. Note that the different forms of c-IAPs and FLIP are
merged to one node in the model, and measured mRINA levels are

c-IAP2 and all 3 isoforms of FLIP. The respective stimuli and
nodes are also indicated in Figure 1. Details on the experimental
procedures can be found in the section Materials and methods.

All model predictions listed in Table 2 were successfully
approved on the first try without changing the model, apart from
the effect of UV irradiation on the network. We found an
unexpected UV dose effect in primary mouse hepatocytes which
was included in the model and will be discussed in the next section.
First, the system response to FasL, TNF-o and IL-1B will be
presented. All measured entities could be experimentally shown to
be active or existing, respectively inactive or non-existing as
predicted by the model in response to these stimuli. Selected
results of Fasl, TNF-o and IL-1B stimulation in mouse
hepatocytes are shown in Figure 3. Stimulation with FasL leads
to only weak NF-kB activation and hence no significant c-IAP2
and FLIP upregulation. As there is no signaling effect on the
subsequent nodes the model shows NF-kB (0) in this setting
according to the functional definition of its node value which is
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Table 2. Central results of the logical apoptosis model have been experimentally validated.

NF-xB IxB-a c-IAP XIAP C3*p17 FLIP Bid JNK apoptosis
celltype stimulation Emsa Western qRT-PCR Western DEVD qRT-PCR Western Western MTT
jurkats mock 0 1 1 1 0 1 1 0 0
jurkats T2RL (1) 0 1 1 1 2 1 0 0 1
hepatocytes mock 0 1 1 1 0 1 1 0 0
hepatocytes FasL (2) 0 1 1 1 2 1 1 0 1
hepatocytes TNF (1) 1 0 2 2 0 2 1 1 0
hepatocytes IL-1 (1) 1 0 2 2 0 2 1 0 0
hepatocytes uv (1) 0 1 1 1 2 1 1 0 1
hepatocytes uv (2) 1 0 2 2 0 2 1 0 0
doi:10.1371/journal.pcbi.1000595.t002
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Figure 3. Experimental model validation for stimulation with Fas ligand, TNF-o and interleukin-1§. Primary mouse hepatocytes were
treated with FasL, TNF-o or IL-1p. [A] The results are shown in columns in the upper half including standard deviation. Beneath the diagrams a table
lists the according information about the model nodes and the experiments. In particular, the simulation results as predicted by the model for the
respective node values are given in the second row. All measures are presented as fold increase and MTT assay results as percentage of vitality
referred to untreated control, detailed information about each experimental assay can be found in Materials and Methods. [B] The according EMSA as
evaluated in Fig. 3A is shown and the NF-kB bands are assigned with arrows.

doi:10.1371/journal.pcbi.1000595.9003

depending on the node’s effect on the network. Caspase-3 p17 is
highly active. In contrast, NF-xB is clearly activated after
stimulation with TNF-a or IL-1B. Accordingly, c-IAP2 and FLIP
are upregulated and, as predicted, caspase-3 p17 is not activated.
All validation experiments for Table 2 which are not shown in
Figure 3 can be found in Protocol S1. In addition we tested
apoptosis induction in Jurkat T cells after stimulation with TNF-o
and IL-1PB. As expected and predicted by the model these stimuli
do not have cytotoxic effects on the cells and the according
experiments are documented in Protocol S1. It is impossible to test
every signaling scenario of the presented apoptosis model due to
technical limitations and the mere number of nodes. However, the
accuracy of the performed validation experiments indicates
fundamental correctness and significance of the model.

UV irradiation triggers dose dependent NF-kB activation
and apoptosis

During experimental validation of the model, we found dose
dependent NF-kB activation and apoptosis after UV irradiation in
primary mouse hepatocytes. Based on the results shown in
Figure 2, two distinct levels for the UV input node were
mmplemented. The updated model version properly reflects the
network behavior in response to UV irradiation and is presented
here.

UV (1) represents the stimulation of mouse hepatocytes with
300 J/m? UV irradiation and UV (2) with 600 J/m?. Weak UV
irradiation leads to weak NI-xB activation and no c-IAP2 and
FLIP mRNA upregulation. As there is no signaling effect on the
subsequent nodes the model shows NF-B (0) in this setting. As a
consequence, mouse hepatocytes show significantly increased
caspase-3 pl7 activity and consequently cytotoxicity due to
apoptosis can be observed as expected after UV irradiation. In
contrast, the higher dose of UV irradiation leads to strong NF-xB
activation and subsequently c-JAP2 and FLIP mRNA is
upregulated. This correlates with previous findings showing a
marked NF-kB induction after strong translational inhibition and
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relative resistance to lower doses [32]. The proteins c-IAP2 and
FLIP function as anti-apoptotic inhibitors and prevent caspase-3
pl7 activity in this setting. Accordingly, cells show less cytotoxicity
after strong UV irradiation and the amount of cell death observed
in the MTT viability assay 1s probably caused to a high extent by
necrosis when comparing with caspase-3 p17 activity. In addition,
we also treated Jurkat T cells with UV irradiation. We did observe
apoptosis neither after 300 J/m? nor after 600 J/m? and expect
the critical apoptotic UV irradiation dose for Jurkats at higher
levels. All validation experiments concerning UV irradiation
which are not shown in Figure 2 can be found in Protocol SI.

