A CLASSIFICATION OF BISYMMETRIC POLYNOMIAL FUNCTIONS OVER INTEGRAL DOMAINS OF CHARACTERISTIC ZERO

JEAN-LUC MARICHAL AND PIERRE MATHONET

Abstract

We describe the class of n-variable polynomial functions that satisfy Aczél's bisymmetry property over an arbitrary integral domain of characteristic zero with identity.

1. Introduction

Let \mathcal{R} be an integral domain of characteristic zero (hence \mathcal{R} is infinite) with identity and let $n \geqslant 1$ be an integer. In this paper we provide a complete description of all the n-variable polynomial functions over \mathcal{R} that satisfy the (Aczél) bisymmetry property. Recall that a function $f: \mathcal{R}^{n} \rightarrow \mathcal{R}$ is bisymmetric if the n^{2}-variable mapping

$$
\left(x_{11}, \ldots, x_{1 n} ; \ldots ; x_{n 1}, \ldots, x_{n n}\right) \mapsto f\left(f\left(x_{11}, \ldots, x_{1 n}\right), \ldots, f\left(x_{n 1}, \ldots, x_{n n}\right)\right)
$$

does not change if we replace every $x_{i j}$ by $x_{j i}$.
The bisymmetry property for n-variable real functions goes back to Aczél [1, 2]. It has been investigated since then in the theory of functional equations by several authors, especially in characterizations of mean functions and some of their extensions (see, e.g., $[3,5-7]$). This property is also studied in algebra where it is called mediality. For instance, an algebra (A, f) where f is a bisymmetric binary operation is called a medial groupoid (see, e.g., $[8,9,11]$).

We now state our main result, which provides a description of the possible bisymmetric polynomial functions from \mathcal{R}^{n} to \mathcal{R}. Let $\operatorname{Frac}(\mathcal{R})$ denote the fraction field of \mathcal{R} and let \mathbb{N} be the set of nonnegative integers. For any n-tuple $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$, we set $|\mathbf{x}|=\sum_{i=1}^{n} x_{i}$.

Main Theorem. A polynomial function $P: \mathcal{R}^{n} \rightarrow \mathcal{R}$ is bisymmetric if and only if it is
(i) univariate, or
(ii) of degree $\leqslant 1$, that is, of the form

$$
P(\mathbf{x})=a_{0}+\sum_{i=1}^{n} a_{i} x_{i}
$$

where $a_{i} \in \mathcal{R}$ for $i=0, \ldots, n$, or
(iii) of the form

$$
P(\mathbf{x})=a \prod_{i=1}^{n}\left(x_{i}+b\right)^{\alpha_{i}}-b
$$

where $a \in \mathcal{R}, b \in \operatorname{Frac}(\mathcal{R})$, and $\boldsymbol{\alpha} \in \mathbb{N}^{n}$ satisfy $a b^{k} \in \mathcal{R}$ for $k=1, \ldots,|\boldsymbol{\alpha}|-1$ and $a b^{|\boldsymbol{\alpha}|}-b \in \mathcal{R}$.

The following example, borrowed from [10], gives a polynomial function of class (iii) for which $b \notin \mathcal{R}$.

Example 1. The third-degree polynomial function $P: \mathbb{Z}^{3} \rightarrow \mathbb{Z}$ defined on the ring \mathbb{Z} of integers by

$$
P\left(x_{1}, x_{2}, x_{3}\right)=9 x_{1} x_{2} x_{3}+3\left(x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}\right)+x_{1}+x_{2}+x_{3}
$$

is bisymmetric since it is the restriction to \mathbb{Z} of the bisymmetric polynomial function $Q: \mathbb{Q}^{3} \rightarrow \mathbb{Q}$ defined on the field \mathbb{Q} of rationals by

$$
Q\left(x_{1}, x_{2}, x_{3}\right)=9 \prod_{i=1}^{3}\left(x_{i}+\frac{1}{3}\right)-\frac{1}{3} .
$$

Since polynomial functions usually constitute the most basic functions, the problem of describing the class of bisymmetric polynomial functions is quite natural. On this subject it is noteworthy that a description of the class of bisymmetric lattice polynomial functions over bounded chains and more generally over distributive lattices has been recently obtained $[4,5]$ (there bisymmetry is called self-commutation), where a lattice polynomial function is a function representable by combinations of variables and constants using the fundamental lattice operations \wedge and \vee.

From the Main Theorem we can derive the following test to determine whether a non-univariate polynomial function $P: \mathcal{R}^{n} \rightarrow \mathcal{R}$ of degree $p \geqslant 2$ is bisymmetric. For $k \in\{p-1, p\}$, let P_{k} be the homogenous polynomial function obtained from P by considering the terms of degree k only. Then P is bisymmetric if and only if P_{p} is a monomial and $P_{p}(\mathbf{x})=P(\mathbf{x}-b \mathbf{1})+b$, where $\mathbf{1}=(1, \ldots, 1)$ and $b=P_{p-1}(\mathbf{1}) /\left(p P_{p}(\mathbf{1})\right)$.

