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Abstract

We present a Bayesian Monte Carlo Markov Chain method to simul-
taneously estimate the spectral index and power amplitude of a fractional
differenced Gaussian process at low frequency, in presence of white noise,
and a linear trend and periodic signals. This method provides a sample
of the likelihood function and thereby, using Monte Carlo integration, all
parameters and their uncertainties are estimated simultaneously. We test
this method with simulated and real Global Positioning System height
time series and propose it as an alternative to optimization methods cur-
rently in use. Furthermore, without any mathematical proof, the results
from the simulations suggest that this method is unaffected by the sta-
tionary regime and hence, can be used to check whether or not a time
series is stationary.

1 Introduction

Long-range dependence (LRD) processes are present in many different research
fields as, for instance, biology [1], geophysics [2], hydrology and economics [3].
This ubiquity enhances the interest in parameter estimation methods for time
series with temporal correlation at long scale.
There are different theoretical approaches to characterize LRD processes. If
continuous time evolution is considered, fractional Brownian motion is used [4].
Its discrete counterparts are fractional Gaussian noise (fGn) [4] and fractionally
differenced Gaussian noise (fdGn) [5].
All those processes can be characterized, at low frequencies, i.e. ω → 0, by the
power law spectrum

S(ω) = S0

(ω0

ω

)α

, (1)

∗The authors are with the Geophysics Laboratory, Université du Luxembourg, Luxem-
bourg.
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where ω is the angular frequency, ω0 is any given reference angular frequency,
S0 the power amplitude at ω = ω0, and α ∈ (R+ + {0}) the spectral index.
Equation (1) includes some very well known cases [2], e.g.: white noise (α = 0),
Flicker noise (α = 1) and Random Walk noise (α = 2).
Previously published parameter estimation methods are based either on empir-
ical tools such as, for instance, the rescaled adjusted range or R/S-statistic [6],
aggregated variance method [3], periodogram method [7], Allan variance [8, 9],
or optimization methods like Maximum Likelihood Estimation (MLE) [10, 11]
and Least Squares (LS) [12].
So far, MLE has been widely used, although, without a closed-form expression
for the likelihood function and a requirement for assuming an a priori power
amplitude [10], or an a priori spectral index [11, 12]. Moreover, without a
closed-form expression, some of these methods do not provide an uncertainty
associated with the spectral index estimate [13, 14, 15]. [16]-[22] shown that
MLE yields asymptotically normally distributed estimates for the parameters
and, based on that, confidence intervals can be derived. Nevertheless, our in-
terest is to find a suitable method to analyze fdGn processes whose spectral
index spans from stationary to nonstationary regime values, i.e. for α > 0. As
there are no theoretical proofs concerning the asymptotic behaviour of MLE for
nonstationary time series, the confidence intervals are computed numerically, by
means of a grid-like exploration of the parameter space. This increases the com-
putational time of MLE geometrically with the number of parameters, whereas
for the Bayesian Monte Carlo Markov Chain (MCMC) method it does linearly,
suggesting it to be a more suitable method for dealing with higher numbers of
parameters. [23] and [24] noticed that the properties of a particular estimator
may change according to the value of the spectral index α. Without any math-
ematical proof, the results from the simulations below suggest that the MCMC
method performs well, regardless of the value of the spectral index, i.e. it can
also estimate whether the time series is stationary or not. Another difference
is that in case of non-standard distribution functions of the parameters, the
optimization method can get stuck in a local maximum, whereas the MCMC
method can deal with multimodallity as it explores the neighbourhood of the
maxima of the likelihood.
Other problems with the above published methods arise from pre-analysis de-
trending (if need be) as this removes significant amounts of low-frequency en-
ergy from the original signal, thereby yielding underestimated spectral indices
[25, 26].
Considering the impact the stochastic nature of the noise has on parameter es-
timation [27, 28], we used the MCMC method for LRD processes that, unlike
current optimization methods, simultaneously estimates all parameters (includ-
ing the spectral index) and their uncertainties. Moreover, MCMC can detect
non-Gaussianity on parameter distributions and any correlation between them.
We also noticed that the simulations systematically give underestimated uncer-
tainties for all parameters if an a priori value for the spectral index is assumed.
This paper is organized as follows: section II includes the fdGn process, section
III presents a brief introduction to the MCMC method with a description of
our algorithm. Then in section IV some results are given and discussed from
simulated data and real data from height time series obtained from Global Posi-
tioning System (GPS) measurements. Finally, section V contains the concluding
remarks.
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2 Fractionally Differenced Gaussian Process