95 feedback loops including an unexpected one

A feedback loop is a circular path in a signed directed graph,
and the overall sign of I is determined by the parity of the number
of inhibiting and activating arcs [33]. The sign of a feedback loop
has great impact on the dynamics of a system. On the one hand,
positive feedback loops allow for multistationarity which is
required for epigenetic differentiation in biological systems [34—
36]. On the other hand, negative feedback loops generate
periodicity and are essential for maintaining homeostasis [35,36].

The total number of positive and negative feedback loops for
cach timescale is shown in Figure 4A. As CNA searches for
feedback loops of arbitrary length in the network the algorithm
finds in fact more feedback loops as expected from a superficial
look on the network map. Considering the interactions for T=5
there are already 26 positive and 9 negative feedback loops. For
©=10 these numbers increase up to 82 positive and 13 negative
teedback loops. This proportion reflects the typical features of
apoptosis networks where positive signal amplification and multi-
stationarity are characteristic. In contrast, antiapoptotic mecha-
nisms are rather realized by inhibitory proteins such as XIAP than
by negative feedback loops.

Interestingly, as shown in Figure 4B, there is an unexpected
teedback already for T=4 in the network which was not modeled
explicitly. The formation of complex II induces activation of
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A Feedback loop distribution B Feedback loop for 1 =4

timescale  positve  negative | RIP-deubi |<—-| smac
=0 0 0
T=3 0 0
=4 1 0
T C8*-comp2
1=5 26 9
T=10 82 13

Figure 4. Feedback loops in the apoptosis network for
different timescale constants t. [A] The distribution of positive
and negative feedback loops for all timescale constants t is listed. [B] An
unexpected feedback loop arises in the model for t=4. Complex Il
activates caspase-8 which leads to the release of Smac in response to
Bid cleavage. Smac could promote complex Il formation by increasing
the amount of available RIP-deubi.
doi:10.1371/journal.pcbi.1000595.9004

caspase-8 which leads to the release of Smac in response to Bid
cleavage finally resulting in mitochondrial pathway activation in
type II cells. According to our model, Smac could further increase
complex II formation by increasing the amount of available RIP-
deubi. The biological relevance of this feedback is speculative.
However, the topological possibility of a feedback loop in
apoptosis signaling upstream of the caspase cascade is fascinating
and potentially important.

The relevance of feedback loops [37-39] and associated affects
such as bistability [27,40] and oscillations [41,42] are a largely
discussed topic. The so far analyzed and well known feedback
loops are usually consisting of very few molecules [43,44]. The
analysis of the apoptosis model shows a high number of feedback
mechanisms consisting of many interactions building long loops.
As the Boolean model is not dynamic it cannot tell whether these
structures are biological relevant or take place on an insignificant
timescale. However, their further analysis might be promising.

Feedback loops are essential for signaling towards
apoptosis

In the following section, we discuss the influence of feedback
loops and gene regulatory effects on the signaling behavior of the
model for T=5 and 1= 10. The relative participation of network
components in all feedback loops on the respective timescale is
shown in Text S1. The general tendency of signaling is still
maintained for T=5 as the apoptosis supporting input nodes
mainly participate in positive signaling pathways and vice versa.

ON/OFF and Beyond - A Boolean Model of Apoptosis

However, the combination of negative and positive pathways
allows for a more differentiated response to input signals. The
components of the caspase module are involved in most of the
feedback loops for T =5, and their relative participation reaches up
to 89% for C3*pl7 (Text S1). This high involvement originates
from the high connectivity of these nodes with other pathways and
1s indicative of the important role of caspases, especially caspase-3,
in apoptosis regulation. For t=10 we noticed an increased
involvement of NF-kB and components of the mitochondrial
module in feedback regulation. In particular, Bax participates at
76% (Text S1). In summary, only a small group of species is
involved in most of the feedback loops, but as such this group plays
a prominent role in the regulation and determination of the
network response to input signals. This small group consists mainly
of caspases, mitochondrial proteins and NF-kB signaling compo-
nents which are important for the robustness of the entire system
and indicate their importance in apoptosis execution and control.

