A CLASSIFICATION OF BISYMMETRIC POLYNOMIAL
FUNCTIONS OVER INTEGRAL DOMAINS OF
CHARACTERISTIC ZERO

JEAN-LUC MARICHAL AND PIERRE MATHONET

ABSTRACT. We describe the class of n-variable polynomial functions that sat-
isfy Aczél’s bisymmetry property over an arbitrary integral domain of charac-
teristic zero with identity.

1. INTRODUCTION

Let R be an integral domain of characteristic zero (hence R is infinite) with iden-
tity and let n > 1 be an integer. In this paper we provide a complete description
of all the n-variable polynomial functions over R that satisfy the (Aczél) bisymme-
try property. Recall that a function f:R"™ — R is bisymmetric if the n?-variable

mapping
(1'117“' yLins---;Tnly - - '7xnn) = f(f(xllw"axln)a“-af(xnla- 7xnn))

does not change if we replace every x;; by xj;.

The bisymmetry property for n-variable real functions goes back to Aczél [1,
2]. Tt has been investigated since then in the theory of functional equations by
several authors, especially in characterizations of mean functions and some of their
extensions (see, e.g., [3,5-7]). This property is also studied in algebra where it is
called mediality. For instance, an algebra (A, f) where f is a bisymmetric binary
operation is called a medial groupoid (see, e.g., [8,9,11]).

We now state our main result, which provides a description of the possible bisym-
metric polynomial functions from R"™ to R. Let Frac(R) denote the fraction field
of R and let N be the set of nonnegative integers. For any n-tuple x = (21, ...,2,),
we set x| =¥, ;.

Main Theorem. A polynomial function P:R"™ — R is bisymmetric if and only if
1t 18

(i) univariate, or

(i7) of degree < 1, that is, of the form

P(X):a0+2aix¢,

i=1

where a; € R fori=0,...,n, or
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(i7i) of the form
n
P(x)=a]](z;+b)* -b,
i=1

where a € R, b € Frac(R), and o € N™ satisfy ab* e R fork=1,...,|a| -1
and abl® —beR.

The following example, borrowed from [10], gives a polynomial function of class
(i74) for which b ¢ R.

Example 1. The third-degree polynomial function P:Z? — 7 defined on the ring
Z of integers by

P(SC17SC27SC3) = 91’1582:173 +3 (Ill‘g + Tox3 + 1’3561) +T1 +T2+ T3

is bisymmetric since it is the restriction to Z of the bisymmetric polynomial function
Q:Q? - Q defined on the field Q of rationals by

3 1 1
Q(x1,x2,23) = 9111 (:1:2 + 3) 3

Since polynomial functions usually constitute the most basic functions, the prob-
lem of describing the class of bisymmetric polynomial functions is quite natural. On
this subject it is noteworthy that a description of the class of bisymmetric lattice
polynomial functions over bounded chains and more generally over distributive lat-
tices has been recently obtained [4,5] (there bisymmetry is called self-commutation),
where a lattice polynomial function is a function representable by combinations of
variables and constants using the fundamental lattice operations A and v.

From the Main Theorem we can derive the following test to determine whether a
non-univariate polynomial function P:R™ - R of degree p > 2 is bisymmetric. For
ke {p-1,p}, let Py be the homogenous polynomial function obtained from P by
considering the terms of degree k only. Then P is bisymmetric if and only if P, is a
monomial and P,(x) = P(x—-b1)+b, where1=(1,...,1) and b= P,_1(1)/(p P,(1)).

Note that the Main Theorem does not hold for an infinite integral domain R
of characteristic 7 > 0. As a counterexample, the bivariate polynomial function
P(x1,22) = 27 + 2} is bisymmetric.

In the next section we provide the proof of the Main Theorem, assuming first
that R is a field and then an integral domain.

2. TECHNICALITIES AND PROOF OF THE MAIN THEOREM

We observe that the definition of R enables us to identify the ring R[z1,. .., 2]
of polynomials of n indeterminates over R with the ring of polynomial functions of
n variables from R™ to R.

It is a straightforward exercise to show that the n-variable polynomial functions
given in the Main Theorem are bisymmetric. We now show that no other n-variable
polynomial function is bisymmetric. We first consider the special case when R is
a field. We then prove the Main Theorem in the general case (i.e., when R is an
integral domain of characteristic zero with identity).

