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Abstract

Apoptosis is regulated by several signaling pathways which are extensively linked by crosstalks. Boolean or logical modeling
has become a promising approach to capture the qualitative behavior of such complex networks. Here we built a large-
scale literature-based Boolean model of the central intrinsic and extrinsic apoptosis pathways as well as pathways
connected with them. The model responds to several external stimuli such as Fas ligand, TNF-a, UV-B irradiation, interleukin-
1b and insulin. Timescales and multi-value node logic were used and turned out to be indispensable to reproduce the
behavior of the apoptotic network. The coherence of the model was experimentally validated. Thereby an UV-B dose-effect
is shown for the first time in mouse hepatocytes. Analysis of the model revealed a tight regulation emerging from high
connectivity and spanning crosstalks and a particular importance of feedback loops. An unexpected feedback from Smac
release to RIP could further increase complex II formation. The introduced Boolean model provides a comprehensive and
coherent description of the apoptosis network behavior. It gives new insights into the complex interplay of pro- and
antiapoptotic factors and can be easily expanded to other signaling pathways.
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Introduction

Apoptosis is the prototype of programmed cell death and an

essential process in multicellular organisms. It is necessary during

embryogenesis, tissue growth, differentiation and homeostasis as a

protective mechanism to remove superfluous or malfunctioning

cells from the organism [1–5]. Errors in cell death regulation can

result in diseases like Alzheimer and Parkinson when uncontrolled

apoptosis occurs or cancer if apoptosis is repressed [6,7]. Apoptosis

can be induced by several signal transduction pathways that are

tightly regulated and linked to other cellular events such as

inflammatory responses and proliferation. The understanding of

these signaling pathways is thought to provide novel solutions for

the treatment of many diseases. However, a large number of

participating components, their complex dependencies and

multiple biological stimuli make the analysis of small network

parts difficult and often less expressive. Therefore some mathe-

matical models have already been presented covering broader

structures.

For example Huber et al. presented the web service APOPTO-

CELL based on 52 ordinary differential equations [ODEs] to

calculate the susceptibility of cells to undergo apoptosis in response

to an activation of the mitochondrial apoptotic pathway [8]. The

power of ODE based modeling concerning dynamic simulation

and system analysis is without controversy. However, the use of

ODE models for larger networks is limited due to limited

biological data. The parameter identification for ODE models is

in the very most cases dependent on quantitative measurements

which still are a systems biology bottle neck. Another approach is

the use of Petri nets [9,10], however, the required input for

parameterization is still relatively high due to the need of defining

transition rules.

In this study, we present a Boolean network of apoptosis.

Boolean or logical networks are well suited to reproduce the

qualitative behavior of extensive networks even with a limited

amount of experimental data. Boolean logic is the algebra of two

values, e.g. ‘‘1 and 0’’ or ‘‘true and false’’ or ‘‘on and off’’ [11] and

was first shown to be applicable to electrical relay circuits [12].

Furthermore, it can also be applied to biological systems, and

signal flow networks can be described reasonable by a logical

approach [13]. The Boolean formalism is especially useful for

qualitative representation of signaling and regulatory networks

where activation and inhibition are the essential processes [14]. In

a Boolean representation, the biological active state of a species

can be translated into the ‘‘on’’ state whereas the inactive state is

represented by the ‘‘off’’ state. Enzymes play the role of switching

other enzymes and genes ‘‘on’’ and ‘‘off’’. Applying Boolean

algebra to a signaling network results in an interaction network,

analogous to electrical circuits, which can be conveniently

represented by logical interaction graphs. Boolean operations
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and graphs are described in detail in the Materials and methods

section.

There are different interesting approaches concerning the

specific calculation and simulation of Boolean networks. Chaves

et al. presented a hybrid model of the NF-kB module combining

Boolean and ODE based modeling [15]. Calzolari et al. analyzed

an apoptosis gene network with identical topology but different

link strengths chosen by random distribution [16]. For the specific

cell type of cytotoxic T lymphocytes Zhang et al. built a Boolean

model relating the input antigen stimulation with the output

apoptosis [17]. They use an asynchronous updating strategy and

show multiple simulations with different updating orders. Recent-

ly, Mai et al. presented a Boolean apoptosis model including 40

nodes and connecting two inputs, namely TNF and growth factor,

to the output DNA damage [18]. They calculated their network

with the impressive number of 10.000 random initial states to

simulate towards apoptosis or stable surviving.

We chose a different approach to avoid some known problems

concerning logical models. In this study, the logical steady state

[LSS] of variables with a unique LSS for a given input setting is

determined. For the computation of LSSs the software tool

CellNetAnalyzer [CNA] is used. The propagation of signals

through the network is thereby calculated by iterative derivation of

partial LSSs for smaller subnets based on already identified partial

LSS until no further ones can be found [19]. There is no need to

simulate the network many times or to perform statistical analyses.

CNA has previously been used to describe and analyze large-scale

Boolean models of biological networks. This tool is also useful to

predict and verify experimental data, examine the structure and

the hierarchy of the system as well as the relevance of its

components [19–21]. Not least, manual analysis and the

identification of network wide dependencies become error-prone

for large logical networks. Therefore, construction and analysis of

the logical interaction hypergraph model is achieved more reliable

in this study using CNA. Special features of the CNA are described

in the Materials and methods section since they are used to reveal

essential properties of the network structure and thereby deduce

biological conclusions on the complex signaling network of

apoptosis.

The large-scale Boolean network constructed in this study is

based on extensive literature research. It simulates apoptotic signal

transduction pathways in response to various input stimuli and

allows a comprehensive evaluation and analysis of the different

pathways (Figure 1). We considered the intrinsic and extrinsic

apoptotic pathways and their crosstalks as well as the survival and

metabolic insulin pathways. We show that the extension and

refinement of the logical formalism with multi-value logic and so

called timescale constants allows the capturing of dynamical

features such as threshold behavior, feedback loops and reaction

delays and thereby a correct description of the global signaling

behavior. The states of several network nodes are experimentally

validated for different inputs in order to prove the coherence of the

model. In this context a dose dependent effect of UV irradiation

concerning apoptosis induction is demonstrated on mouse

hepatocytes. Finally, the model is analyzed with regard to its

internal connectivity and crosstalks with a special attention on

significant feedback loops and gene regulatory effects.

Results/Discussion

General model properties
The model is a logical interaction hypergraph, which is a

connection of logic gates, and comprises 86 nodes and 125

interactions (Figure 1). Abbreviations and descriptions of the

network nodes are given in Text S1. Text S1 also lists all equations

of the model including the respective timescale constants, literature

references and organisms from which the information was derived.

Due to the number of included interactions in the model we refer

to the given literature references for detailed information about the

biological processes.