The regulatory importance of feedback loops is also reflected by
the species dependencies for different timescales. The respective
dependency matrices are due to their size shown in Figures S1, S2,
S3. Until T =4 almost only total activation and inhibition processes
occur in the network which represents the linear and parallel
behavior of the signaling processes (Figure S1). A comparison with
the species dependencies for =15 shows a substantially changed
network topology and reveals all species that are influenced by
negative feedback loops in their respective pathways but also
pathways to which they are connected (Figure S2). The
dependency matrix for T= 10 finally completes the overall picture
of complex and ambiguous relationships in the network showing
almost no total activation and inhibition processes anymore but an
increased number of ambivalent effects (Figure S3).

The total number of calculated signaling pathways from each
start node to the apoptosis node is shown in Table 3 for each
timescale. No continuous signaling pathways to the apoptosis node
exist for T=3 because the caspase activation module is only active
for t=4 as described before. For t=4 all input nodes with
apoptosis supporting effects exclusively participate in positive
signaling pathways to the apoptosis output node. In accordance,
all input nodes with apoptosis inhibiting effects do not show any or
only negative pathways. This topology describes a non-regulated
cell which would show a linear signaling behavior without the
ability to integrate received information and adapt to situations.
Additionally, the constraint signaling behavior would render the
cell error-prone for the failure of individual molecular species. For
t©=15 feedback loops extend the network topology. Although only
nine interactions are added at this timescale their impact is
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Table 3. Signaling pathways from every input node to the apoptosis node for all timescales .
input node t=0 =2 t=3 t=4 t=5 =10
positive negative positive negative positive negative
FasL 0 0 0 704 0 704 0 1216 0
glucagon 0 0 0 0 0 0 0 192 224
IL-1 0 0 0 0 0 0 0 224 192
insulin 0 0 0 0 44 68 44 696 748
smac-mimetics 0 0 0 44 0 44 32 236 32
T2RL 0 0 0 88 0 88 24 248 24
TNF 0 0 0 88 0 88 24 792 1080
uv 0 0 0 88 0 88 48 568 240
doi:10.1371/journal.pcbi.1000595.t003
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significant and most input nodes already have ambivalent
potential to influence the apoptosis node depending on further
circumstances. The number of signaling paths from the mput
nodes to apoptosis finally dramatically increases for t=10 by
adding gene regulatory effects by the NF-xkB node. Concerning the
final decision between cell survival and apoptosis the overall
network presents itself as highly crosslinked and regulated in a
complex manner.

High connectivity and crosstalks are significant for
apoptosis signaling

High connectivity increases the number of possible pathways
between two nodes and the reliability and flexibility of the network
to respond to its environment. CNA considers strongly connected
components as maximal subgraphs of the interaction graph in
which paths between all pairs of nodes exist. The apoptosis model
contains two groups of strongly connected components. One
comprises the nodes PKC, PKB, PDK1, PIP3, PI3K and IRS-P.
These nodes are part of the insulin signaling pathway and
connected to a feedback loop by PKB. The second group contains
30 nodes, which belong to complex formation in the upper
apoptosis signaling (complex1, complex?2, TRAF2, RIP-deubi,
compl-IKK* NIK, C8*comp2, FLIP), caspase cascade (C6,
C3*p20, C3*pl7, C3*-XIAP, XIAP, c-IAP, C8*, C9*, BIRI-2),
mitochondrial release (tBid, Bax, Bcl-xl, apopto, Apaf-1, smac-
XIAP, smac, cyt-c) and NF-kB signaling (NF-kB, IxB-o, IxB-¢,
A20, IKK*). The high connectivity between these nodes is only
partially due to the cascading topology of enzyme activation.
Furthermore, the involved proteins such as the inhibitor XIAP,
several feedback loops and especially the inclusion of NF-xB
signaling in this strongly connected subgraph reflect the highly
controlled and robust structure of death signaling.

As a transcription factor, NF-xB has central role for the
network. The anti-apoptotic impact of NF-«B is ensured via the
upregulation of survival factors. However, analysis with CNA
reveals an even broader influence of the NF-xB node resulting
from its high connectivity. There are 34 inhibitors, 27 activators
and 8 ambivalent factors affecting NF-xB. In turn, NF-xB is an
ambivalent factor for 30 species, an activator for 8 and an inhibitor
for 1.