Unless stated otherwise, we henceforth assume that R is a field of characteristic
zero. Let p e N and let P: R"™ — R be a polynomial function of degree p. Thus P
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can be written in the form
n
P(x)= ) cax®, withx®=]]af",
lox|<p i=1
where the sum is taken over all & € N such that |a| < p.

The following lemma, which makes use of formal derivatives of polynomial func-
tions, will be useful as we continue.

Lemma 2. For every polynomial function B:R" — R of degree p and every Xg,yo €
R"™, we have

YG (na
(1) B(xo+yo)= ), *O,(axB)(Xo),
leelgp =
where OF = 031+ 05 and ! = oyl ap!.
Proof. 1t is enough to prove the result for monomial functions since both sides of

(1) are additive on the function B. We then observe that for a monomial function
B(x) = c¢x? the identity (1) reduces to the multi-binomial theorem. O

As we will see, it is useful to decompose P into its homogeneous components,
that is, P = .7 _, Pr, where

is the unique homogeneous component of degree k of P. In this paper the homoge-
neous component of degree k of a polynomial function R will often be denoted by

[R]k-
Since P, # 0, the polynomial function ¢ = P — P,, that is
Q(x) = Z Ca X%,
|ex|<p

is of degree ¢ < p and its homogeneous component [(Q], of degree ¢ is P,.
We now assume that P is a bisymmetric polynomial function. This means that
the polynomial identity

(2) P(P(ry),...,P(r,)) - P(P(c1),...,P(c,)) =0

holds for every n x n matrix

11 0 Tin
(3) X=|: =~ 1 |eRl,
Tnl ° Tnn
where r; = (z1,...,%in) and ¢j = (215, ...,2,;) denote its ith row and jth column,

respectively. Since all the polynomial functions of degree < 1 are bisymmetric, we
may (and henceforth do) assume that p > 2.
From the decomposition P = P, + @ it follows that

P(P(ry),...,P(ry)) = By(P(r1),...,P(rn)) + Q(P(r1),...,P(ry)),

where Q(P(r1),...,P(r,)) is of degree pg.

To obtain necessary conditions for P to be bisymmetric, we will equate the
homogeneous components of the same degree > pgq of both sides of (2). By the
previous observation this amounts to considering the equation

4)  [Po(P(r1),..., P(rn)) = Py(P(c1),..., P(cn))], =0, for pg<d<p
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By applying (1) to the polynomial function P, and the n-tuples
X0 = (Pp(rl)v s ’Pp(rn)) and Yo = (Q(rl)v s aQ(rn))v

we obtain

Y6 sa
) P(P(e) - P(e) = 3 Y 0B, ()
leelsp =
and similarly for P,(P(c1),...,P(c,)). We then observe that in the sum of (5) the
term corresponding to a fixed « is either zero or of degree

qglal+(p-lal)p=p°-(p-q)|al
and its homogeneous component of highest degree is obtained by ignoring the com-
ponents of degrees < ¢ in @, that is, by replacing yo by (P,(r1),...,P,(ry)).

Using (4) with d = p?, which leads us to consider the terms in (5) for which
|| = 0, we obtain

(6) Py(Py(r1),..., Pp(rn)) = Pp(Pp(cr),..., Py(cy)) = 0.

Thus, we have proved the following claim.
Claim 3. The polynomial function P, is bisymmetric.
We now show that P, is a monomial function.

Proposition 4. Let H:R™ - R be a bisymmetric polynomial function of degree
p 2 2. If H is homogeneous, then it is a monomial function.

Proof. Consider a bisymmetric homogeneous polynomial H: R"™ — R of degree p > 2.
There is nothing to prove if H depends on one variable only. Otherwise, assume for
the sake of a contradiction that H is the sum of at least two monomials of degree
p, that is,
H(x)=ax*+bx” + > ey x7,
[vl=p

where ab # 0 and |af = |38 = p. Using the lexicographic order < over N, we can
assume that o > 3 > vv. Applying the bisymmetry property of H to the nxn matrix
whose (4, 7)-entry is z;y;, we obtain

H(x)"H(y") = H(y)" H(x"),

where xP = (2f,...,27). Regarding this equality as a polynomial identity in y and
then equating the coefficients of its monomial terms with exponent p a, we obtain
(7) H(x)?P = aP™t H(xP).