There are eight input nodes, namely glucagon, insulin, TNF-a
[TNF], Fas ligand [FasL], interleukin-1b [IL-1], UV-B irradiation

[UV] and two special nodes for applying Smac mimetics and for

simulating type II apoptotic signaling. Smac mimetics are

promising reagents that sensitize cells for apoptosis via the

neutralization of inhibitor of apoptosis proteins (IAPs such as

XIAP, cIAP1, cIAP2, etc.) [22,23]. They are considered as a

separate node. The input node ‘Type 2 receptor ligand’ [T2RL]

allows simulating apoptosis via the mitochondrial type II pathway

in contrast to the type I pathway which proceeds via a direct

activation of the caspase cascade [24]. The T2RL node is

experimentally represented in this study by human Jurkat T cells

treated with Fas ligand. Recently, the type I and type II pathways

were shown to operate in the same cell type but under different

culturing conditions suggesting that cells are able to switch

between both ways depending on external stimuli [25]. However,

the molecular mechanism of the switch itself has not yet been

uncovered. Therefore, an additional node P representing some

unknown protein or mechanism is introduced here to model the

switch behavior. Another specialty is the ‘housekeeping’ node,

which shall reproduce constitutively expressed genes (Figure 1, in

green). The output node of the model is apoptosis.

Timescales facilitate integrated modeling and distinctive
analysis

It was shown that dynamic processes can also be captured in

logical networks by introducing time delays to the logical functions

[13]. An equivalent function is provided in CNA where processes

can be assigned to different timescales. These timescales are

constants that specify in which state a certain node can become

active. Simulating a network at timescale t= x means that all

Author Summary

Apoptosis is one of the most investigated topics in the life
sciences, especially as this kind of programmed cell death
has been linked to several diseases. The strong desire to
understand the function and regulation of apoptosis is
unfortunately confronted with its complexity and its high
degree of cross linking within the cell. Therefore we apply
the so-called logical or Boolean mathematical modeling
approach to comprehensively describe the numerous
interactions in the apoptotic network. Classical Boolean
modeling assumes that a certain cellular signal is either
present (on) or absent (off). We use extensions of classical
Boolean models, namely timescale constants and multi-
value nodes, which allow the model to emulate typical
apoptotic features. The mathematical model describes for
the first time the numerous relevant interactions and
signals that control apoptosis in a single and coherent
framework. The logical model of apoptosis provides
valuable information about the topology of the network
including feedback loops and crosstalk effects. Proper
investigation of the mutual interactions between species
points towards hubs in the network with outstanding
relevance. These species are of special interest concerning
experimental intervention as well as drug target search.
The model we present here is easy to use and freely
available.
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interactions with a timescale constant t#x are considered, but

interactions with timescale constant t.x are omitted. The

apoptosis model contains six timescales {t} = {0, 2, 3, 4, 5, 10}

which are not numbered consecutively such that additional

timescales can be easily inserted.

Rapid, easily reversible signaling effects like phosphorylation

that are based on fast protein interactions can thus be separated

from long-term effects like gene expression and protein synthesis.

However, we use the so called timescale function not only for an

approximate discretization of signaling events to time segments but

also to separate functional groups of interactions such as feedback

loops. As we calculate the logical steady state, no transition rules

for any updating strategy have to be assumed which would be

afflicted with high uncertainty. There are no disadvantages

connected with extensive defining of timescales concerning the

simulation of the network. However, every timescale can be used

to generate a snapshot of the network and accomplish its separate

analysis. So for example, the topology of the network including

only early signaling events or the specific influence of feedback

loops can be analyzed by assigning separate timescales to them.

Overall the introduction of timescales to the logical formalism

allows to describe different signaling effects and gene regulatory

mechanisms in one unifying model but to analyze them separately.

All interactions of the apoptosis model with their respective

timescales are listed in Text S1. The first timescale t= 0 is reserved

for the housekeeping interactions that activate nodes which are

constantly active and represent constitutively expressed genes.

Timescale t= 0 contains 7 interactions and symbolizes the state of

the cell before stimulation. However, note that interactions of the

housekeeping node with other nodes activated later are set to the

later timescale. Also the input and output arcs are assigned to t= 0

(11 interactions including multilevel inputs). On the second

timescale t= 2 only early TNF signaling events take place which

include TNF signal transduction towards the formation of

complex I (5 interactions). The internalization of complex I was

described to be slow in comparison to other signaling processes.

An additional timescale t= 3 is assigned to further interactions of

the TNF pathway that are required for complex II formation (5

interactions). 73 interactions referring to signaling transduction

events except the early events of the TNF pathway take place at

t= 4. An additional timescale t= 5 is introduced to model

feedback loops (9 interactions). Assigning a separate timescale to

feedback loops allows their separate analysis which is very

reasonable considering their impact on the system. The final

timescale t= 10 is reserved for modeling gene expression in

response to signaling events and includes 15 interactions.

As an example, some node values for different timescale

scenarios after combined stimulation of the apoptosis model with

TNF and smac-mimetics are shown in Table 1. All references

underlying the according interactions can be found in Text S1.

Figure 1. Boolean apoptosis model. The network map as it is also used for CNA is shown. The influence of the housekeeping node is depicted in
green color. In addition stimuli and nodes which have been experimentally validated to prove the coherency of the model are indicated by yellow
filled background (compare Table 2). Logical AND connections are represented by blue spheres. Activating arcs are represented by black arrows and
inhibiting arcs by red lines with a bar.
doi:10.1371/journal.pcbi.1000595.g001
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Note that the node complex2 is activated by the interaction RIP-

deubi+FADD+comp1 = comp2. The node FADD is set to level 1

by the housekeeping node on timescale t= 0. At timescale t= 2

TNF receptor 1 is activated by the input TNF. The input smac-

mimetics activates smac and thereby RIP-deubi at timescale t= 3.

At timescale t= 4 for example the complex smac-XIAP is build. In

this setting there is no influence by feedback loops on timescale

t= 5. At timescale t= 10 upregulation of TRAF2 via NF-kB leads

to complex1 formation and thereby to complex2 formation and

finally apoptosis.

Modeling of feedback loops
A feedback loop is a circular path in a signed directed graph. In

general, feedback loops provide a challenge for Boolean networks

as they can lead to oscillations or multistability. In this case no

definite logical steady state can be assigned for the affected nodes

and they remain unevaluated in CNA. We excluded 13

interactions because of this implication from the logical steady

state analysis which are listed and numbered in Text S1. However,

these reactions are included in all other computational analysis

and can be included in logical steady state computation again very

easily by removing the according check mark in the CNA menu

Network Composer. The omission of these 13 interactions has the

benefit of getting a definite simulation result for every possible

input setting. Of course the network is changed thereby but this is

not disadvantageous as the impact of these particular interactions

on the logical steady state analysis is biologically not significant as

discussed in the following paragraph.

Four of these 13 interactions represent positive feedback loops

which would even enhance an existing activation status in a

dynamical model (no. 7–9, 13); however, the respective node is

already in the ‘‘on’’ state in the logical model when the feedback

would become active. As the Boolean model is not quantitative the

feedback loop would not have an impact on the biological result

anyway. Three negative feedbacks excluded from logical steady

state computation involve the fine-tuning of C3*p17 and Raf

activity in a dynamical model, but they do not affect the activation

level in the logical model for the same reason (no. 2, 5, 6). Five

negative feedback loops govern NF-kB signaling back to its initial

configuration and thereby inactivate NF-kB (no. 1, 3, 10–12) and

the negative feedback loop towards IRS-P inhibits the signal as

well (no. 4). However, the switching off of the network is generally

excluded in this model because we restrict ourselves to the critical

events of apoptosis. Consequently the respective validation

experiments described below are performed in the corresponding

time period of the first response of every node.