Note that the Main Theorem does not hold for an infinite integral domain \mathcal{R} of characteristic $r>0$. As a counterexample, the bivariate polynomial function $P\left(x_{1}, x_{2}\right)=x_{1}^{r}+x_{2}^{r}$ is bisymmetric.

In the next section we provide the proof of the Main Theorem, assuming first that \mathcal{R} is a field and then an integral domain.

2. Technicalities and proof of the Main Theorem

We observe that the definition of \mathcal{R} enables us to identify the $\operatorname{ring} \mathcal{R}\left[x_{1}, \ldots, x_{n}\right]$ of polynomials of n indeterminates over \mathcal{R} with the ring of polynomial functions of n variables from \mathcal{R}^{n} to \mathcal{R}.

It is a straightforward exercise to show that the n-variable polynomial functions given in the Main Theorem are bisymmetric. We now show that no other n-variable polynomial function is bisymmetric. We first consider the special case when \mathcal{R} is a field. We then prove the Main Theorem in the general case (i.e., when \mathcal{R} is an integral domain of characteristic zero with identity).

Unless stated otherwise, we henceforth assume that \mathcal{R} is a field of characteristic zero. Let $p \in \mathbb{N}$ and let $P: \mathcal{R}^{n} \rightarrow \mathcal{R}$ be a polynomial function of degree p. Thus P
can be written in the form

$$
P(\mathbf{x})=\sum_{|\boldsymbol{\alpha}| \leqslant p} c_{\boldsymbol{\alpha}} \mathbf{x}^{\boldsymbol{\alpha}}, \quad \text { with } \mathbf{x}^{\boldsymbol{\alpha}}=\prod_{i=1}^{n} x_{i}^{\alpha_{i}}
$$

where the sum is taken over all $\boldsymbol{\alpha} \in \mathbb{N}^{n}$ such that $|\boldsymbol{\alpha}| \leqslant p$.
The following lemma, which makes use of formal derivatives of polynomial functions, will be useful as we continue.

Lemma 2. For every polynomial function $B: \mathcal{R}^{n} \rightarrow \mathcal{R}$ of degree p and every $\mathbf{x}_{0}, \mathbf{y}_{0} \in$ \mathcal{R}^{n}, we have

$$
\begin{equation*}
B\left(\mathbf{x}_{0}+\mathbf{y}_{0}\right)=\sum_{|\boldsymbol{\alpha}| \leqslant p} \frac{\mathbf{y}_{0}^{\boldsymbol{\alpha}}}{\boldsymbol{\alpha}!}\left(\partial_{\mathbf{x}}^{\boldsymbol{\alpha}} B\right)\left(\mathbf{x}_{0}\right) \tag{1}
\end{equation*}
$$

where $\partial_{\mathbf{x}}^{\boldsymbol{\alpha}}=\partial_{x_{1}}^{\alpha_{1}} \cdots \partial_{x_{n}}^{\alpha_{n}}$ and $\boldsymbol{\alpha}!=\alpha_{1}!\cdots \alpha_{n}!$.
Proof. It is enough to prove the result for monomial functions since both sides of (1) are additive on the function B. We then observe that for a monomial function $B(\mathbf{x})=c \mathbf{x}^{\boldsymbol{\beta}}$ the identity (1) reduces to the multi-binomial theorem.

As we will see, it is useful to decompose P into its homogeneous components, that is, $P=\sum_{k=0}^{p} P_{k}$, where

$$
P_{k}(\mathbf{x})=\sum_{|\boldsymbol{\alpha}|=k} c_{\boldsymbol{\alpha}} \mathbf{x}^{\boldsymbol{\alpha}}
$$

is the unique homogeneous component of degree k of P. In this paper the homogeneous component of degree k of a polynomial function R will often be denoted by $[R]_{k}$.

Since $P_{p} \neq 0$, the polynomial function $Q=P-P_{p}$, that is

$$
Q(\mathbf{x})=\sum_{|\boldsymbol{\alpha}|<p} c_{\boldsymbol{\alpha}} \mathbf{x}^{\boldsymbol{\alpha}},
$$

is of degree $q<p$ and its homogeneous component $[Q]_{q}$ of degree q is P_{q}.
We now assume that P is a bisymmetric polynomial function. This means that the polynomial identity

$$
\begin{equation*}
P\left(P\left(\mathbf{r}_{1}\right), \ldots, P\left(\mathbf{r}_{n}\right)\right)-P\left(P\left(\mathbf{c}_{1}\right), \ldots, P\left(\mathbf{c}_{n}\right)\right)=0 \tag{2}
\end{equation*}
$$

holds for every $n \times n$ matrix

$$
X=\left(\begin{array}{ccc}
x_{11} & \cdots & x_{1 n} \tag{3}\\
\vdots & \ddots & \vdots \\
x_{n 1} & \cdots & x_{n n}
\end{array}\right) \in \mathcal{R}_{n}^{n}
$$

where $\mathbf{r}_{i}=\left(x_{i 1}, \ldots, x_{i n}\right)$ and $\mathbf{c}_{j}=\left(x_{1 j}, \ldots, x_{n j}\right)$ denote its i th row and j th column, respectively. Since all the polynomial functions of degree $\leqslant 1$ are bisymmetric, we may (and henceforth do) assume that $p \geqslant 2$.