In addition to these highly connected subgraphs crosstalks
between individual signaling modules determine the behavior of
the network. Amongst others, the model includes the following
crosstalks with insulin signaling (documented with the according
interactions in Text S1): (i) TNF-a stimulates IRS phosphorylation
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and thereby inhibits insulin signaling. (ii) In response to insulin
PKB is activated and phosphorylates Bad. Phosphorylated Bad is
sequestered by 14-3-3 proteins and therefore cannot activate pro-
apoptotic Bax. (i) PI3K is involved in insulin signaling and also
contributes to NIF-xB activation via IKK. (iv) Raf can be activated
via insulin signaling and inhibited by glucagon signaling and active
Raf also triggers IKK-dependent NF-xB activation. Also there
were two crosstalks explicitly presumed in the modeling process.
Smac mimetics were shown to have an apoptosis promoting effect
after stimulation with TNF-a [23] and also lead to autocrine TNEF-
o secretion [45,46]. The network reflects this crosstalk as Smac
mimetics don’t induce apoptosis but promote complex II building
via RIP and lower the threshold for C3*pl7 activation via
sequestering XIAP. Accordingly, while TNF stimulation of the
model does not lead to apoptosis as observed in hepatocytes and
Jurkat T cells, the combination of TNF and Smac mimetics does.
Another crosstalk is based on the antiapoptotic influence of IL-18
via NF-xB [47]. Although FasL (2) alone leads to apoptosis it does
not in combination with IL-1f (1) in the model.

The explicitly and implicitly modeled crosstalk connections in
the network also lead to further effects in the model. The resulting
value for the apoptosis node is systematically simulated for all
double stimulation scenarios and listed in Table 4. The diagonal
shows the resulting apoptosis value for the according single
stimulations. One would assume the outcome for two combined
stimuli to follow the rules 0+0 =0, 1+1 =1 and 0+1 = 1. However,
there are some aberrations which are highlighted bold in the Table
and discussed in the following text. Smac-mimetics lead to
apoptosis in combination with FasL (1) by the same mechanism
as discussed above. There are also two other combinations aside
from IL-1B which prevent apoptosis after FasL (2) stimulation in
the model. Namely Insulin and TNF have an antiapoptotic effect
based on NF-kB activation via Raf and complex-1 respectively.
There are also some interesting crosstalks concerning UV
stimulation. The antiapoptotic effects of insulin and IL-1f also
prevent apoptosis in combination with UV (1). However, in
combination with TNF apoptosis is still enforced by UV (1) as
smac is released by UV irradiation and counteracts XIAP
upregulation. The input combinations of UV (2) with TNF and
FasL (1) also lead to apoptosis as the latter activate caspase-8 (1). In
contrast, the combination of FasL (2) and UV (2) does not cause
apoptosis in the model as the NF-xB activation by UV (2) is
dominant in this setting.

In the future we will especially focus on the investigation and
expansion of the model regarding further crosstalk effects between

Table 4. Apoptosis node value for all double stimulation scenarios of the model.

Glucagon Insulin TNF FasL (1) FasL (2) T2RL IL-1 smac-mimetics UV (1) uv (2)
Glucagon 0 0 0 0 1 1 0 0 1 0
Insulin 0 0 0 1 0 0 V] 0
TNF 0 0 (1] 1 0 1 1 1
FasL (1) 0 - 1 0 1 1 1
FasL (2) 1 1 o 1 1 o
T2RL 1 1 1 1 1
IL-1 0 0 V] 0
smac-mimetics 0 1 0
uv (1) 1 -
uv (2) 0
doi:10.1371/journal.pcbi.1000595.t004
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distinct pathways as well as on their experimental validation.
Unfortunately, this is not trivial as the Boolean model does not give
advice how to combine stimuli experimentally concerning timing and
dosage. However, the connectivity of subnetworks and single
components via crosstalks is helpful information to include all
essential interactions when focusing on a smaller subsystem or specific
question. We propose to check the Boolean model for important
mnteraction players when modeling a particular signaling pathway or
designing biological experiments to elucidate functional relationships.

The logical apoptosis model may support your research
The Boolean approach we use here for modeling apoptosis
obviously has a systematic drawback resulting from the reduction
on qualitative network behavior. The reaction rates of biological
processes and the quantitative amount of molecules cannot be
assigned straight forward to model values. Instead careful
conversion has to be done for particular cases and biological
knowledge of the modeler is of special importance. In return the
presented logical model is easy to use and very flexible.

Protocol S2 comprises detailed instructions how to start up the
apoptosis model (Protocol S3) without any previous knowledge.
One can use the apoptosis model for comparison with own results
as well as for further analyses. It can be modified and expanded to
other cell types, additional pathways or crosstalks. In particular,
any kind of knock-out or knock-in scenario can be simulated with
the model by setting certain nodes or interactions to the desired
value. Subsequently, resulting variations in signaling behavior and
the changed network topology can be analyzed. On the other
hand CNA can search for minimal intervention sets. Thereby the
algorithm computes all possibilities to reach a user-defined
network state under user-defined constraints as fixed states or
maximum number of interventions. Finally, uncovering sensitive
points in the network and failure modes of the system concerning
specific questions will provide suggestions for biological experi-
mental design as well as predictions how the system reacts in
response to selected challenges.