Multi-value logic allows threshold behavior
A promising feature of CNA is the possibility to use multi-value

logic, which is equivalent to the discretization of the ‘‘on’’ state and

was shown to be applicable to logical models of biological systems

[13]. Biochemical decisions are often made in increments caused

by thresholds that are essential for setting boundaries between

different states in living cells. This is especially true for apoptotic

processes [26–28]. We show here for a comprehensive network

that the use of multi-value logic in the description of biological

systems allows us to model several distinct active states. Multi-

value nodes thereby don’t substitute quantitative modeling, but the

different node value levels are defined by qualitative properties.

This is a general idea of our modeling approach and we name it

the functional definition of node values. Assigning different effects

to different active states is equivalent to biological threshold

behavior. CNA therefore allows the specification of so called non-

monotone arcs. In non-monotone interactions multi-value coeffi-

cients are assigned to the participating species. Non-monotone

interactions can only be active if the specified species coefficients

are matched exactly by the species state. For example, consider the

two non-monotone interactions 1 A = 1 B and 2 A = 1 C. In this

case 1 A will not activate 1 C und also 2 A will not activate 1 B, so

the two distinct levels of A can be employed in different further

interactions representing different biological effects.

By default all nodes have been considered as single-value nodes

which only occur with the values 0 or 1. Notice that the use of

multi-value nodes increases the complexity of the interrelations in

the network considerably. However, several biological settings

could not be realized with single-value nodes and on that

condition the domain of some nodes has been expanded. There

are 14 non-monotone interactions in the apoptosis network as

listed in Text S1. Non-monotone interactions are involved in the

modeling of the FasL pathway, which was reported to show

threshold behavior [29] and the modeling of NF-kB mediated

upregulation of anti-apoptotic proteins FLIP, XIAP and c-IAPs

[30,31]. The respective multi-value nodes are FasL, Fas, DISC*,

FLIP, C8*, C8*-DISC, C3*p20, C3*p17, XIAP and c-IAP that

occur with the coefficients {0, 1, 2}. Additionally, a multi-value

node for UV irradiation was added based on own experimental

results (see Figure 2).

Overall the steady states of the model reflect the following

behaviors, which would not be possible without using multi-value

nodes: (i) Apoptosis is not reached in the model by FasL in activity

state 1 [FasL (1)] but by FasL (2) reproducing the threshold

behavior of Fas signaling [26]. However, FasL (1) activates several

nodes in the network, and their influence and crosstalk with other

signaling pathways can be analyzed. (ii) The nodes of anti-

apoptotic proteins FLIP, XIAP and c-IAPs can be set to zero

representing a knockout scenario but they also have graded effects

in their ‘‘on’’ state. For example, caspase-3 p20 (2) can be further

processed to the highly active caspase-3 p17 form which ensues in

apoptosis if XIAP is low abundant as it is represented by XIAP (1).

However, if XIAP is upregulated to value ‘‘2’’ it prevents

processing and activation of caspase-3 p17. (iii) UV (1) leads to

apoptosis whereas UV (2) does not lead to apoptosis (see Figure 2).

Experimental validation of the model
After we built the mathematical model we performed extensive

experimental validation. The logical apoptosis model is based on a

vast number of different studies, which were performed in different

organisms and were in part highly focusing on important details.

Here, we show that the behavior that emerges from these

particular interactions in the model is coherent with experimental

data on the behavior of the whole network. Table 2 shows the

Table 1. Timescale scenarios after combined TNF and smac-
mimetics stimulus.

t = 0 t = 2 t = 3 t = 4 t = 5 t = 10

FADD 1 1 1 1 1 1

TNFR-1 0 1 1 1 1 1

smac 0 0 1 1 1 1

RIP-deubi 0 0 1 1 1 1

smac-XIAP 0 0 0 1 1 1

complex1 0 0 0 0 0 1

complex2 0 0 0 0 0 1

apoptosis 0 0 0 0 0 1

doi:10.1371/journal.pcbi.1000595.t001
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model prediction for different proteins and stimuli which are

critical for apoptosis represented by the resulting logical steady

state values of the model for the final timescale t= 10. The model

values of the input nodes are given in parentheses in Table 2 and

mock is represented by the logical steady state of the model

without activation of any input node.

In the experiments, two different cell types were used to account

for the distinct signaling mechanisms in cells using the type I

(mouse hepatocytes treated with FasL) and the type II (human

Jurkat T cells treated with FasL representing the T2RL node)

apoptotic pathways. The measured parameters/nodes of the

model are: NF-kB-DNA binding and IkB-a degradation for NF-

kB-signaling, activated caspase-3 [C3*p17] and the mRNA levels

of inhibitory proteins c-IAP, XIAP and FLIP for the caspase

cascade, Bid as member of the Bcl-2 family, the activation state of

c-Jun N-terminal kinase [JNK] and finally apoptosis as an output

signal. Note that the different forms of c-IAPs and FLIP are

merged to one node in the model, and measured mRNA levels are

c-IAP2 and all 3 isoforms of FLIP. The respective stimuli and

nodes are also indicated in Figure 1. Details on the experimental

procedures can be found in the section Materials and methods.

All model predictions listed in Table 2 were successfully

approved on the first try without changing the model, apart from

the effect of UV irradiation on the network. We found an

unexpected UV dose effect in primary mouse hepatocytes which

was included in the model and will be discussed in the next section.

First, the system response to FasL, TNF-a and IL-1b will be

presented. All measured entities could be experimentally shown to

be active or existing, respectively inactive or non-existing as

predicted by the model in response to these stimuli. Selected

results of FasL, TNF-a and IL-1b stimulation in mouse

hepatocytes are shown in Figure 3. Stimulation with FasL leads

to only weak NF-kB activation and hence no significant c-IAP2

and FLIP upregulation. As there is no signaling effect on the

subsequent nodes the model shows NF-kB (0) in this setting

according to the functional definition of its node value which is

Figure 2. Dose dependent NF-kB activation and apoptosis in response to UV irradiation. Two separate levels for the UV input node are
realized in the model. [A] The results for untreated cells and after weak UV (1) and strong UV (2) stimulation for each measure are shown in columns
in the upper half including standard deviation. Beneath the diagrams a table lists the according information about the model nodes and the
experiments. In particular, the simulation results as predicted by the model for the respective node values are given in the second row. All measures
are presented as fold increase and MTT assay results as percentage of vitality referred to untreated control, detailed information about each
experimental assay can be found in Materials and Methods. [B] The corresponding EMSA as evaluated in Fig. 2A is shown and the NF-kB bands are
assigned with arrows.
doi:10.1371/journal.pcbi.1000595.g002

Table 2. Central results of the logical apoptosis model have been experimentally validated.