From the decomposition $P=P_{p}+Q$ it follows that

$$
P\left(P\left(\mathbf{r}_{1}\right), \ldots, P\left(\mathbf{r}_{n}\right)\right)=P_{p}\left(P\left(\mathbf{r}_{1}\right), \ldots, P\left(\mathbf{r}_{n}\right)\right)+Q\left(P\left(\mathbf{r}_{1}\right), \ldots, P\left(\mathbf{r}_{n}\right)\right)
$$

where $Q\left(P\left(\mathbf{r}_{1}\right), \ldots, P\left(\mathbf{r}_{n}\right)\right)$ is of degree $p q$.
To obtain necessary conditions for P to be bisymmetric, we will equate the homogeneous components of the same degree $>p q$ of both sides of (2). By the previous observation this amounts to considering the equation

$$
\begin{equation*}
\left[P_{p}\left(P\left(\mathbf{r}_{1}\right), \ldots, P\left(\mathbf{r}_{n}\right)\right)-P_{p}\left(P\left(\mathbf{c}_{1}\right), \ldots, P\left(\mathbf{c}_{n}\right)\right)\right]_{d}=0, \quad \text { for } p q<d \leqslant p^{2} \tag{4}
\end{equation*}
$$

By applying (1) to the polynomial function P_{p} and the n-tuples

$$
\mathbf{x}_{0}=\left(P_{p}\left(\mathbf{r}_{1}\right), \ldots, P_{p}\left(\mathbf{r}_{n}\right)\right) \quad \text { and } \quad \mathbf{y}_{0}=\left(Q\left(\mathbf{r}_{1}\right), \ldots, Q\left(\mathbf{r}_{n}\right)\right),
$$

we obtain

$$
\begin{equation*}
P_{p}\left(P\left(\mathbf{r}_{1}\right), \ldots, P\left(\mathbf{r}_{n}\right)\right)=\sum_{|\alpha| \leqslant p} \frac{\mathbf{y}_{0}^{\boldsymbol{\alpha}}}{\boldsymbol{\alpha}!} \partial_{\mathbf{x}}^{\boldsymbol{\alpha}} P_{p}\left(\mathbf{x}_{0}\right) \tag{5}
\end{equation*}
$$

and similarly for $P_{p}\left(P\left(\mathbf{c}_{1}\right), \ldots, P\left(\mathbf{c}_{n}\right)\right)$. We then observe that in the sum of (5) the term corresponding to a fixed $\boldsymbol{\alpha}$ is either zero or of degree

$$
q|\boldsymbol{\alpha}|+(p-|\boldsymbol{\alpha}|) p=p^{2}-(p-q)|\boldsymbol{\alpha}|
$$

and its homogeneous component of highest degree is obtained by ignoring the components of degrees $<q$ in Q, that is, by replacing \mathbf{y}_{0} by $\left(P_{q}\left(\mathbf{r}_{1}\right), \ldots, P_{q}\left(\mathbf{r}_{n}\right)\right)$.

Using (4) with $d=p^{2}$, which leads us to consider the terms in (5) for which $|\boldsymbol{\alpha}|=0$, we obtain

$$
\begin{equation*}
P_{p}\left(P_{p}\left(\mathbf{r}_{1}\right), \ldots, P_{p}\left(\mathbf{r}_{n}\right)\right)-P_{p}\left(P_{p}\left(\mathbf{c}_{1}\right), \ldots, P_{p}\left(\mathbf{c}_{n}\right)\right)=0 . \tag{6}
\end{equation*}
$$

Thus, we have proved the following claim.
Claim 3. The polynomial function P_{p} is bisymmetric.
We now show that P_{p} is a monomial function.
Proposition 4. Let $H: \mathcal{R}^{n} \rightarrow \mathcal{R}$ be a bisymmetric polynomial function of degree $p \geqslant 2$. If H is homogeneous, then it is a monomial function.

Proof. Consider a bisymmetric homogeneous polynomial $H: \mathcal{R}^{n} \rightarrow \mathcal{R}$ of degree $p \geqslant 2$. There is nothing to prove if H depends on one variable only. Otherwise, assume for the sake of a contradiction that H is the sum of at least two monomials of degree p, that is,

$$
H(\mathbf{x})=a \mathbf{x}^{\boldsymbol{\alpha}}+b \mathbf{x}^{\boldsymbol{\beta}}+\sum_{|\boldsymbol{\gamma}|=p} c_{\boldsymbol{\gamma}} \mathbf{x}^{\boldsymbol{\gamma}}
$$

where $a b \neq 0$ and $|\boldsymbol{\alpha}|=|\boldsymbol{\beta}|=p$. Using the lexicographic order \leqslant over \mathbb{N}^{n}, we can assume that $\boldsymbol{\alpha}>\boldsymbol{\beta}>\boldsymbol{\gamma}$. Applying the bisymmetry property of H to the $n \times n$ matrix whose (i, j)-entry is $x_{i} y_{j}$, we obtain