Taken together, the logical model presented here can easily be
applied to a broad spectrum of scientific questions concerning
apoptosis signaling pathways and their complex crosstalk to other
pathways and serve as a helpful and valuable tool in a variety of
research aims.

Materials and Methods

Interaction graphs

Each species of a network is considered to be a node and two
nodes are connected by an edge, also called arc, indicating a direct
dependency between them. Nodes and edges form a graph.
Directed graphs are a subclass of graphs in which the orientation
of the edge determines the direction of the signal flow [48]. At the
boundaries of an interaction graph sources and sinks can be found.
Sources represent inputs and are not influenced by other nodes.
Sinks represent outputs and do not influence further nodes.

Adding a sign to the edge specifies whether the influence of a
node is activating (positive) or inhibiting (negative). In signed
directed graphs linear connections between two nodes that are not
directly connected to each other describe paths which have an
overall sign. The sign of the sequence of arcs is negative if the
number of arcs with negative sign is odd and positive if the number
of arcs with negative signs is even or zero.

Feedback loops

Feedback loops in the biological sense are regulatory functions
that integrate the state of a downstream system variable with a
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state prior in the path and return an answer which then leads to
further enhancement or abortion of the signal. In a graph
theoretical sense a feedback loop would involve only one node
influencing itself. In this work the term feedback loop is used in the
biological sense involving one or more nodes. A feedback loop
ends at the same node where it started and no other node is visited
twice. The overall sign of a feedback loop is determined by the
parity of the number of inhibiting and activating arcs [33]. The
sign of a feedback loop has great impact on the dynamics of a
system [34-36].

Boolean logic operations

Logical counterparts to numerical operations are conjunction,
disjunction and complement. This will be explained for the
example of two variables A and B. A numerical multiplication is
analogous to a logical conjunction expressed by (A A B) or (A
AND B). A conjunction of two statements is true when both
statements are true. A numerical addition of A and B is expressed
in Boolean algebra as a disjunction (A V B) or (A OR B). A
disjunction of two statements is true when one of the statements is
true (inclusive disjunction). In the presented logical apoptosis
model disjunctions are not notated explicitly but are represented
by several interactions which can lead to the same result. A
numerical negation (-A) is expressed by (A), (NOT A) or (A) in
Boolean algebra. The complement of a statement is true when the
statement is false.

Hypergraphs

Another important property of biological regulatory networks is
the participation of two or more species in one interaction whereas
in an interaction graph one node influences one other node. A
representation of more than one species influencing another can
be facilitated by logical AND connections. A graph containing
AND connected species is a hypergraph [49]. A hyperarc connects
two subsets of nodes. The resulting graph is termed a logical
hypergraph [19].

CNA/ProMoT

The MATLAB based tool CellNetAnalyzer [CNA] [19] allows
construction and analysis of metabolic (stoichiometric) as well as
signaling and regulatory networks via a graphical user interface. In
this study CNA Version 9.2 has been used. The network map can
be created with external programs, and we used Microsoft Power
Point.

A Boolean network is represented in CNA as a logical
interaction hypergraph that can also be transformed into an
interaction graph. Thereby hyperarcs are splitted and parallel arcs
can arise which may lead to undesired effects. For example,
A+B =X, A+C=X) is converted to (A=X, B=X, A=X, C=X).
After transformation of the presented logical apoptosis model four
duplicated arcs and ten parallel edges are removed. The
Interaction graph representation is required for computation of
signaling pathways, feedback loops and species dependencies
because it unambiguously indicates which nodes are involved in
interactions. For logical steady state analysis and minimal
intervention sets the logical interaction hypergraph representation
is required to capture all constraints and influences included in the
model.

Computation of feedback loops and signaling paths
using CNA

The CNA algorithm for computation of feedback loops
identifies paths with the same start and end node. Additionally,
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the direction of the edges is considered so that signal flow occurs
only in the specified direction. Another necessary property of the
calculated circuits is their non-decomposability into smaller
circuits in order to fulfill the notion of elementary modes [50—
52]. Signaling pathways in CNA are calculated in analogy to
feedback loops.

Computation of network wide dependencies using CNA
To identify the influence a species A exhibits on another species
B all signaling paths leading from A to B can be computed. A is
not influencing B if such a path does not exist. Otherwise the
influence of A on B is characterized as follows: A is a total
activator/inhibitor of B if only activating/inhibiting paths are
found. A is a non-total activator/inhibitor of B if only activating/
inhibiting paths are found but a path contains an intermediate
node that is involved in a negative feedback loop. A is an
ambivalent factor if activating and inhibiting paths are found.