NF-kB IkB-a c-IAP XIAP C3*p17 FLIP Bid JNK apoptosis

celltype stimulation Emsa Western qRT-PCR Western DEVD qRT-PCR Western Western MTT

jurkats mock 0 1 1 1 0 1 1 0 0

jurkats T2RL (1) 0 1 1 1 2 1 0 0 1

hepatocytes mock 0 1 1 1 0 1 1 0 0

hepatocytes FasL (2) 0 1 1 1 2 1 1 0 1

hepatocytes TNF (1) 1 0 2 2 0 2 1 1 0

hepatocytes IL-1 (1) 1 0 2 2 0 2 1 0 0

hepatocytes UV (1) 0 1 1 1 2 1 1 0 1

hepatocytes UV (2) 1 0 2 2 0 2 1 0 0

doi:10.1371/journal.pcbi.1000595.t002
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depending on the node’s effect on the network. Caspase-3 p17 is

highly active. In contrast, NF-kB is clearly activated after

stimulation with TNF-a or IL-1b. Accordingly, c-IAP2 and FLIP

are upregulated and, as predicted, caspase-3 p17 is not activated.

All validation experiments for Table 2 which are not shown in

Figure 3 can be found in Protocol S1. In addition we tested

apoptosis induction in Jurkat T cells after stimulation with TNF-a
and IL-1b. As expected and predicted by the model these stimuli

do not have cytotoxic effects on the cells and the according

experiments are documented in Protocol S1. It is impossible to test

every signaling scenario of the presented apoptosis model due to

technical limitations and the mere number of nodes. However, the

accuracy of the performed validation experiments indicates

fundamental correctness and significance of the model.

UV irradiation triggers dose dependent NF-kB activation
and apoptosis

During experimental validation of the model, we found dose

dependent NF-kB activation and apoptosis after UV irradiation in

primary mouse hepatocytes. Based on the results shown in

Figure 2, two distinct levels for the UV input node were

implemented. The updated model version properly reflects the

network behavior in response to UV irradiation and is presented

here.

UV (1) represents the stimulation of mouse hepatocytes with

300 J/m2 UV irradiation and UV (2) with 600 J/m2. Weak UV

irradiation leads to weak NF-kB activation and no c-IAP2 and

FLIP mRNA upregulation. As there is no signaling effect on the

subsequent nodes the model shows NF-kB (0) in this setting. As a

consequence, mouse hepatocytes show significantly increased

caspase-3 p17 activity and consequently cytotoxicity due to

apoptosis can be observed as expected after UV irradiation. In

contrast, the higher dose of UV irradiation leads to strong NF-kB

activation and subsequently c-IAP2 and FLIP mRNA is

upregulated. This correlates with previous findings showing a

marked NF-kB induction after strong translational inhibition and

relative resistance to lower doses [32]. The proteins c-IAP2 and

FLIP function as anti-apoptotic inhibitors and prevent caspase-3

p17 activity in this setting. Accordingly, cells show less cytotoxicity

after strong UV irradiation and the amount of cell death observed

in the MTT viability assay is probably caused to a high extent by

necrosis when comparing with caspase-3 p17 activity. In addition,

we also treated Jurkat T cells with UV irradiation. We did observe

apoptosis neither after 300 J/m2 nor after 600 J/m2 and expect

the critical apoptotic UV irradiation dose for Jurkats at higher

levels. All validation experiments concerning UV irradiation

which are not shown in Figure 2 can be found in Protocol S1.

95 feedback loops including an unexpected one
A feedback loop is a circular path in a signed directed graph,

and the overall sign of F is determined by the parity of the number

of inhibiting and activating arcs [33]. The sign of a feedback loop

has great impact on the dynamics of a system. On the one hand,

positive feedback loops allow for multistationarity which is

required for epigenetic differentiation in biological systems [34–

36]. On the other hand, negative feedback loops generate

periodicity and are essential for maintaining homeostasis [35,36].

The total number of positive and negative feedback loops for

each timescale is shown in Figure 4A. As CNA searches for

feedback loops of arbitrary length in the network the algorithm

finds in fact more feedback loops as expected from a superficial

look on the network map. Considering the interactions for t= 5

there are already 26 positive and 9 negative feedback loops. For

t= 10 these numbers increase up to 82 positive and 13 negative

feedback loops. This proportion reflects the typical features of

apoptosis networks where positive signal amplification and multi-

stationarity are characteristic. In contrast, antiapoptotic mecha-

nisms are rather realized by inhibitory proteins such as XIAP than

by negative feedback loops.

Interestingly, as shown in Figure 4B, there is an unexpected

feedback already for t= 4 in the network which was not modeled

explicitly. The formation of complex II induces activation of

Figure 3. Experimental model validation for stimulation with Fas ligand, TNF-a and interleukin-1b. Primary mouse hepatocytes were
treated with FasL, TNF-a or IL-1b. [A] The results are shown in columns in the upper half including standard deviation. Beneath the diagrams a table
lists the according information about the model nodes and the experiments. In particular, the simulation results as predicted by the model for the
respective node values are given in the second row. All measures are presented as fold increase and MTT assay results as percentage of vitality
referred to untreated control, detailed information about each experimental assay can be found in Materials and Methods. [B] The according EMSA as
evaluated in Fig. 3A is shown and the NF-kB bands are assigned with arrows.
doi:10.1371/journal.pcbi.1000595.g003
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caspase-8 which leads to the release of Smac in response to Bid

cleavage finally resulting in mitochondrial pathway activation in

type II cells. According to our model, Smac could further increase

complex II formation by increasing the amount of available RIP-

deubi. The biological relevance of this feedback is speculative.

However, the topological possibility of a feedback loop in

apoptosis signaling upstream of the caspase cascade is fascinating

and potentially important.

The relevance of feedback loops [37–39] and associated affects

such as bistability [27,40] and oscillations [41,42] are a largely

discussed topic. The so far analyzed and well known feedback

loops are usually consisting of very few molecules [43,44]. The

analysis of the apoptosis model shows a high number of feedback

mechanisms consisting of many interactions building long loops.

As the Boolean model is not dynamic it cannot tell whether these

structures are biological relevant or take place on an insignificant

timescale. However, their further analysis might be promising.

Feedback loops are essential for signaling towards
apoptosis

In the following section, we discuss the influence of feedback

loops and gene regulatory effects on the signaling behavior of the

model for t= 5 and t= 10. The relative participation of network

components in all feedback loops on the respective timescale is

shown in Text S1. The general tendency of signaling is still

maintained for t= 5 as the apoptosis supporting input nodes

mainly participate in positive signaling pathways and vice versa.

However, the combination of negative and positive pathways

allows for a more differentiated response to input signals. The

components of the caspase module are involved in most of the

feedback loops for t= 5, and their relative participation reaches up

to 89% for C3*p17 (Text S1). This high involvement originates

from the high connectivity of these nodes with other pathways and

is indicative of the important role of caspases, especially caspase-3,

in apoptosis regulation. For t= 10 we noticed an increased

involvement of NF-kB and components of the mitochondrial

module in feedback regulation. In particular, Bax participates at

76% (Text S1). In summary, only a small group of species is

involved in most of the feedback loops, but as such this group plays

a prominent role in the regulation and determination of the

network response to input signals. This small group consists mainly

of caspases, mitochondrial proteins and NF-kB signaling compo-

nents which are important for the robustness of the entire system

and indicate their importance in apoptosis execution and control.