According to [5], fdGn is defined as the fractional difference of discrete-time
Gaussian noise, namely

r(k) = (1−B)−α/2 w(k) . (2)

where w(k) ∈ N (0, σ), α is the spectral index and B is the difference operator
B r(k) = r(k−1). By expressing the difference operator power as a power series
on B, (2) can also be conceived as linear convolution of white noise or as a
moving average (MA) process of infinite order through the equation

r(k) =
∞∑
i=0

h(i)w(k − i) , (3)

with

h(i) =
(i+ α/2− 1)!

i!(α/2− 1)!
. (4)

The process is completely characterized by just two parameters, the spectral
index α, and the power amplitude σ of the convoluted white noise process.
Indeed, the spectral density S(ω) of r(k) can be easily obtained from (2) as

S(ω) =
2−ασ2(

sin
(ω
2

))α . (5)

At low frequencies, when ω → 0, sin(ω) ∼ ω, hence (5) yields the power law
spectrum, i.e. (1)

S(ω) ∼ σ2

ωα
. (6)

For calculus purposes (3) is re-written in matrix form

r = Lw , (7)

where r ∈ RN is a fdGn process, w ∈ RN a white noise process, N is the
number of data (or time series length) and L, the convolution matrix filter, is
a lower triangular Toeplitz matrix (a matrix made of constant diagonals) with
coefficients

Lij =

{
hi−j ≡ h(i− j) ∀(i− j) ≥ 0

0 ∀(i− j) < 0
(8)

Thus the covariance matrix of fdGn is C =< r rT >= σ2LLT , with matrix
coefficients
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Clk = σ2
l∑

i=0

hihi+|k−l| , (9)

where l, k ∈ [0, N − 1] ⊂ N. As the signal length N increases, (9) becomes a
Toeplitz matrix, i.e. it only would depend on the lag between data, but for any
sample of the process it is not. Some MLE methods exploit this Toeplitz-like
symmetry and thereby increasing the computational speed [10, 29]. Neverthe-
less, by doing so it may yield biased estimates of the parameters.
The first row of the covariance matrix is the correlation function for every lag of
the process. Fig. 1 shows the dependency of that correlation with the spectral
index for three different signals normalized at the origin. It can be seen that
the higher the spectral index α is, the slower the correlation decays.

3 The MCMC method

The MCMC method is the use of simulations made with Markov chains to get a
good sample of the posterior distribution of the parameter given the data. Then
by means of Monte Carlo integrals on that sample, estimates for the parameters
and their uncertainties are obtained.
The theory of Markov chains is well developed and further information can be
found in e.g. [30]. Much of the elaboration of the theory can be avoided for
our purposes, since we are not interested in discovering the properties of some
arbitrary Markov chain, but rather in constructing a Markov chain with the
properties described in subsection 3.2.