Computation of the logical steady states using CNA

For every Boolean network all possible logical steady states
[LSSs] can be calculated [53]. In CNA a LSS is computed based
on specified initial values and the signal propagation through the
network is calculated. There are no interactions with so called
incomplete truth tables in the network so that all nodes can be
evaluated for every input setting. LSSs can be used to simulate
changes in the network structure and analyze the consequences on
the signal propagation. The knock-out of a certain gene is
represented by deactivation or removal of a species achieved by
setting the value of this species to zero. Constitutive expression of a
gene can be represented by setting the value of this species to
greater zero (on-state).

Cell culture, isolation and cultivation of primary mouse
hepatocytes

Primary hepatocytes were isolated from 8-12 week old B6
(C57B1/6NNrl) mice as previously described [54]. The use of mice
for hepatocyte isolation has been approved by the animal
experimental committees and animals were handled and housed
according to specific pathogen free (SPF) conditions. Cells were
plated on collagen-coated tissue culture dishes in William’s
medium E (WME, from Biochrom) supplemented with 10%
FCS, 100 nM dexamethasone, 2 mM L-glutamine and 1%-
penicillin/streptomycin solution (all reagents from Gibco). Culti-
vation was carried out as described [54], following a three step
starvation procedure. To allow hepatocytes to attach, cells were
kept in a humidified atmosphere at 37°C and 5% CO, for 4 h.
Subsequently, FCS cell culture medium was removed and
replaced by serum-free culture medium (WME supplemented
with 100 nM dexamethasone, 2 mM L-glutamine and 1%-
penicillin/streptomycin  solution). Following 4 h incubation in
serum-free culture medium hepatocytes were washed three times
with starvation medium (WME supplemented with 2 mM L-
glutamine and 1%-penicillin/streptomycin solution) and further
kept for 16-24 h in the same medium.

Jurkat T cells (suspension) were maintained in RPMI 1640
medium supplemented with 10% FCS and 1%-penicillin/
streptomycin.

Preparation of total and nuclear cell lysates

For preparation of total extracts 2x10° cells were centrifugated
(2150 g, 4°C, 3 min), washed with PBS, centrifugated again and
140 ul of lysis buffer (136 mM NaCl, 2 mM EDTA, 20 mM Tris/
HCI pH 7.4, 10% glycerol, 4 mM benzamidine, 50 mM f-
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glycerophosphate, 20 mM Na-diphosphate, 10 mM NaF, 1 mM
Na3VOy) supplemented with protease inhibitors (5 ug/ml apro-
tinin, 5 ug/ml leupeptin, 0.2 mM pefablock) was added. Cell lysis
was performed by shaking for 20 min at 4°C and final
centrifugation at 20800 g, 4°C for 10 min.

For preparation of nuclear extracts 1x10° cells were washed
with PBS and collected in Eppendorf tubes. After centrifugation
(2150 g, 4°C, 3 min), the pellet was resuspended using 400 pl
buffer A (10 mM Hepes/KOH pH 7.6, 15 mM KCI, 2 mM
MgCly, 0.1 mM EDTA pH 8.0) and incubated on ice for 10 min.
Then, the cell suspension was centrifuged (2150 g, 4°C, 3 min)
and buffer A was replaced by 200 ul buffer A containing 0.2%
NP-40 supplemented with Complete protease inhibitors (Roche
Applied Science) and incubated for exactly 5 min on ice to lyse the
cytoplasma membrane. After centrifugation (8062 g, 4°C, 2 min),
supernatants were stored as cytoplasmic extracts and pellets were
resuspended in 50 pl buffer C (25 mM Hepes/KOH pH 7.6,
50 mM KCl, 0.1 mM EDTA pH 8.0, 10% glycerol, Complete
protease inhibitors) and kept on ice. After 5 min, 4.5 pl of a 5 M
NaCl solution was added and incubated for 30 min with gentle
shaking at 4°C. After centrifugation (20800 g, 4°C, 10 min) the
supernatant was isolated as nuclear extract.

DEVDase assay

For measuring the activity of the executioner caspases 3/7
DEVDase assay was performed. Primary mouse hepatocytes and
Jurkat T cells (1 x10° cells respectively) were incubated with TNF-
o (R&D Systems) 25 ng/ml, IL-1P (Jena Bioscience) 50 ng/ml or
FasL (N2A FasL as described in [25]) 50 ng/ml for 6 h or exposed
to 300 J/m* or 600 J/m? UV irradiation (Stratalinker UV
crosslinker from Stratagene). Then the cell suspension was
centrifugated, washed with PBS and homogenized in 50 pl of
homogenization buffer. Caspase-3 activity assay was performed
exactly as described in [55] using the caspase-3 substrate DEVD-
AMC (Alexis) at a concentration of 200 nM. Relative fluorescence
units (RFU) values were calculated via the ratio of average rate of
the fluorescence increase and protein concentration determined by
Bradford assay (Biorad). To compare different experiments, RFU
sample values were referred to negative control (untreated cells).
At least three independent experiments were carried out and
means of these experiments including the SD are shown.