The regulatory importance of feedback loops is also reflected by

the species dependencies for different timescales. The respective

dependency matrices are due to their size shown in Figures S1, S2,

S3. Until t= 4 almost only total activation and inhibition processes

occur in the network which represents the linear and parallel

behavior of the signaling processes (Figure S1). A comparison with

the species dependencies for t= 5 shows a substantially changed

network topology and reveals all species that are influenced by

negative feedback loops in their respective pathways but also

pathways to which they are connected (Figure S2). The

dependency matrix for t= 10 finally completes the overall picture

of complex and ambiguous relationships in the network showing

almost no total activation and inhibition processes anymore but an

increased number of ambivalent effects (Figure S3).

The total number of calculated signaling pathways from each

start node to the apoptosis node is shown in Table 3 for each

timescale. No continuous signaling pathways to the apoptosis node

exist for t#3 because the caspase activation module is only active

for t$4 as described before. For t= 4 all input nodes with

apoptosis supporting effects exclusively participate in positive

signaling pathways to the apoptosis output node. In accordance,

all input nodes with apoptosis inhibiting effects do not show any or

only negative pathways. This topology describes a non-regulated

cell which would show a linear signaling behavior without the

ability to integrate received information and adapt to situations.

Additionally, the constraint signaling behavior would render the

cell error-prone for the failure of individual molecular species. For

t= 5 feedback loops extend the network topology. Although only

nine interactions are added at this timescale their impact is

Figure 4. Feedback loops in the apoptosis network for
different timescale constants t. [A] The distribution of positive
and negative feedback loops for all timescale constants t is listed. [B] An
unexpected feedback loop arises in the model for t= 4. Complex II
activates caspase-8 which leads to the release of Smac in response to
Bid cleavage. Smac could promote complex II formation by increasing
the amount of available RIP-deubi.
doi:10.1371/journal.pcbi.1000595.g004

Table 3. Signaling pathways from every input node to the apoptosis node for all timescales t.

input node t = 0 t = 2 t = 3 t = 4 t = 5 t = 10

positive negative positive negative positive negative

FasL 0 0 0 704 0 704 0 1216 0

glucagon 0 0 0 0 0 0 0 192 224

IL-1 0 0 0 0 0 0 0 224 192

insulin 0 0 0 0 44 68 44 696 748

smac-mimetics 0 0 0 44 0 44 32 236 32

T2RL 0 0 0 88 0 88 24 248 24

TNF 0 0 0 88 0 88 24 792 1080

UV 0 0 0 88 0 88 48 568 240

doi:10.1371/journal.pcbi.1000595.t003
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significant and most input nodes already have ambivalent

potential to influence the apoptosis node depending on further

circumstances. The number of signaling paths from the input

nodes to apoptosis finally dramatically increases for t= 10 by

adding gene regulatory effects by the NF-kB node. Concerning the

final decision between cell survival and apoptosis the overall

network presents itself as highly crosslinked and regulated in a

complex manner.

High connectivity and crosstalks are significant for
apoptosis signaling

High connectivity increases the number of possible pathways

between two nodes and the reliability and flexibility of the network

to respond to its environment. CNA considers strongly connected

components as maximal subgraphs of the interaction graph in

which paths between all pairs of nodes exist. The apoptosis model

contains two groups of strongly connected components. One

comprises the nodes PKC, PKB, PDK1, PIP3, PI3K and IRS-P.

These nodes are part of the insulin signaling pathway and

connected to a feedback loop by PKB. The second group contains

30 nodes, which belong to complex formation in the upper

apoptosis signaling (complex1, complex2, TRAF2, RIP-deubi,

comp1-IKK*, NIK, C8*-comp2, FLIP), caspase cascade (C6,

C3*p20, C3*p17, C3*-XIAP, XIAP, c-IAP, C8*, C9*, BIR1-2),

mitochondrial release (tBid, Bax, Bcl-xl, apopto, Apaf-1, smac-

XIAP, smac, cyt-c) and NF-kB signaling (NF-kB, IkB-a, IkB-e,
A20, IKK*). The high connectivity between these nodes is only

partially due to the cascading topology of enzyme activation.

Furthermore, the involved proteins such as the inhibitor XIAP,

several feedback loops and especially the inclusion of NF-kB

signaling in this strongly connected subgraph reflect the highly

controlled and robust structure of death signaling.

As a transcription factor, NF-kB has central role for the

network. The anti-apoptotic impact of NF-kB is ensured via the

upregulation of survival factors. However, analysis with CNA

reveals an even broader influence of the NF-kB node resulting

from its high connectivity. There are 34 inhibitors, 27 activators

and 8 ambivalent factors affecting NF-kB. In turn, NF-kB is an

ambivalent factor for 30 species, an activator for 8 and an inhibitor

for 1.

In addition to these highly connected subgraphs crosstalks

between individual signaling modules determine the behavior of

the network. Amongst others, the model includes the following

crosstalks with insulin signaling (documented with the according

interactions in Text S1): (i) TNF-a stimulates IRS phosphorylation

and thereby inhibits insulin signaling. (ii) In response to insulin

PKB is activated and phosphorylates Bad. Phosphorylated Bad is

sequestered by 14-3-3 proteins and therefore cannot activate pro-

apoptotic Bax. (iii) PI3K is involved in insulin signaling and also

contributes to NF-kB activation via IKK. (iv) Raf can be activated

via insulin signaling and inhibited by glucagon signaling and active

Raf also triggers IKK-dependent NF-kB activation. Also there

were two crosstalks explicitly presumed in the modeling process.

Smac mimetics were shown to have an apoptosis promoting effect

after stimulation with TNF-a [23] and also lead to autocrine TNF-

a secretion [45,46]. The network reflects this crosstalk as Smac

mimetics don’t induce apoptosis but promote complex II building

via RIP and lower the threshold for C3*p17 activation via

sequestering XIAP. Accordingly, while TNF stimulation of the

model does not lead to apoptosis as observed in hepatocytes and

Jurkat T cells, the combination of TNF and Smac mimetics does.

Another crosstalk is based on the antiapoptotic influence of IL-1b
via NF-kB [47]. Although FasL (2) alone leads to apoptosis it does

not in combination with IL-1b (1) in the model.

The explicitly and implicitly modeled crosstalk connections in

the network also lead to further effects in the model. The resulting

value for the apoptosis node is systematically simulated for all

double stimulation scenarios and listed in Table 4. The diagonal

shows the resulting apoptosis value for the according single

stimulations. One would assume the outcome for two combined

stimuli to follow the rules 0+0 = 0, 1+1 = 1 and 0+1 = 1. However,

there are some aberrations which are highlighted bold in the Table

and discussed in the following text. Smac-mimetics lead to

apoptosis in combination with FasL (1) by the same mechanism

as discussed above. There are also two other combinations aside

from IL-1b which prevent apoptosis after FasL (2) stimulation in

the model. Namely Insulin and TNF have an antiapoptotic effect

based on NF-kB activation via Raf and complex-1 respectively.