Since R is of characteristic zero, there is a nonzero monomial term with exponent
(p—1) o+ in the left-hand side of (7) while there is no such term in the right-hand
side since pa> (p-1)a+ B> p3 (since p > 2). Hence a contradiction. O

The next claim follows immediately from Proposition 4.
Claim 5. P, is a monomial function.

By Claim 5 we can (and henceforth do) assume that there exist ¢ € R ~ {0} and
v € N, with |v| = p, such that

(8) Py(x) =cx".
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A polynomial function F:R™ — R is said to depend on its ith variable x; (or x;
is essential in F) if 05, F # 0. The following claim shows that P, determines the
essential variables of P.

Claim 6. If P, does not depend on the variable x;, then P does not depend on x;.

Proof. Suppose that d,, P, =0 and fix i € {1,...,n}, i # j, such that 9, P, # 0. By
taking the derivative of both sides of (2) with respect to z;;, the (i,j)-entry of the
matrix X in (3), we obtain

(9) (aahp)(P(rl)v>P(rn))(8acjp)(rz) = (anP)(P(cl)v>P(Cn))(awbp)(cj)

Suppose for the sake of a contradiction that d,,P # 0. Thus, neither side of (9)
is the zero polynomial. Let R; be the homogeneous component of 9, P of highest
degree and denote its degree by 7. Since P, does not depend on z;, we must have
r < p—1. Then the homogeneous component of highest degree of the left-hand side
in (9) is given by
(0, Pp)(Bp(r1),..., Bp(rn)) R;(r;)

and is of degree p(p — 1) + r. But the right-hand side in (9) is of degree at most
rp+p-1=(r+1)(p-1)+r <p(p-1)+r, since r <p—-1 and p > 2. Hence a
contradiction. Therefore 81‘7.]3 =0. [l

We now give an explicit expression for P, = [P - P,], in terms of P,. We first
present an equation that is satisfied by FP,.

Claim 7. P, satisfies the equation
(10)

ipq(ri)(axipp)(Pp(rl)v s Pp(rn)) = qu(Ci)(axiPp)(Pp(cl)a o Bplen))

for every matriz X as defined in (3).

Proof. By (6) and (8) we see that the left-hand side of (4) for d = p? is zero.
Therefore, the highest degree terms in the sum of (5) are of degree p> - (p-q) > pq
(because (p—1)(p —¢q) > 0) and correspond to those a € N for which |a| = 1.
Collecting these terms and then considering only the homogeneous component of
highest degree (that is, replacing ) by P,), we see that the identity (4) for d =

p? - (p-q) is precisely (10). O
Claim 8. We have

(1) Px) = (”

Zn: ’y
e
i=1 %
Moreover, P, =0 if there exists j € {1, ...,n} such that 0 <v; <p-q.

Proof. Considering Eq. (10) for a matrix X such that r; = x for i = 1,...,n, we
obtain

cp Py(x) Py(x)P™! = P,(1) Zx?(@xiPp)(cx’f, coexb)).

Since 0y, Py(x) = 7; Pp(x)/x;, the previous equation becomes

(12) ep Py(x) By(x)"" = By(1) Py(x)? 3" L

p—q
=1 "4
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from which Eq. (11) follows. Now suppose that P, # 0 and let j € {1,...,n}.
Comparing the lowest degrees in x; of both sides of (12), we obtain

(p=1)7 < Py —P+q, #7#07
P s if ;= 0.

Therefore, we must have y; = 0 or v; > p—¢q, which ensures that the right-hand side
of (11) is a polynomial. O

If ¢: R = R is a bijection, we can associate with every function f:R" — R its
conjugate p(f):R"™ - R defined by

e(£) (@1, ) =9 (f(p(1),. .. 0(an))).

It is clear that f is bisymmetric if and only if so is ¢(f). We then have the following
fact.

Fact 9. The class of n-variable bisymmetric functions is stable under the action of
conjugation.

Since the Main Theorem involves polynomial functions over a ring, we will only
consider conjugations given by translations oy (x) =  + b.

We now show that it is always possible to conjugate P with an appropriate
translation ¢, to eliminate the terms of degree p — 1 of the resulting polynomial
function ¢y (P).

Claim 10. There exists b € R such that @u(P) has no term of degree p — 1.
Proof. It g<p-1, we take b=0. If ¢ =p -1, then using (1) with yo = b1, we get
[Sob(P)]p—l =1Ip-1 +b Z;amle .