MTT viability assay

After exposition to the different stimuli for 6 h or to UV
irradiation of the aforementioned doses, primary hepatocytes and
Jurkat T cells were treated with 1 ml of 0.5 mg/ml MTT (Sigma)
solution in PBS, and incubated at 37°C for 2 h. After observing a
color change to purple the supernatant was removed and the
crystals dissolved in DMSO. The samples were transferred into a
fresh 96-well plate, and the color reaction measured with an
ELISA reader at 595 nm. The sample values were referred to
untreated control. Again, means of three independent experiments
with SD are shown. Please note that the MTT assay only measures
viability and does not differentiate between apoptosis and other
forms of cell death.

Electrophoretic mobility shift assay (EMSA)

Nuclear protein extracts were prepared as described above.
Equal amounts of nuclear proteins (4 ug) were added to a
reaction mixture containing 20 pg bovine serum albumin, 2 ug
poly(dI-dC) (Roche Molecular Biochemicals), 2 pl buffer D+
(20 mM HEPES, pH 7.9, 20% glycerol, 100 mM KCI, 0.5 mM
EDTA, 0.25% NP-40, 2 mM DTT, 0.1% PMSF), 4 ul buffer F
(20% Ficoll 400, 100 mM HEPES, 300 mM KCI, 10 mM DTT,
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0.1% PMSF) and 100,000 cpm (Cerenkov) of a P33-labeled
oligonucleotide for NF-kB made up to a final volume of 20 ul
with distilled water. For competition experiments (not shown) the
reaction mixture contained a 100-fold excess of the respective
non-radioactive labeled oligonucleotide. NF-xB oligonucleotide
(5"-AGT TGA GGG GAC TTT CCC AGG C-3’, Promega) was
labeled using [y33P]JATP (3000 Ci/mmol, Amersham Biosci-
ences) and a T4 polynucleotide kinase (New England Biolabs).
After 25 min of incubation at room temperature the samples
were resolved through non-denaturing 6% polyacrylamide gel
electrophoresis and then the dried gel was exposed to an Imaging
Plate (BAS-MS 2340, Fujifilm) overnight which was finally
analyzed using a FLA-3000 (Fujifilm). In the figures the resulting
images are shown together with the quantified 33P-stimulated
luminescence (PSL) units of each specific shift. Dimer composi-
tion was determined by supershift analysis (not shown) using
specific antibodies for p65 and p50 NF-kB subunits (from Santa
Cruz Biotechnologies).

Western blotting

To analyze protein levels in total cell lysates, samples
containing 50-70 pug protein were separated by SDS-PAGE
(12% or 15% gels) and transferred to a 0.45 pm or 0.2 um pore
size PVDF (Roche Applied Science and BioRad, respectively)
membrane. Antigen detection was done using antibodies against
P-JNK at 1:1000 (Cell Signaling), IxB-oo at 1:1000 (Cell
Signaling), B-actin at 1:10000 (MP Biomedicals), Bid at 1:700
(gift from David Huang, WEHI), XIAP at 1:2000 (StressGen),
appropriate horseradish peroxidase-labeled secondary antibodies
(Jackson ImmunoResearch Laboratories or Cell Signaling), and
the ECL plus chemiluminescence detection reagent (Amersham
Biosciences). Chemiluminescent images were quantified using
the Lumilmager and the LumiAnalyst Software (Roche Applied
Science).

RNA isolation, cDNA synthesis and qRT-PCR

Total RNA was isolated using RNeasy Plus Kit (Qiagen) and
extraction was performed according to the manufacturer’s direc-
tions. The quantity and purity of RNA was determined by
measuring the optical density at 260 and 280 nm. Subsequently,
1 pg of total RNA was converted to single strand cDNA using
Quantiscript Reverse Transcriptase (Qiagen) resulting in 100 pl
diluted ¢cDNA. The analysis of mRNA expression profiles was
performed with multiplex quantitative real time PCR. In a 25 pl
PCR reaction, 2 ul of cDNA (corresponding to 20 ng of total RNA
input) was amplified in an Light Cycler 480 (Roche), using 2-fold
QuantiTect Multiplex PCR Master Mix (Qiagen), 50 nM primers
and 100 nM probe for the 18S rRNA reference gene (fwd: 5'-
CGGCTACCACATCCAAGG-3', rev: 5-CGGGTCGGGA-
GTGGGT, probe: 5'-TTGCGCGCCTGCTGCCT), and 300 nM
primers and 100 nM probe for the gene of interest. The following
target gene primers and probes were used (all from Sigma): mouse
cIAP2 (fwd: 5'-ACATTTTCCCCACTGTCCATTT-3', rev: 5'-
CTATCCAGGGGTCATCTCCA-3', probe: 5'-ATGCAGACA-