There are also some interesting crosstalks concerning UV

stimulation. The antiapoptotic effects of insulin and IL-1b also

prevent apoptosis in combination with UV (1). However, in

combination with TNF apoptosis is still enforced by UV (1) as

smac is released by UV irradiation and counteracts XIAP

upregulation. The input combinations of UV (2) with TNF and

FasL (1) also lead to apoptosis as the latter activate caspase-8 (1). In

contrast, the combination of FasL (2) and UV (2) does not cause

apoptosis in the model as the NF-kB activation by UV (2) is

dominant in this setting.

In the future we will especially focus on the investigation and

expansion of the model regarding further crosstalk effects between

Table 4. Apoptosis node value for all double stimulation scenarios of the model.

Glucagon Insulin TNF FasL (1) FasL (2) T2RL IL-1 smac-mimetics UV (1) UV (2)

Glucagon 0 0 0 0 1 1 0 0 1 0

Insulin 0 0 0 0 1 0 0 0 0

TNF 0 0 0 1 0 1 1 1

FasL (1) 0 – 1 0 1 1 1

FasL (2) 1 1 0 1 1 0

T2RL 1 1 1 1 1

IL-1 0 0 0 0

smac-mimetics 0 1 0

UV (1) 1 –

UV (2) 0

doi:10.1371/journal.pcbi.1000595.t004
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distinct pathways as well as on their experimental validation.

Unfortunately, this is not trivial as the Boolean model does not give

advice how to combine stimuli experimentally concerning timing and

dosage. However, the connectivity of subnetworks and single

components via crosstalks is helpful information to include all

essential interactions when focusing on a smaller subsystem or specific

question. We propose to check the Boolean model for important

interaction players when modeling a particular signaling pathway or

designing biological experiments to elucidate functional relationships.

The logical apoptosis model may support your research
The Boolean approach we use here for modeling apoptosis

obviously has a systematic drawback resulting from the reduction

on qualitative network behavior. The reaction rates of biological

processes and the quantitative amount of molecules cannot be

assigned straight forward to model values. Instead careful

conversion has to be done for particular cases and biological

knowledge of the modeler is of special importance. In return the

presented logical model is easy to use and very flexible.

Protocol S2 comprises detailed instructions how to start up the

apoptosis model (Protocol S3) without any previous knowledge.

One can use the apoptosis model for comparison with own results

as well as for further analyses. It can be modified and expanded to

other cell types, additional pathways or crosstalks. In particular,

any kind of knock-out or knock-in scenario can be simulated with

the model by setting certain nodes or interactions to the desired

value. Subsequently, resulting variations in signaling behavior and

the changed network topology can be analyzed. On the other

hand CNA can search for minimal intervention sets. Thereby the

algorithm computes all possibilities to reach a user-defined

network state under user-defined constraints as fixed states or

maximum number of interventions. Finally, uncovering sensitive

points in the network and failure modes of the system concerning

specific questions will provide suggestions for biological experi-

mental design as well as predictions how the system reacts in

response to selected challenges.

Taken together, the logical model presented here can easily be

applied to a broad spectrum of scientific questions concerning

apoptosis signaling pathways and their complex crosstalk to other

pathways and serve as a helpful and valuable tool in a variety of

research aims.

Materials and Methods

Interaction graphs
Each species of a network is considered to be a node and two

nodes are connected by an edge, also called arc, indicating a direct

dependency between them. Nodes and edges form a graph.

Directed graphs are a subclass of graphs in which the orientation

of the edge determines the direction of the signal flow [48]. At the

boundaries of an interaction graph sources and sinks can be found.

Sources represent inputs and are not influenced by other nodes.

Sinks represent outputs and do not influence further nodes.

Adding a sign to the edge specifies whether the influence of a

node is activating (positive) or inhibiting (negative). In signed

directed graphs linear connections between two nodes that are not

directly connected to each other describe paths which have an

overall sign. The sign of the sequence of arcs is negative if the

number of arcs with negative sign is odd and positive if the number

of arcs with negative signs is even or zero.

Feedback loops
Feedback loops in the biological sense are regulatory functions

that integrate the state of a downstream system variable with a

state prior in the path and return an answer which then leads to

further enhancement or abortion of the signal. In a graph

theoretical sense a feedback loop would involve only one node

influencing itself. In this work the term feedback loop is used in the

biological sense involving one or more nodes. A feedback loop

ends at the same node where it started and no other node is visited

twice. The overall sign of a feedback loop is determined by the

parity of the number of inhibiting and activating arcs [33]. The

sign of a feedback loop has great impact on the dynamics of a

system [34–36].

Boolean logic operations
Logical counterparts to numerical operations are conjunction,

disjunction and complement. This will be explained for the

example of two variables A and B. A numerical multiplication is

analogous to a logical conjunction expressed by (A L B) or (A

AND B). A conjunction of two statements is true when both

statements are true. A numerical addition of A and B is expressed

in Boolean algebra as a disjunction (A V B) or (A OR B). A

disjunction of two statements is true when one of the statements is

true (inclusive disjunction). In the presented logical apoptosis

model disjunctions are not notated explicitly but are represented

by several interactions which can lead to the same result. A

numerical negation (–A) is expressed by (A), (NOT A) or (!A) in

Boolean algebra. The complement of a statement is true when the

statement is false.

Hypergraphs
Another important property of biological regulatory networks is

the participation of two or more species in one interaction whereas

in an interaction graph one node influences one other node. A

representation of more than one species influencing another can

be facilitated by logical AND connections. A graph containing

AND connected species is a hypergraph [49]. A hyperarc connects

two subsets of nodes. The resulting graph is termed a logical

hypergraph [19].

CNA/ProMoT
The MATLAB based tool CellNetAnalyzer [CNA] [19] allows

construction and analysis of metabolic (stoichiometric) as well as

signaling and regulatory networks via a graphical user interface. In

this study CNA Version 9.2 has been used. The network map can

be created with external programs, and we used Microsoft Power

Point.

A Boolean network is represented in CNA as a logical

interaction hypergraph that can also be transformed into an

interaction graph. Thereby hyperarcs are splitted and parallel arcs

can arise which may lead to undesired effects. For example,

(A+B = X, A+C = X) is converted to (A = X, B = X, A = X, C = X).

After transformation of the presented logical apoptosis model four

duplicated arcs and ten parallel edges are removed. The

interaction graph representation is required for computation of

signaling pathways, feedback loops and species dependencies

because it unambiguously indicates which nodes are involved in

interactions. For logical steady state analysis and minimal

intervention sets the logical interaction hypergraph representation

is required to capture all constraints and influences included in the

model.

Computation of feedback loops and signaling paths
using CNA

The CNA algorithm for computation of feedback loops

identifies paths with the same start and end node. Additionally,
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the direction of the edges is considered so that signal flow occurs

only in the specified direction. Another necessary property of the

calculated circuits is their non-decomposability into smaller

circuits in order to fulfill the notion of elementary modes [50–

52]. Signaling pathways in CNA are calculated in analogy to

feedback loops.