$$
H(\mathbf{x})^{p} H\left(\mathbf{y}^{p}\right)=H(\mathbf{y})^{p} H\left(\mathbf{x}^{p}\right)
$$

where $\mathbf{x}^{p}=\left(x_{1}^{p}, \ldots, x_{n}^{p}\right)$. Regarding this equality as a polynomial identity in \mathbf{y} and then equating the coefficients of its monomial terms with exponent $p \boldsymbol{\alpha}$, we obtain

$$
\begin{equation*}
H(\mathbf{x})^{p}=a^{p-1} H\left(\mathbf{x}^{p}\right) . \tag{7}
\end{equation*}
$$

Since \mathcal{R} is of characteristic zero, there is a nonzero monomial term with exponent $(p-1) \boldsymbol{\alpha}+\boldsymbol{\beta}$ in the left-hand side of (7) while there is no such term in the right-hand side since $p \boldsymbol{\alpha}>(p-1) \boldsymbol{\alpha}+\boldsymbol{\beta}>p \boldsymbol{\beta}$ (since $p \geqslant 2$). Hence a contradiction.

The next claim follows immediately from Proposition 4.
Claim 5. P_{p} is a monomial function.
By Claim 5 we can (and henceforth do) assume that there exist $c \in \mathcal{R} \backslash\{0\}$ and $\gamma \in \mathbb{N}^{n}$, with $|\gamma|=p$, such that

$$
\begin{equation*}
P_{p}(\mathbf{x})=c \mathbf{x}^{\gamma} . \tag{8}
\end{equation*}
$$

A polynomial function $F: \mathcal{R}^{n} \rightarrow \mathcal{R}$ is said to depend on its i th variable x_{i} (or x_{i} is essential in F) if $\partial_{x_{i}} F \neq 0$. The following claim shows that P_{p} determines the essential variables of P.

Claim 6. If P_{p} does not depend on the variable x_{j}, then P does not depend on x_{j}.
Proof. Suppose that $\partial_{x_{j}} P_{p}=0$ and fix $i \in\{1, \ldots, n\}, i \neq j$, such that $\partial_{x_{i}} P_{p} \neq 0$. By taking the derivative of both sides of (2) with respect to $x_{i j}$, the (i, j)-entry of the matrix X in (3), we obtain
(9) $\left(\partial_{x_{i}} P\right)\left(P\left(\mathbf{r}_{1}\right), \ldots, P\left(\mathbf{r}_{n}\right)\right)\left(\partial_{x_{j}} P\right)\left(\mathbf{r}_{i}\right)=\left(\partial_{x_{j}} P\right)\left(P\left(\mathbf{c}_{1}\right), \ldots, P\left(\mathbf{c}_{n}\right)\right)\left(\partial_{x_{i}} P\right)\left(\mathbf{c}_{j}\right)$.

Suppose for the sake of a contradiction that $\partial_{x_{j}} P \neq 0$. Thus, neither side of (9) is the zero polynomial. Let R_{j} be the homogeneous component of $\partial_{x_{j}} P$ of highest degree and denote its degree by r. Since P_{p} does not depend on x_{j}, we must have $r<p-1$. Then the homogeneous component of highest degree of the left-hand side in (9) is given by

$$
\left(\partial_{x_{i}} P_{p}\right)\left(P_{p}\left(\mathbf{r}_{1}\right), \ldots, P_{p}\left(\mathbf{r}_{n}\right)\right) R_{j}\left(\mathbf{r}_{i}\right)
$$

and is of degree $p(p-1)+r$. But the right-hand side in (9) is of degree at most $r p+p-1=(r+1)(p-1)+r<p(p-1)+r$, since $r<p-1$ and $p \geqslant 2$. Hence a contradiction. Therefore $\partial_{x_{j}} P=0$.

We now give an explicit expression for $P_{q}=\left[P-P_{p}\right]_{q}$ in terms of P_{p}. We first present an equation that is satisfied by P_{q}.

Claim 7. P_{q} satisfies the equation

$$
\begin{equation*}
\sum_{i=1}^{n} P_{q}\left(\mathbf{r}_{i}\right)\left(\partial_{x_{i}} P_{p}\right)\left(P_{p}\left(\mathbf{r}_{1}\right), \ldots, P_{p}\left(\mathbf{r}_{n}\right)\right)=\sum_{i=1}^{n} P_{q}\left(\mathbf{c}_{i}\right)\left(\partial_{x_{i}} P_{p}\right)\left(P_{p}\left(\mathbf{c}_{1}\right), \ldots, P_{p}\left(\mathbf{c}_{n}\right)\right) \tag{10}
\end{equation*}
$$

for every matrix X as defined in (3).
Proof. By (6) and (8) we see that the left-hand side of (4) for $d=p^{2}$ is zero. Therefore, the highest degree terms in the sum of (5) are of degree $p^{2}-(p-q)>p q$ (because $(p-1)(p-q)>0)$ and correspond to those $\boldsymbol{\alpha} \in \mathbb{N}^{n}$ for which $|\boldsymbol{\alpha}|=1$. Collecting these terms and then considering only the homogeneous component of highest degree (that is, replacing Q by P_{q}), we see that the identity (4) for $d=$ $p^{2}-(p-q)$ is precisely (10).