3.1 MCMC background

With the distribution function for each parameter, given the data, we could
estimate their expected values. Nevertheless, to do so, repeated observational
data would be needed at every epoch. This is usually not the case with natu-
ral phenomena in geophysics or biology where the events represented by time
series can not be repeated at will. Even in engineering, the conditions under
which the signal is produced may change in time. Consequently, sometimes the
aforementioned distribution (a.k.a. the posterior distribution) function can not
be obtained right away from the data.
On the other hand, a sample of the conditional distribution function for the
data can be obtained with a priori distributions of the parameters.
According to the Bayes theorem [31] the above distributions are related as

P(θ|y) = L(y|θ)P(θ)

P(y)
, (10)

where P(θ|y) is the posterior distribution, y is the observational data, i.e. the
process, θ is the vector that contains the parameters, L(y|θ) is the conditional
probability function for the data or likelihood, P(θ) is the prior probability
distribution for the parameters and P(y) is the probability function for the
data.
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Once a sample of the posterior distribution is obtained, the expected values
of the parameters of the model can be estimated by means of Monte Carlo
integration. More precisely,

< θi >=

∫
P(θ|y)θidθ =

∑M
t=1 θt,i
M

, (11)

where M is the number of points in the Markov chain and θt,i denotes the value
of the ith component of the parameter vector θ at the tth step of the chain. The
100(1− 2p)% confidence interval [cp, c1−p] for a parameter is estimated by set-
ting cp to the pth quantile of θt,i, t = 1, .., N and c1−p to the (1− p)th quantile.
Moreover, (11) yields an unbiased estimator for θi and its accuracy does not
depend on the number of parameters [32].

3.2 The MCMC algorithm

In this section we introduce the MCMC method used to estimate the time
series parameters. Firstly, we consider a homogeneous distribution P(θ) for
all the parameters within an a priori interval (θmin, θmax). The algorithm, the
so-called Metropolis-Hasting method [30], that leads the Markov chain through
the posterior distribution surface is summarized below:

1. Compute the likelihood at θi, i.e. Li ≡ L(y|θi).

2. Take a random step in parameter space to obtain a new value for the
parameter θi+1. The probability distribution of the step is taken to be
Gaussian in each direction i with variance σi, i.e. the step size.

3. Compute Li+1.

4. If Li+1/Li > 1, take the step, i.e. save the new set of parameters θi+1

and Li+1 as part of the chain, then go to step 2 after the substitution
θi → θi+1.

5. If Li+1/Li < 1, draw a random number x from a uniform distribution
from 0 to 1. If x > Li+1/Li do not take the step, i.e. keep the previous
parameter value θi as part of the chain and return to step 2. If x < Li+1/Li

take the step, i.e. do as in 4.

Should the algorithm follow all steps from 1 to 4, it would find the maximum of
the likelihood. Nevertheless, in order to get confidence levels for the estimates,
the algorithm is set up to explore the surroundings of the maximum, hence the
fifth step.
As P(θ) is the same for all the values of θ, and P(y) is constant along the
MCMC process, the ratio Li+1/Li, by the Bayes theorem (10), is equivalent
to P(θi+1|y)/P(θi|y), therefore the sample obtained for the likelihood with the
algorithm above is the same for the posterior distribution. Also notice that with
P(y) being constant during the whole process it is irrelevant for (11) and it can
be ignored.
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3.3 The Sample of the Likelihood

We have estimated the parameters for three different processes:

1. Case I. Pure fdGn:

y = Lw ,w ∈ N (0, σpl) (12)

2. Case II. Pure fdGn with white noise:

y = Lw + u ,u ∈ N (0, σwn) (13)

3. Case III. Pure fdGn with white noise in combination with linear and
periodic signals:

y = y0 + v0 t+Ac cos(ω0t) +As sin(ω0t) + Lw + u , (14)

where y0 is the intercept, v0 the slope, t the epoch, Ac and As the cosine and
sine amplitudes, respectively, and ω0 is the angular frequency of the periodic
signal. Though the above algorithm is not necessarily restricted to one specific
distribution (according to [33] it is one case among many M-estimators), the
Gaussian joint likelihood was chosen for all three processes:

L(y|θ̂) = 1

(2π)
N/2 |C|1/2

e−
1
2 (y−ŷ)T C−1(y−ŷ) , (15)

whereN is the number of data, y the data, θ̂ ≡ (α̂, σ̂pl), (α̂, σ̂pl, σ̂wn), (α̂, σ̂pl, σ̂wn, v̂0, ŷ0, Âc, Âs)

the estimated parameters for cases I, II and III, respectively; ŷ ≡ y(θ̂) the es-
timated data, |C| the determinant of the covariance matrix, and the covariance
matrix

C = σ2
plLLT + σ2

wnI , (16)

with I being the identity matrix.
The drawback of this method is that for every MCMC point, i.e every compu-
tation of Li, the covariance matrix has to be computed. Clearly, this increases
the computational time, but in doing so, unlike MLE methods, it provides the
covariance for the estimate of the spectral index, can detect local maxima and
does not underestimate the uncertainties of the parameters [27, 11].
It is noted here that case III follows the general strategy in the modelling of
geodetic position time series using both empirical and optimization methods,
therefore we also show the performance of the MCMC method for one represen-
tative GPS height time series.
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3.4 Convergence criteria

The algorithm used for this MCMC method does not provide any stop-condition
by itself, consequently we must monitor the Markov chains in order to know
whether they might have already reached a stage at which any statistical infor-
mation obtained from them can not be significantly improved anymore. Accord-
ing to [34], two aspects characterize Markov chains in order to get a good sample
of the posterior distribution function: “convergence” and “good mixing”.
Convergence is achieved once the algorithm spots the maximum (or maxima)
and gets samples around it. Good mixing refers to the idea of getting a ho-
mogeneous sample around the maximum in order to not have artificially biased
estimators.
In this study we have used the spectral analysis method for the Markov chain
presented in [35]. At small scale, the MCMC is mainly a random-walk process,
therefore the MCMC points are correlated and any estimate for the parameters
at that scale will be biased. In order to get a non-biased estimate we must allow
the MCMC to reach the convergence state and a good mixing. By the ergodic
theorem [30], the MCMC at long-scale provides a homogeneous sample of the
distribution function, i.e. when the MCMC length is long enough it yields a
white-noise-like spectrum. This spectrum can be written as

P (k) = P0
(k∗/k)β

(k∗/k)β + 1
, (17)

where β > 0 is the spectral index of the spectrum of the Markov chain (it has
nothing to do with the spectral index α of the time series itself), k = j(2π/M)
is the scale (with j ∈ N), M the MCMC length, k∗ is the cross-over scale, i.e.
the inverse of the length for which two points of the Markov chain that distance
apart (at least) are uncorrelated, and P0 = P (k → 0).
According to [35], the Markov chain has converged and has a good mixing when
the next two requirements are satisfied:

1. kmin ≡ 1/M must be in the white noise regime, i.e. kmin < k∗, as it
guarantees that the chain is long enough.

2. The convergence criteria is fulfilled when r = P0/M < 0.01 .

In section 4 the above parameters are given in Table 9 for each case.
Finally, as it takes some time for the chain to achieve the stationary state which
guarantees the ergodic theorem to hold [30] (and under which the “convergence”
and “good mixing” criteria can be used), we have discarded ∼ 33% of the first
points in all Markov chains.

4 Results

In order to show its performance, the MCMC method is used to estimate the
parameters of, firstly, synthetic pure fdGn processes, secondly, synthetic fdGn
with white noise and, thirdly, additionally including a linear trend and periodic
signals. Finally, we analyze a sample geodetic time series consisting of daily
height estimates obtained from GPS measurements.
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4.1 Synthetic Data