CACTCTGCTCG-3'), human cIAP2 (fwd: 5'-CTGGAAA-
CAAAGCATTGAAGTCTG-3', rev: 5-GCCATTAGTAAA-
GAGGTTCTGAGTC-3’, probe: 5'-CGTCTGTGAGATCC-

AGGAAACCATGCTTGC-3'), mouse cFLIP (fwd: 5'-TGCCA-
GAGTGTGGAGAACAG-3'; rev: 5'-TTACCCAGTCGCAT-
GACAAA-3'"; probe: 5'-GGGGGAGGTTATCTACCAAGT-3")
and human cFLIP (fwd: 5'-AGACCCTTGTGAGCTTCCCTAG-
3', rev: 5'- GCAGCATCTCCTTCTCATCTGTATC-3', probe:
5-AGTGCTTCTTCAACCTGATGGATGACTTCA-3"). The
mRNA level for the gene of interest was determined as 2-AACT
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and therefore reflects changes relative to unstimulated cells. Cells
were treated with TNF-o 25 ng/ml, IL-1f 50 ng/ml or FasL
50 ng/ml for 8, 3 or 6 h respectively. All experiments were
performed at least three times and means of three independent
experiments with SD are shown.

Supporting Information

Figure S1 The dependency matrix for t=4 displays the
influence of each node on each other node in the network.
Legend: dark green: A is total activator of B, dark red: A is total
inhibitor of B, yellow: A has activating and inhibiting effect on B,
black: no influence of A on B, light green: A is non-total activator
of B, light red: A is non-total inhibitor of B.

Found at: doi:10.1371/journal.pchi.1000595.s001 (0.18 MB TIF)

Figure 82 The dependency matrix for t=5 displays the
influence of each node on each other node in the network.
Legend: dark green: A is total activator of B, dark red: A is total
inhibitor of B, yellow: A has activating and inhibiting effect on B,
black: no influence of A on B, light green: A is non-total activator
of B, light red: A is non-total inhibitor of B.

Found at: doi:10.1371/journal.pcbi.1000595.5002 (0.19 MB TIF)

Figure 83 The dependency matrix for t=10 displays the
influence of each node on each other node in the network.
Legend: dark green: A is total activator of B, dark red: A is total
inhibitor of B, yellow: A has activating and inhibiting effect on B,
black: no influence of A on B, light green: A is non-total activator
of B, light red: A is non-total inhibitor of B.

Found at: doi:10.1371/journal.pcbi.1000595.5003 (0.20 MB TIF)

Text S1 The file contains five supplementary Tables. Table S1
provides a complete list of the network nodes, their used node
value levels and abbreviations. Table S2 lists all equations of the
model including the according timescale, literature references and
organisms of which the information was derived. Table S3
contains the interactions excluded in logical steady state
computation and Table S4 lists all non-monotone interactions.
Table S5 shows the relative participation of network components
in all feedback loops on the respective timescale. At the end of the
document all literature references from Table S2 are given in
alphabetical order.

Found at: doi:10.1371/journal.pcbi.1000595.s004 (0.33 MB PDF)

Protocol S1 The file contains all experimental data which is not
shown in the manuscript.
Found at: doi:10.1371/journal.pcbi.1000595.5005 (0.41 MB PDF)

Protocol S2 The file contains a stepwise manual including
screenshots how to install CNA and get started with the model.
This very short introduction is added for your convenience. Please
note that the CNA download contains a comprehensive manual
including much more and detailed information which cannot be
replaced by this file.

Found at: doi:10.1371/journal.pcbi.1000595.s006
PDF)

Protocol 83 The model can be opened with CNA which is a
package for MATLAB and is available for free for academic use
on http://www.mpi-magdeburg.mpg.de/projects/cna/cna.html.
The needed MATLAB license is with costs. The download
includes a manual. After starting CNA a new project has to be
declared using the given folder ‘ApoptosisModel’ as subdirectory
which also includes the network map (apoptosismap.bmp). The
textboxes are optimized for width 0.01, height 0.02 and font size 8.
To reproduce the logical steady state simulation always first set the
default scenario.

(0.58 MB
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Found at: doi:10.1371/journal.pcbi.1000595.5007 (0.09 MB ZIP)
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