Claim 8. We have

$$
\begin{equation*}
P_{q}(\mathrm{x})=\frac{P_{q}(\mathbf{1})}{c p} P_{p}(\mathrm{x}) \sum_{j=1}^{n} \frac{\gamma_{j}}{x_{j}^{p-q}} . \tag{11}
\end{equation*}
$$

Moreover, $P_{q}=0$ if there exists $j \in\{1, \ldots, n\}$ such that $0<\gamma_{j}<p-q$.
Proof. Considering Eq. (10) for a matrix X such that $\mathbf{r}_{i}=\mathbf{x}$ for $i=1, \ldots, n$, we obtain

$$
c p P_{q}(\mathbf{x}) P_{p}(\mathbf{x})^{p-1}=P_{q}(\mathbf{1}) \sum_{i=1}^{n} x_{i}^{q}\left(\partial_{x_{i}} P_{p}\right)\left(c x_{1}^{p}, \ldots, c x_{n}^{p}\right)
$$

Since $\partial_{x_{i}} P_{p}(\mathbf{x})=\gamma_{i} P_{p}(\mathbf{x}) / x_{i}$, the previous equation becomes

$$
\begin{equation*}
c p P_{q}(\mathbf{x}) P_{p}(\mathbf{x})^{p-1}=P_{q}(\mathbf{1}) P_{p}(\mathbf{x})^{p} \sum_{i=1}^{n} \frac{\gamma_{i}}{x_{i}^{p-q}} \tag{12}
\end{equation*}
$$

from which Eq. (11) follows. Now suppose that $P_{q} \neq 0$ and let $j \in\{1, \ldots, n\}$. Comparing the lowest degrees in x_{j} of both sides of (12), we obtain

$$
(p-1) \gamma_{j} \leqslant \begin{cases}p \gamma_{j}-p+q, & \text { if } \gamma_{j} \neq 0 \\ p \gamma_{j}, & \text { if } \gamma_{j}=0\end{cases}
$$

Therefore, we must have $\gamma_{j}=0$ or $\gamma_{j} \geqslant p-q$, which ensures that the right-hand side of (11) is a polynomial.

If $\varphi: \mathcal{R} \rightarrow \mathcal{R}$ is a bijection, we can associate with every function $f: \mathcal{R}^{n} \rightarrow \mathcal{R}$ its conjugate $\varphi(f): \mathcal{R}^{n} \rightarrow \mathcal{R}$ defined by

$$
\varphi(f)\left(x_{1}, \ldots, x_{n}\right)=\varphi^{-1}\left(f\left(\varphi\left(x_{1}\right), \ldots, \varphi\left(x_{n}\right)\right)\right)
$$

It is clear that f is bisymmetric if and only if so is $\varphi(f)$. We then have the following fact.

Fact 9. The class of n-variable bisymmetric functions is stable under the action of conjugation.

Since the Main Theorem involves polynomial functions over a ring, we will only consider conjugations given by translations $\varphi_{b}(x)=x+b$.

We now show that it is always possible to conjugate P with an appropriate translation φ_{b} to eliminate the terms of degree $p-1$ of the resulting polynomial function $\varphi_{b}(P)$.

Claim 10. There exists $b \in R$ such that $\varphi_{b}(P)$ has no term of degree $p-1$.
Proof. If $q<p-1$, we take $b=0$. If $q=p-1$, then using (1) with $\mathbf{y}_{0}=b \mathbf{1}$, we get

$$
\left[\varphi_{b}(P)\right]_{p-1}=P_{p-1}+b \sum_{i=1}^{n} \partial_{x_{i}} P_{p}
$$

On the other hand, by (11) we have

$$
P_{p-1}=\frac{P_{p-1}(\mathbf{1})}{c p} \sum_{i=1}^{n} \partial_{x_{i}} P_{p} .
$$

It is then enough to choose $b=-P_{p-1}(\mathbf{1}) /(c p)$ and the result follows.
We can now prove the Main Theorem for polynomial functions of degree $\leqslant 2$.
Proposition 11. The Main Theorem is true when \mathcal{R} is a field of characteristic zero and P is a polynomial function of degree $\leqslant 2$.
Proof. Let P be a bisymmetric polynomial function of degree $p \leqslant 2$. If $p \leqslant 1$, then P is in class (ii) of the Main Theorem. If $p=2$, then by Claim 10 we see that P is (up to conjugation) of the form $P(\mathbf{x})=c_{2} x_{i} x_{j}+c_{0}$. If $i=j$, then by Claim 6 we see that P is a univariate polynomial function, which corresponds to the class (i). If $i \neq j$, then by Claim 8 we have $c_{0}=0$ and hence P is a monomial (up to conjugation).