Computation of network wide dependencies using CNA
To identify the influence a species A exhibits on another species

B all signaling paths leading from A to B can be computed. A is

not influencing B if such a path does not exist. Otherwise the

influence of A on B is characterized as follows: A is a total

activator/inhibitor of B if only activating/inhibiting paths are

found. A is a non-total activator/inhibitor of B if only activating/

inhibiting paths are found but a path contains an intermediate

node that is involved in a negative feedback loop. A is an

ambivalent factor if activating and inhibiting paths are found.

Computation of the logical steady states using CNA
For every Boolean network all possible logical steady states

[LSSs] can be calculated [53]. In CNA a LSS is computed based

on specified initial values and the signal propagation through the

network is calculated. There are no interactions with so called

incomplete truth tables in the network so that all nodes can be

evaluated for every input setting. LSSs can be used to simulate

changes in the network structure and analyze the consequences on

the signal propagation. The knock-out of a certain gene is

represented by deactivation or removal of a species achieved by

setting the value of this species to zero. Constitutive expression of a

gene can be represented by setting the value of this species to

greater zero (on-state).

Cell culture, isolation and cultivation of primary mouse
hepatocytes

Primary hepatocytes were isolated from 8–12 week old B6

(C57Bl/6NNrl) mice as previously described [54]. The use of mice

for hepatocyte isolation has been approved by the animal

experimental committees and animals were handled and housed

according to specific pathogen free (SPF) conditions. Cells were

plated on collagen-coated tissue culture dishes in William’s

medium E (WME, from Biochrom) supplemented with 10%

FCS, 100 nM dexamethasone, 2 mM L-glutamine and 1%-

penicillin/streptomycin solution (all reagents from Gibco). Culti-

vation was carried out as described [54], following a three step

starvation procedure. To allow hepatocytes to attach, cells were

kept in a humidified atmosphere at 37uC and 5% CO2 for 4 h.

Subsequently, FCS cell culture medium was removed and

replaced by serum-free culture medium (WME supplemented

with 100 nM dexamethasone, 2 mM L-glutamine and 1%-

penicillin/streptomycin solution). Following 4 h incubation in

serum-free culture medium hepatocytes were washed three times

with starvation medium (WME supplemented with 2 mM L-

glutamine and 1%-penicillin/streptomycin solution) and further

kept for 16–24 h in the same medium.

Jurkat T cells (suspension) were maintained in RPMI 1640

medium supplemented with 10% FCS and 1%-penicillin/

streptomycin.

Preparation of total and nuclear cell lysates
For preparation of total extracts 26106 cells were centrifugated

(2150 g, 4uC, 3 min), washed with PBS, centrifugated again and

140 ml of lysis buffer (136 mM NaCl, 2 mM EDTA, 20 mM Tris/

HCl pH 7.4, 10% glycerol, 4 mM benzamidine, 50 mM b-

glycerophosphate, 20 mM Na-diphosphate, 10 mM NaF, 1 mM

Na3VO4) supplemented with protease inhibitors (5 mg/ml apro-

tinin, 5 mg/ml leupeptin, 0.2 mM pefablock) was added. Cell lysis

was performed by shaking for 20 min at 4uC and final

centrifugation at 20800 g, 4uC for 10 min.

For preparation of nuclear extracts 16106 cells were washed

with PBS and collected in Eppendorf tubes. After centrifugation

(2150 g, 4uC, 3 min), the pellet was resuspended using 400 ml

buffer A (10 mM Hepes/KOH pH 7.6, 15 mM KCl, 2 mM

MgCl2, 0.1 mM EDTA pH 8.0) and incubated on ice for 10 min.

Then, the cell suspension was centrifuged (2150 g, 4uC, 3 min)

and buffer A was replaced by 200 ml buffer A containing 0.2%

NP-40 supplemented with Complete protease inhibitors (Roche

Applied Science) and incubated for exactly 5 min on ice to lyse the

cytoplasma membrane. After centrifugation (8062 g, 4uC, 2 min),

supernatants were stored as cytoplasmic extracts and pellets were

resuspended in 50 ml buffer C (25 mM Hepes/KOH pH 7.6,

50 mM KCl, 0.1 mM EDTA pH 8.0, 10% glycerol, Complete

protease inhibitors) and kept on ice. After 5 min, 4.5 ml of a 5 M

NaCl solution was added and incubated for 30 min with gentle

shaking at 4uC. After centrifugation (20800 g, 4uC, 10 min) the

supernatant was isolated as nuclear extract.

DEVDase assay
For measuring the activity of the executioner caspases 3/7

DEVDase assay was performed. Primary mouse hepatocytes and

Jurkat T cells (16106 cells respectively) were incubated with TNF-

a (R&D Systems) 25 ng/ml, IL-1b (Jena Bioscience) 50 ng/ml or

FasL (N2A FasL as described in [25]) 50 ng/ml for 6 h or exposed

to 300 J/m2 or 600 J/m2 UV irradiation (Stratalinker UV

crosslinker from Stratagene). Then the cell suspension was

centrifugated, washed with PBS and homogenized in 50 ml of

homogenization buffer. Caspase-3 activity assay was performed

exactly as described in [55] using the caspase-3 substrate DEVD-

AMC (Alexis) at a concentration of 200 nM. Relative fluorescence

units (RFU) values were calculated via the ratio of average rate of

the fluorescence increase and protein concentration determined by

Bradford assay (Biorad). To compare different experiments, RFU

sample values were referred to negative control (untreated cells).

At least three independent experiments were carried out and

means of these experiments including the SD are shown.

MTT viability assay
After exposition to the different stimuli for 6 h or to UV

irradiation of the aforementioned doses, primary hepatocytes and

Jurkat T cells were treated with 1 ml of 0.5 mg/ml MTT (Sigma)

solution in PBS, and incubated at 37uC for 2 h. After observing a

color change to purple the supernatant was removed and the

crystals dissolved in DMSO. The samples were transferred into a

fresh 96-well plate, and the color reaction measured with an

ELISA reader at 595 nm. The sample values were referred to

untreated control. Again, means of three independent experiments

with SD are shown. Please note that the MTT assay only measures

viability and does not differentiate between apoptosis and other

forms of cell death.

Electrophoretic mobility shift assay (EMSA)
Nuclear protein extracts were prepared as described above.

Equal amounts of nuclear proteins (4 mg) were added to a

reaction mixture containing 20 mg bovine serum albumin, 2 mg

poly(dI-dC) (Roche Molecular Biochemicals), 2 ml buffer D+
(20 mM HEPES, pH 7.9, 20% glycerol, 100 mM KCl, 0.5 mM

EDTA, 0.25% NP-40, 2 mM DTT, 0.1% PMSF), 4 ml buffer F

(20% Ficoll 400, 100 mM HEPES, 300 mM KCl, 10 mM DTT,
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0.1% PMSF) and 100,000 cpm (Cerenkov) of a P33-labeled

oligonucleotide for NF-kB made up to a final volume of 20 ml

with distilled water. For competition experiments (not shown) the

reaction mixture contained a 100-fold excess of the respective

non-radioactive labeled oligonucleotide. NF-kB oligonucleotide

(59-AGT TGA GGG GAC TTT CCC AGG C-39, Promega) was

labeled using [c33P]ATP (3000 Ci/mmol, Amersham Biosci-

ences) and a T4 polynucleotide kinase (New England Biolabs).