For the synthetic data r we used (3) and (4) with length N = 500. Table 1
shows the priors on the parameters (in arbitrary units). The a priori intervals
are chosen wide enough to show the robustness in the performance of the algo-
rithm for starting points of the Markov chain very far away from the maximum
of the likelihood. The true values of the parameters of the synthetic data are
shown in the last column of tables 2 and 3 (in arbitrary units) and ω = 20π.
Table 2 shows the estimates and their uncertainties for pure fdGn (cases Ia and
Ib) and fdGn with white noise (case II). The second column (case Ib) shows
the results for a Markov chain that started to explore at α = 6.5 and σpl = 6.5
(α = 0.5 and σpl = 0.5 for case Ia), to show the robustness of the process even
when the starting points are far away from the true values (fourth column).
Both cases yield estimates that, at their respective 1σ confidence levels, include
the true values.
For the second case the uncertainties are bigger than for cases Ia and Ib because
by adding a new parameter, the parameter space to be explored by the MCMC
gets wider.
Cases IIIa and IIIb additionally introduce a linear trend and periodic signals
thereby increasing the number of parameters from two (case I) up to seven.
An alternative to MCMC would be to compute the likelihood over a grid, but
as the number of parameters increases the computational time becomes pro-
hibitive. Therefore, the MCMC method is more suitable for dealing with a high
number of parameters.
Table 3 presents the results for these cases with an a priori spectral index equal
to the real value α = 1.1 (case IIIa), and without any a priori value on any
parameter (case IIIb) to investigate the underestimation, when some a priori
values are assumed on some parameters [36, 37, 11].
A number of effects are noticeable after adding trends and periodic signals.
Firstly, the periodic signal introduces extra temporal-correlation, hence the
higher value for α̂ for case IIIb. Another common effect is that the 1σ confi-
dence level gets wider for all three estimates (α, σpl, σwn), due to the fact that
with more parameters, the MCMC algorithm has to explore a bigger parameter
space.
However, the main difference between the results for cases IIIa and IIIb is the
bigger uncertainty for all estimated parameters in case IIIb. These observed
differences are consistent with the fact that having less parameters to estimate
leads to smaller uncertainties, as the parameter space to be explored is narrower.
According to the ergodic theorem, all the Markov chains converge towards the
same final state (for stationary final states) [30]. Therefore, to have several
different starting points (or several Markov chains) is equivalent to a longer
Markov Chain. Nevertheless, more examples are provided in order to give more
statistical significance to our results. Namely, four different spectral index values
were analyzed α = (0.50, 1.17, 1.83, 2.5) for all three cases, and for each of these
values we run ten different Markov chains, with their initial points randomly
chosen in the interval α ∈ [0.5, 2.5]. Table 4 summarizes the results for the esti-
mates of the spectral index only, though we have estimated all parameters. All
real values (header row) are within the 1σ confidence level of their respective
estimates, except for α = 1.17 in case I, and α = 0.5 in case III, for these
two cases the real values are within their respective 2σ confidence level. Sys-
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tematically the uncertainties get bigger as the number of parameters increases
(two, three and seven parameters for cases I, II and III, respectively). Another
important result infered from Table 4 is that the MCMC method for stationary
(α = 0.5 in the first column) and nonstationary time series (α = 1.17 , 1.83 , 2.5)
performs alike. These results suggest that, unlike other estimators (Gaussian
semiparametric and log-periodogram estimators in [23] and [24], respectively),
the MCMC method seems unaffected by non-stationarity, hence being a poten-
tial tool to detect nonstationarity in time series.
With further detail, Tables 5, 6 and 7 show the estimates of the spectral index
for each Markov chain, i.e. for ten different starting points. Table 5 (case I)
shows how the estimates of each chain systematically contain the real values
within their 1σ confidence level, except for the second column, whose real value
α = 1.17 is slightly beyond this confidence level (the smallest value at 1σ is
α̂ = 1.18). In Table 6 (case II) all chains yield results that are either systemat-
ically above the real values (first, second and fourth columns) or below (third
column), and the real values are within the 1σ confidence level. All the variances
are bigger than those from case I, which is consistent with a wider parameter
space as a consequence of introducing a third parameter (σwn). Finally, Table
7 summarizes the results for each Markov chain for case III. The results are
quite homogeneous and all estimates are systematically below (second column)
or above the real values (first, third and fourth columns). All real values are
within the 1σ confidence level, except for the first column (α = 0.5). Our in-
terpretation is that the temporal-correlation introduced by the periodic signals
might increase the value of the estimated spectral index. However, this is not
confirmed by the other columns. Another source of this bias might be that for
the algorithm it is more difficult to tell the fdGn process from the white noise as
the spectral index decreases and the parameter space gets wider due to the new
parameters in case III, (v0, y0, Ac, As). Each row of Table 4 is in good agreement
with the ten different Markov chains shown in Tables 5, 6 and 7, respectively,
as it was expected, according to the ergodic theorem, thus allowing us to take
either some different starting points or just one long Markov chain.
Although the sample for the posterior distribution is obtained using the Bayes
Theorem, the mean of the estimate and their uncertainties are computed in
a Frequentist-school fashion with the Monte Carlo integration, i.e. with (11),
and quantiles, respectively. Furthermore, we can get information about the esti-
mates by looking at their histograms. Those histograms represent the marginal-
ized likelihoods, i.e. the likelihood integrated over all parameters except for the
parameter we want to analyze. For example, in Fig. 2, the histograms for all
parameters in case IIIb are shown. These figures show that unlike the model
parameters (v0 , y0 , Ac , As), the parameters corresponding to the stochastic pro-
cess (α , σpl , σwn) do not follow a Gaussian distribution. Though this might not
be important for detrending in processes like case III, for example, geodetic
time series, the non-Gaussianity behaviour of those parameters might still af-
fect the estimates in other applications. [28] shown that classical localization
methods are less efficient under multipath effects, than methods that estimate
the error distribution.
Histograms for marginalized likelihoods also provide information about cross-
correlation among parameters. For example, Fig. 3a confirms that α and σpl