By Proposition 11 we can henceforth assume that $p \geqslant 3$. We also assume that P is a bivariate polynomial function. The general case will be proved by induction on the number of essential variables of P.
Proposition 12. The Main theorem is true when \mathcal{R} is a field of characteristic zero and P is a bivariate polynomial function.

Proof. Let P be a bisymmetric bivariate polynomial function of degree $p \geqslant 3$. We know that P_{p} is of the form $P_{p}(x, y)=c x^{\gamma_{1}} y^{\gamma_{2}}$. If $\gamma_{1} \gamma_{2}=0$, then by Claim 6 we see that P is a univariate polynomial function, which corresponds to the class (i).

Conjugating P, if necessary, we may assume that $P_{p-1}=0$ (by Claim 10) and it is then enough to prove that $P=P_{p}$ (i.e., $P_{q}=0$). If $\gamma_{1}=1$ or $\gamma_{2}=1$, then the result follows immediately from Claim 8 since $p-q \geqslant 2$. We may therefore assume that $\gamma_{1} \geqslant 2$ and $\gamma_{2} \geqslant 2$. We now prove that $P=P_{p}$ in three steps.
Step 1. $P(x, y)$ is of degree $\leqslant \gamma_{1}$ in x and of degree $\leqslant \gamma_{2}$ in y.
Proof. We prove by induction on $r \in\{0, \ldots, p-1\}$ that $P_{p-r}(x, y)$ is of degree $\leqslant \gamma_{1}$ in x and of degree $\leqslant \gamma_{2}$ in y. The result is true by our assumptions for $r=0$ and $r=1$ and is obvious for $r=p$. Considering Eq. (4) for $d=p^{2}-r>p q$, with $\mathbf{r}_{1}=\mathbf{r}_{\mathbf{2}}=(x, y)$, we obtain

$$
\begin{equation*}
\left[P(x, y)^{p}\right]_{p^{2}-r}=\left[P(x, x)^{\gamma_{1}} P(y, y)^{\gamma_{2}}\right]_{p^{2}-r} . \tag{13}
\end{equation*}
$$

Clearly, the right-hand side of (13) is a polynomial function of degree $\leqslant p \gamma_{1}$ in x and $\leqslant p \gamma_{2}$ in y. Using the multinomial theorem, the left-hand side of (13) becomes

$$
\left[P(x, y)^{p}\right]_{p^{2}-r}=\left[\left(\sum_{k=0}^{p} P_{p-k}(x, y)\right)^{p}\right]_{p^{2}-r}=\sum_{\alpha \in A_{p, r}}\binom{p}{\boldsymbol{\alpha}} \prod_{k=0}^{p} P_{p-k}(x, y)^{\alpha_{k}}
$$

where

$$
A_{p, r}=\left\{\boldsymbol{\alpha}=\left(\alpha_{0}, \ldots, \alpha_{p}\right) \in \mathbb{N}^{p+1}: \sum_{k=0}^{p} k \alpha_{k}=r,|\boldsymbol{\alpha}|=p\right\} .
$$

Observing that for every $\boldsymbol{\alpha} \in A_{p, r}$ we have $\alpha_{k}=0$ for $k>r$ and $\alpha_{r} \neq 0$ only if $\alpha_{r}=1$ and $\alpha_{0}=p-1$, we can rewrite (13) as
$p P_{p}(x, y)^{p-1} P_{p-r}(x, y)=\left[P(x, x)^{\gamma_{1}} P(y, y)^{\gamma_{2}}\right]_{p^{2}-r}-\sum_{\substack{\alpha \in A_{p, r} \\ \alpha_{r}=\cdots=\alpha_{p}=0}}\binom{p}{\boldsymbol{\alpha}} \prod_{k=0}^{r-1} P_{p-k}(x, y)^{\alpha_{k}}$.
By induction hypothesis, the right-hand side is of degree $\leqslant p \gamma_{1}$ in x and of degree $\leqslant p \gamma_{2}$ in y. The result then follows by analyzing the highest degree terms in x and y of the left-hand side.

Step 2. $P(x, y)$ factorizes into a product $P(x, y)=U(x) V(y)$.
Proof. By Step 1, we can write

$$
P(x, y)=\sum_{k=0}^{\gamma_{1}} x^{k} V_{k}(y)
$$

where V_{k} is of degree $\leqslant \gamma_{2}$ and $V_{\gamma_{1}}(y)=\sum_{j=0}^{\gamma_{2}} c_{\gamma_{2}-j} y^{j}$, with $c_{0}=c \neq 0$ and $c_{1}=0$ (since $P_{p-1}=0$). Equating the terms of degree γ_{1}^{2} in z in the identity

$$
P(P(z, t), P(x, y))=P(P(z, x), P(t, y))
$$

we obtain

$$
V_{\gamma_{1}}(t)^{\gamma_{1}} V_{\gamma_{1}}(P(x, y))=V_{\gamma_{1}}(x)^{\gamma_{1}} V_{\gamma_{1}}(P(t, y))
$$

Equating now the terms of degree $\gamma_{1} \gamma_{2}$ in t in the latter identity, we obtain

$$
\begin{equation*}
c^{\gamma_{1}} V_{\gamma_{1}}(P(x, y))=c V_{\gamma_{1}}(x)^{\gamma_{1}} V_{\gamma_{1}}(y)^{\gamma_{2}} . \tag{14}
\end{equation*}
$$

We now show by induction on $r \in\left\{0, \ldots, \gamma_{1}\right\}$ that every polynomial function $V_{\gamma_{1}-r}$ is a multiple of $V_{\gamma_{1}}$ (the case $r=0$ is trivial), which is enough to prove the result.