On the other hand, by (11) we have

P,1(1) &
Py =0 S b
P p 1:21 P
It is then enough to choose b =—-P,_1(1)/(cp) and the result follows. O

We can now prove the Main Theorem for polynomial functions of degree < 2.

Proposition 11. The Main Theorem is true when R is a field of characteristic
zero and P is a polynomial function of degree < 2.

Proof. Let P be a bisymmetric polynomial function of degree p < 2. If p <1, then
P is in class (i7) of the Main Theorem. If p = 2, then by Claim 10 we see that P
is (up to conjugation) of the form P(x) = cox;x; + ¢o. If i = j, then by Claim 6
we see that P is a univariate polynomial function, which corresponds to the class
(i). If i # j, then by Claim 8 we have ¢y = 0 and hence P is a monomial (up to
conjugation). O

By Proposition 11 we can henceforth assume that p > 3. We also assume that
P is a bivariate polynomial function. The general case will be proved by induction
on the number of essential variables of P.

Proposition 12. The Main theorem is true when R is a field of characteristic zero
and P is a bivariate polynomial function.
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Proof. Let P be a bisymmetric bivariate polynomial function of degree p > 3. We
know that P, is of the form P,(x,y) = ca™y”. If v1 72 = 0, then by Claim 6 we
see that P is a univariate polynomial function, which corresponds to the class (7).

Conjugating P, if necessary, we may assume that P,_; = 0 (by Claim 10) and
it is then enough to prove that P = P, (i.e., P, =0). If 74 =1 or 72 = 1, then the
result follows immediately from Claim 8 since p — ¢ > 2. We may therefore assume
that v, > 2 and 72 > 2. We now prove that P = P, in three steps.

Step 1. P(x,y) is of degree <1 in z and of degree < 7 in y.

Proof. We prove by induction on r € {0,...,p -1} that P,_,.(z,y) is of degree <y,
in z and of degree < 5 in y. The result is true by our assumptions for r = 0
and r = 1 and is obvious for r = p. Considering Eq. (4) for d = p?> —r > pq, with
ri =rp = (z,y), we obtain

(13) [P(z,9) ]2y = [P(2,2)" P(y,y) "] e, -

Clearly, the right-hand side of (13) is a polynomial function of degree < pvy; in =
and < pys in y. Using the multinomial theorem, the left-hand side of (13) becomes

[P(2,9)" ]2, = [(épp—k(%y))p] T > (Z) Q}Pp_k(x,y)% 7

@Ay

where
P
Apm:{a:(ao,...,ap) eNPH Y kag =, |a|:p}~
k=0

Observing that for every av € A, we have oy, =0 for k> 7 and o, # 0 only if o, = 1
and o = p— 1, we can rewrite (13) as

PR P ) = [P P e 3 (2) T Brste™

acAp
ap==ap=0

By induction hypothesis, the right-hand side is of degree < p-y; in = and of degree
<p72 in y. The result then follows by analyzing the highest degree terms in = and
y of the left-hand side. O

Step 2. P(z,y) factorizes into a product P(z,y) = U(z) V (y).
Proof. By Step 1, we can write

Y1

P(z,y) = Y 2" Vily),

k=0
where Vj, is of degree < 2 and V4, (y) = Z;EO Crypej ¥’y With cg = ¢ # 0 and ¢1 = 0
(since Pp_1 =0). Equating the terms of degree 7% in z in the identity

P(P(z,t), P(z,y)) = P(P(z,2), P(t,y))

we obtain

Vo () Vo, (P(,y)) = Vo, (1) Vo, (P(2y)).
Equating now the terms of degree v, in t in the latter identity, we obtain

(14) MV (P(2,y)) = e Vo, (2) Vo, ()72

We now show by induction on r € {0,...,v;} that every polynomial function V,,_,
is a multiple of V., (the case r =0 is trivial), which is enough to prove the result.
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To do so, we equate the terms of degree v172 —r in 2 in (14) (by using the explicit
form of V,, in the left-hand side). Note that terms with such a degree in = can
appear in the expansion of V., (P(z,y)) only when P(x,y) is raised to the highest
power 2 (taking into account the condition ¢; = 0 when r = 7). Thus, we obtain