are uncorrelated without white noise within the signal (case I). On the other
hand, Figs. 3b and 3c show the correlation between α, σpl and σwn when white
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noise is included (case II).
Figs. 4a and 4b suggest that adding deterministic parameters for modelling such
as v0 , y0 , Ac , As does not affect the correlations among the stochastic param-
eters (the above mentioned). Fig. 4c shows how the histogram for L(y|v0, y0)
projected onto the v0 − y0 plane gives an ellipse that indicates the correlation
between them; the higher the estimated slope v̂0 is, the smaller the estimated
intercept ŷ0 of the straight line with the time series.
According to Fig. 4d, the periodic signal parameters are completely uncorre-
lated with respect each other.

4.2 Real Data: Geodetic Time Series

Since 1997, it has been shown that noise in geodetic time series can be char-
acterized as long-term time series with spectral index values that span from
stationary (α < 1) to nonstationary regimes (α > 1) [25, 40, 41, 11]. There-
fore, it is necessary to develop a parameter estimation method that performs
well regardless of the stationary regime. According to [23, 24], log-periodogram
and Gaussian semiparametric estimators change its properties at going through
α = 1.5. Nevertheless, the results from the simulations suggest that the MCMC
method could be used to check whether a time series is stationary or not, hence
the interest at using it for the analysis of geodetic time series analysis.
In order to check the performance of the MCMC method with real data we
analyzed the daily height time series obtained from GPS measurements. Cur-
rent state-of-the-art global GPS analyses result in a day-to-day scatter of 1− 2
mm and 6 mm for the horizontal and vertical position components, respectively.
We tested the MCMC method on the daily height estimates as this component
is generally noisier than the horizontal components and is of primary interest
to many geophysical studies of changes in global sea level and mass balance
[38, 39]. The height time series used here can be regarded as a typical case
from a high-precision continuous GPS station and were provided by the British
Isles continuous GPS Facility1. For time efficiency, we selected a station with
four years of GPS measurements and as with most GPS time series some data
gaps are present (∼ 18% for that case). Still, gaps are not of great concern for
this MCMC method, provided we do not use any Toeplitz-like symmetry for the
covariance matrix that could otherwise be broken [37]. Moreover, according to
[36], a time series spanning four years is long enough to consider a bias from
the periodic signals to be negligible on the linear trend estimates.
Table 8 summarizes the estimates obtained for the daily height time series.
The estimated spectral index α = 0.67 ± 0.07 indicates that the time series
is stationary at the 1σ confidence level, and the power of the fdGn process
σpl = 12.4 ± 0.8mm/yr0.17 2 is bigger than that of the white noise σwn =
1.3± 0.8mm. Concerning the deterministic parameters (v0, y0, Ac, As), the lin-
ear trend v̂0 = 2.6±0.9mm/yr is the same order of magnitude as the estimates
for the periodic signals Âc = 0.7±0.5mm and Âs = 1.3±0.3mm. Finally, with
the values of the uncertainties, we can conclude that, at least at 1σ confidence