To do so, we equate the terms of degree $\gamma_{1} \gamma_{2}-r$ in x in (14) (by using the explicit form of $V_{\gamma_{1}}$ in the left-hand side). Note that terms with such a degree in x can appear in the expansion of $V_{\gamma_{1}}(P(x, y))$ only when $P(x, y)$ is raised to the highest power γ_{2} (taking into account the condition $c_{1}=0$ when $r=\gamma_{1}$). Thus, we obtain

$$
c^{\gamma_{1}+1}\left[\left(\sum_{k=0}^{\gamma_{1}} x^{\gamma_{1}-k} V_{\gamma_{1}-k}(y)\right)^{\gamma_{2}}\right]_{\gamma_{1} \gamma_{2}-r}=c\left[V_{\gamma_{1}}(x)^{\gamma_{1}}\right]_{\gamma_{1} \gamma_{2}-r} V_{\gamma_{1}}(y)^{\gamma_{2}},
$$

(here the notation $[\cdot]_{\gamma_{1} \gamma_{2}-r}$ concerns only the degree in x). By computing the lefthand side (using the multinomial theorem as in the proof of Step 1) and using the induction on r, we finally obtain an identity of the form

$$
a V_{\gamma_{1}}(y)^{\gamma_{2}-1} V_{\gamma_{1}-r}(y)=a^{\prime} V_{\gamma_{1}}(y)^{\gamma_{2}}, \quad a, a^{\prime} \in \mathcal{R}, a \neq 0
$$

from which the result immediately follows.
Step 3. U and V are monomial functions.
Proof. Using (14) with $P(x, y)=U(x) V(y)$ and $V_{\gamma_{1}}=V$, we obtain

$$
\begin{equation*}
c^{\gamma_{1}} \sum_{j=0}^{\gamma_{2}} c_{\gamma_{2}-j}(U(x) V(y))^{j}=c V(x)^{\gamma_{1}} V(y)^{\gamma_{2}} \tag{15}
\end{equation*}
$$

Equating the terms of degree γ_{2}^{2} in y in (15), we obtain

$$
\begin{equation*}
c^{\gamma_{1}+\gamma_{2}+1} U(x)^{\gamma_{2}}=c^{\gamma_{2}+1} V(x)^{\gamma_{1}} . \tag{16}
\end{equation*}
$$

Therefore, (15) becomes

$$
\sum_{j=0}^{\gamma_{2}-1} c_{\gamma_{2}-j}(U(x) V(y))^{j}=0
$$

which obviously implies $c_{k}=0$ for $k=1, \ldots, \gamma_{2}$, which in turn implies $V(x)=c x^{\gamma_{2}}$. Finally, from (16) we obtain $U(x)=x^{\gamma_{1}}$.

Steps 2 and 3 together show that $P=P_{p}$, which establishes the proposition.
Recall that the action of the symmetric group \mathfrak{S}_{n} on functions from \mathcal{R}^{n} to \mathcal{R} is defined by

$$
\sigma(f)\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right), \quad \sigma \in \mathfrak{S}_{n}
$$

It is clear that f is bisymmetric if and only if so is $\sigma(f)$. We then have the following fact.

Fact 13. The class of n-variable bisymmetric functions is stable under the action of the symmetric group \mathfrak{S}_{n}.

Consider also the following action of identification of variables. For $f: \mathcal{R}^{n} \rightarrow \mathcal{R}$ and $i<j \in[n]$ we define the function $I_{i, j} f: \mathcal{R}^{n-1} \rightarrow \mathcal{R}$ as

$$
\left(I_{i, j} f\right)\left(x_{1}, \ldots, x_{n-1}\right)=f\left(x_{1}, \ldots, x_{j-1}, x_{i}, x_{j}, \ldots, x_{n-1}\right)
$$

This action amounts to considering the restriction of f to the "subspace of equation $x_{i}=x_{j} "$ and then relabeling the variables. By Fact 13 it is enough to consider the identification of the first and second variables, that is,

$$
\left(I_{1,2} f\right)\left(x_{1}, \ldots, x_{n-1}\right)=f\left(x_{1}, x_{1}, x_{2} \ldots, x_{n-1}\right)
$$

Proposition 14. The class of n-variable bisymmetric functions is stable under identification of variables.