After 25 min of incubation at room temperature the samples

were resolved through non-denaturing 6% polyacrylamide gel

electrophoresis and then the dried gel was exposed to an Imaging

Plate (BAS-MS 2340, Fujifilm) overnight which was finally

analyzed using a FLA-3000 (Fujifilm). In the figures the resulting

images are shown together with the quantified 33P-stimulated

luminescence (PSL) units of each specific shift. Dimer composi-

tion was determined by supershift analysis (not shown) using

specific antibodies for p65 and p50 NF-kB subunits (from Santa

Cruz Biotechnologies).

Western blotting
To analyze protein levels in total cell lysates, samples

containing 50–70 mg protein were separated by SDS-PAGE

(12% or 15% gels) and transferred to a 0.45 mm or 0.2 mm pore

size PVDF (Roche Applied Science and BioRad, respectively)

membrane. Antigen detection was done using antibodies against

P-JNK at 1:1000 (Cell Signaling), IkB-a at 1:1000 (Cell

Signaling), b-actin at 1:10000 (MP Biomedicals), Bid at 1:700

(gift from David Huang, WEHI), XIAP at 1:2000 (StressGen),

appropriate horseradish peroxidase-labeled secondary antibodies

(Jackson ImmunoResearch Laboratories or Cell Signaling), and

the ECL plus chemiluminescence detection reagent (Amersham

Biosciences). Chemiluminescent images were quantified using

the LumiImager and the LumiAnalyst Software (Roche Applied

Science).

RNA isolation, cDNA synthesis and qRT-PCR
Total RNA was isolated using RNeasy Plus Kit (Qiagen) and

extraction was performed according to the manufacturer’s direc-

tions. The quantity and purity of RNA was determined by

measuring the optical density at 260 and 280 nm. Subsequently,

1 mg of total RNA was converted to single strand cDNA using

Quantiscript Reverse Transcriptase (Qiagen) resulting in 100 ml

diluted cDNA. The analysis of mRNA expression profiles was

performed with multiplex quantitative real time PCR. In a 25 ml

PCR reaction, 2 ml of cDNA (corresponding to 20 ng of total RNA

input) was amplified in an Light Cycler 480 (Roche), using 2-fold

QuantiTect Multiplex PCR Master Mix (Qiagen), 50 nM primers

and 100 nM probe for the 18S rRNA reference gene (fwd: 59-

CGGCTACCACATCCAAGG-39, rev: 59-CGGGTCGGGA-

GTGGGT, probe: 59-TTGCGCGCCTGCTGCCT), and 300 nM

primers and 100 nM probe for the gene of interest. The following

target gene primers and probes were used (all from Sigma): mouse

cIAP2 (fwd: 59-ACATTTTCCCCACTGTCCATTT-39, rev: 59-

CTATCCAGGGGTCATCTCCA-39, probe: 59-ATGCAGACA-

CACTCTGCTCG-39), human cIAP2 (fwd: 59-CTGGAAA-

CAAAGCATTGAAGTCTG-39, rev: 59-GCCATTAGTAAA-

GAGGTTCTGAGTC-39, probe: 59-CGTCTGTGAGATCC-

AGGAAACCATGCTTGC-39), mouse cFLIP (fwd: 59-TGCCA-

GAGTGTGGAGAACAG-39; rev: 59-TTACCCAGTCGCAT-

GACAAA-39; probe: 59-GGGGGAGGTTATCTACCAAGT-39)

and human cFLIP (fwd: 59-AGACCCTTGTGAGCTTCCCTAG-

39, rev: 59- GCAGCATCTCCTTCTCATCTGTATC-39, probe:

59-AGTGCTTCTTCAACCTGATGGATGACTTCA-39). The

mRNA level for the gene of interest was determined as 2-DDCT

and therefore reflects changes relative to unstimulated cells. Cells

were treated with TNF-a 25 ng/ml, IL-1b 50 ng/ml or FasL

50 ng/ml for 8, 3 or 6 h respectively. All experiments were

performed at least three times and means of three independent

experiments with SD are shown.

Supporting Information

Figure S1 The dependency matrix for t= 4 displays the

influence of each node on each other node in the network.

Legend: dark green: A is total activator of B, dark red: A is total

inhibitor of B, yellow: A has activating and inhibiting effect on B,

black: no influence of A on B, light green: A is non-total activator

of B, light red: A is non-total inhibitor of B.

Found at: doi:10.1371/journal.pcbi.1000595.s001 (0.18 MB TIF)

Figure S2 The dependency matrix for t= 5 displays the

influence of each node on each other node in the network.

Legend: dark green: A is total activator of B, dark red: A is total

inhibitor of B, yellow: A has activating and inhibiting effect on B,

black: no influence of A on B, light green: A is non-total activator

of B, light red: A is non-total inhibitor of B.

Found at: doi:10.1371/journal.pcbi.1000595.s002 (0.19 MB TIF)

Figure S3 The dependency matrix for t= 10 displays the

influence of each node on each other node in the network.

Legend: dark green: A is total activator of B, dark red: A is total

inhibitor of B, yellow: A has activating and inhibiting effect on B,

black: no influence of A on B, light green: A is non-total activator

of B, light red: A is non-total inhibitor of B.

Found at: doi:10.1371/journal.pcbi.1000595.s003 (0.20 MB TIF)

Text S1 The file contains five supplementary Tables. Table S1

provides a complete list of the network nodes, their used node

value levels and abbreviations. Table S2 lists all equations of the

model including the according timescale, literature references and

organisms of which the information was derived. Table S3

contains the interactions excluded in logical steady state

computation and Table S4 lists all non-monotone interactions.

Table S5 shows the relative participation of network components

in all feedback loops on the respective timescale. At the end of the

document all literature references from Table S2 are given in

alphabetical order.

Found at: doi:10.1371/journal.pcbi.1000595.s004 (0.33 MB PDF)

Protocol S1 The file contains all experimental data which is not

shown in the manuscript.

Found at: doi:10.1371/journal.pcbi.1000595.s005 (0.41 MB PDF)

Protocol S2 The file contains a stepwise manual including

screenshots how to install CNA and get started with the model.

This very short introduction is added for your convenience. Please

note that the CNA download contains a comprehensive manual

including much more and detailed information which cannot be

replaced by this file.

Found at: doi:10.1371/journal.pcbi.1000595.s006 (0.58 MB

PDF)

Protocol S3 The model can be opened with CNA which is a

package for MATLAB and is available for free for academic use

on http://www.mpi-magdeburg.mpg.de/projects/cna/cna.html.

The needed MATLAB license is with costs. The download

includes a manual. After starting CNA a new project has to be

declared using the given folder ‘ApoptosisModel’ as subdirectory

which also includes the network map (apoptosismap.bmp). The

textboxes are optimized for width 0.01, height 0.02 and font size 8.

To reproduce the logical steady state simulation always first set the

default scenario.
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Found at: doi:10.1371/journal.pcbi.1000595.s007 (0.09 MB ZIP)
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