Y1 72
it [( Z x'yl_k Vm—k(y)) ] =c [V’h (37)71]“/172—”/71 (y)"/z )
k=0 Y1Y2—T

(here the notation [-],,,,-r concerns only the degree in x). By computing the left-
hand side (using the multinomial theorem as in the proof of Step 1) and using the
induction on r, we finally obtain an identity of the form

aVi, ()" V. (y) = d' Vo, ()2, a,a’ €R, a0,

from which the result immediately follows. (I
Step 3. U and V are monomial functions.
Proof. Using (14) with P(z,y) =U(x) V(y) and V,, =V, we obtain

2 i
(15) Y e (U(@) V(Y)Y =V (2)" V().

=0
Equating the terms of degree 73 in % in (15), we obtain
(16) e+l U(z)™ = cetl V(x)".
Therefore, (15) becomes

y2-1

Z% ey (U(2) V() =0,

which obviously implies ¢, =0 for k=1,...,72, which in turn implies V (x) = cx72.
Finally, from (16) we obtain U(z) = 2. O
Steps 2 and 3 together show that P = P,, which establishes the proposition. O

Recall that the action of the symmetric group &,, on functions from R™ to R is
defined by

O.(f)(xla"'a‘rn):f(xo'(l)a"'vxa(n))a U€6n.

It is clear that f is bisymmetric if and only if so is o(f). We then have the following
fact.

Fact 13. The class of n-variable bisymmetric functions is stable under the action
of the symmetric group &,,.

Consider also the following action of identification of variables. For f:R™ - R
and i < j € [n] we define the function I, ; f:R"™* - R as
(Ii7jf)($1, tee ,.’L'n_l) = f(xh sy Lj—15T4, Ly - - -75571—1)'

This action amounts to considering the restriction of f to the “subspace of equation
»

x; =x;” and then relabeling the variables. By Fact 13 it is enough to consider the
identification of the first and second variables, that is,

(Li2f) (@1, s wpa1) = f(T1, 21,22, Tpoy).

Proposition 14. The class of n-variable bisymmetric functions is stable under
identification of variables.
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Proof. To see that I o f is bisymmetric, it is enough to apply the bisymmetry of f
to the n x n matrix

x1,1 x1,1 T1,n-1
Z1,1 x1,1 T1,n-1
Tp-1,1 Tp-1,1 *°° Tp-1n-1

To see that I; ; f is bisymmetric, we can similarly consider the matrix whose rows
i and j are identical and the same for the columns (or use Fact 13). 0

‘We now prove the Main Theorem by using both a simple induction on the number
of essential variables of P and the action of identification of variables.

Proof of the Main Theorem when R is a field. We proceed by induction on the num-
ber of essential variables of P. By Proposition 12 the result holds when P depends
on 1 or 2 variables only. Let us assume that the result also holds when P depends
on n—1 variables (n—1 > 2) and let us prove that it still holds when P depends on
n variables. By Proposition 11 we may assume that P is of degree p > 3. We know
that P,(x) = ¢x”, where ¢ # 0 and 7; > 0 for i = 1,...,n (cf. Claim 6). Up to a
conjugation we may assume that P,_; =0 (cf. Claim 10). Therefore, we only need
to prove that P = P,. Suppose on the contrary that P — P, has a polynomial func-
tion P, # 0 as the homogeneous component of highest degree. Then the polynomial
function I o P has n—1 essential variables, is bisymmetric (by Proposition 14), has
I 2 P, as the homogeneous component of highest degree (of degree p > 3), and has
no component of degree p—1. By induction hypothesis, I; o P is in class (ii¢) of the
Main Theorem with b =0 (since it has no term of degree p—1) and hence it should
be a monomial function. However, the polynomial function [I; 2 P], = I1 2 P, is not
zero by (11), hence a contradiction. O

Proof of the Main Theorem when R is an integral domain. Using the identification
of polynomials and polynomial functions, we can extend every bisymmetric poly-
nomial function over an integral domain R with identity to a polynomial function
on Frac(R). The latter function is still bisymmetric since the bisymmetry prop-
erty for polynomial functions is defined by a set of polynomial equations on the
coeflicients of the polynomial functions. Therefore, every bisymmetric polynomial
function over R is the restriction to R of a bisymmetric polynomial function over
Frac(R). We then conclude by using the Main Theorem for such functions. O
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