Proof. To see that $I_{1,2} f$ is bisymmetric, it is enough to apply the bisymmetry of f to the $n \times n$ matrix

$$
\left(\begin{array}{cccc}
x_{1,1} & x_{1,1} & \cdots & x_{1, n-1} \\
x_{1,1} & x_{1,1} & \cdots & x_{1, n-1} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n-1,1} & x_{n-1,1} & \cdots & x_{n-1, n-1}
\end{array}\right)
$$

To see that $I_{i, j} f$ is bisymmetric, we can similarly consider the matrix whose rows i and j are identical and the same for the columns (or use Fact 13).

We now prove the Main Theorem by using both a simple induction on the number of essential variables of P and the action of identification of variables.

Proof of the Main Theorem when \mathcal{R} is a field. We proceed by induction on the number of essential variables of P. By Proposition 12 the result holds when P depends on 1 or 2 variables only. Let us assume that the result also holds when P depends on $n-1$ variables $(n-1 \geqslant 2)$ and let us prove that it still holds when P depends on n variables. By Proposition 11 we may assume that P is of degree $p \geqslant 3$. We know that $P_{p}(\mathbf{x})=c \mathbf{x}^{\gamma}$, where $c \neq 0$ and $\gamma_{i}>0$ for $i=1, \ldots, n$ (cf. Claim 6). Up to a conjugation we may assume that $P_{p-1}=0$ (cf. Claim 10). Therefore, we only need to prove that $P=P_{p}$. Suppose on the contrary that $P-P_{p}$ has a polynomial function $P_{q} \neq 0$ as the homogeneous component of highest degree. Then the polynomial function $I_{1,2} P$ has $n-1$ essential variables, is bisymmetric (by Proposition 14), has $I_{1,2} P_{p}$ as the homogeneous component of highest degree (of degree $p \geqslant 3$), and has no component of degree $p-1$. By induction hypothesis, $I_{1,2} P$ is in class (iii) of the Main Theorem with $b=0$ (since it has no term of degree $p-1$) and hence it should be a monomial function. However, the polynomial function $\left[I_{1,2} P\right]_{q}=I_{1,2} P_{q}$ is not zero by (11), hence a contradiction.

Proof of the Main Theorem when \mathcal{R} is an integral domain. Using the identification of polynomials and polynomial functions, we can extend every bisymmetric polynomial function over an integral domain \mathcal{R} with identity to a polynomial function on $\operatorname{Frac}(\mathcal{R})$. The latter function is still bisymmetric since the bisymmetry property for polynomial functions is defined by a set of polynomial equations on the coefficients of the polynomial functions. Therefore, every bisymmetric polynomial function over \mathcal{R} is the restriction to \mathcal{R} of a bisymmetric polynomial function over $\operatorname{Frac}(\mathcal{R})$. We then conclude by using the Main Theorem for such functions.

Acknowledgments

The authors wish to thank J. Dascăl and E. Lehtonen for fruitful discussions. This research is supported by the internal research project F1R-MTH-PUL-12RDO2 of the University of Luxembourg.

References

[1] J. Aczél. The notion of mean values. Norske Videnskabers Selskabs Forhandlinger, 19:83-86, 1946.
[2] J. Aczél. On mean values. Bull. of the Amer. Math. Soc., 54:392-400, 1948.
[3] J. Aczél and J. Dhombres. Functional Equations in Several Variables. Encyclopedia of Mathematics and Its Applications, vol. 31, Cambridge University Press, Cambridge, UK, 1989.
[4] M. Behrisch, M. Couceiro, K. A. Kearnes, E. Lehtonen, and Á. Szendrei. Commuting polynomial operations of distributive lattices. Order, to appear.
[5] M. Couceiro and E. Lehtonen. Self-commuting lattice polynomial functions on chains. Aeq. Math., 81(3):263-278, 2011.
[6] J. Fodor and J.-L. Marichal. On nonstrict means. Aeq. Math., 54(3):308-327, 1997.
[7] M. Grabisch, J.-L. Marichal, R. Mesiar, and E. Pap. Aggregation Functions. Encyclopedia of Mathematics and its Applications, vol. 127, Cambridge University Press, Cambridge, UK, 2009.
[8] J. Ježek and T. Kepka. Equational theories of medial groupoids. Algebra Universalis, 17: 174-190, 1983.
[9] J. Ježek and T. Kepka. Medial groupoids. Rozpravy Československé Akad. Věd, Řada Mat. Přírod. Věd, 93: 93 pp., 1983.
[10] J.-L. Marichal and P. Mathonet. A description of n-ary semigroups polynomial-derived from integral domains. Semigroup Forum, in press.
[11] J.-P. Soublin. Étude algébrique de la notion de moyenne. J. Math. Pure Appl., 50:53-264, 1971. 53264.

Mathematics Research Unit, FSTC, University of Luxembourg, 6, rue CoudenhoveKalergi, L-1359 Luxembourg, Luxembourg

E-mail address: jean-luc.marichal [at]uni.lu
University of Liège, Department of Mathematics, Grande Traverse, 12 - B37, B-4000 Liège, Belgium

E-mail address: p.mathonet[at]ulg.ac.be