1http://www.bigf.ac.uk/
2Here the power law amplitude is scaled by ∆Tα/4 in order to be sure that any noise source

with spectral index α will cross at the same frequency given the same sampling interval ∆T
and equal noise amplitude.
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level, all estimates have Gaussian distribution.
Histograms for the marginalized likelihoods of every parameter are given in Fig.
5. Figs. 5a and 5b show the non-symmetric distribution for α and σpl respec-
tively. This is in good agreement with the results for synthetic data (see Figs.
2a and 2b), but it is not possible to assess how much comes from the GPS
signal itself and how much from the post-processed height time series. Fig. 5c
shows the distribution for the white noise power amplitude σwn. In this case,
the maximum is too close to the axis to either disclaim or claim any resem-
blance with respect to its synthetic counterpart in Fig. 2c. Figs. 5d, 5e, 5f
and 5g respectively show the deterministic parameters v0 , y0 , Ac and As have
Gaussian-like histograms as it was expected according to the synthetic results
previously shown. Concerning correlations between parameters, Figs. 6a and
6b show that α, σpl, and σwn are correlated in a similar way as their synthetic
counterparts in Figs. 4b and 4c, respectively. Fig. 6c shows how the slope and
the intercept are anti-correlated and, finally, Fig. 6d gives the same Gaussian
solution as Fig. 4d with the condition that Ac , As > 0 in order to avoid artificial
multimodality.
To summarize, the MCMC method applied to real data from a sample GPS
height time series provides similar results to the synthetic data (case III). The
individual distributions of the parameters and their correlations are Gaussian
for the deterministic parameter, but not for the stochastic ones, though, at 1σ
confidence level they can be considered Gaussian as Table 8 shows.
Concerning the convergence and good mixing criteria aforementioned in Sec-
tion 3.4, Table 9 summarizes the results for cases I, II, III and with real data.
There it is shown that for all cases the two conditions are fulfilled, i.e. r < 0.01
and k∗ > kmin in columns two, three and four respectively.

5 Conclusions

We have presented a Metropolis-Hasting-based Bayesian MCMC method that
simultaneously estimates all parameters alongside their uncertainties for fdGn
processes. The method performs well for estimating the characteristic param-
eters of this process, namely α and σpl, even when additioned white noise (see
Table 2), linear trend and periodic signals are present (see Table 3).
This method also provides a tool for measuring non-Gaussianity on the param-
eter distributions (see Figs. 2 and 5), and correlation between the parameters
(see Figs. 3, 4 and 6). We have also shown that setting a priori parameter
values, as some optimization methods allow [10, 13], yields uncertainties that
are too optimistic (see Table 3), whereas MCMC takes into account the effect
of estimating the noise as well, thus giving rise to bigger uncertainties.
Previous works have proved that geodetic time series can be characterized as
nonstationary LRD processes of unknown spectral index [25, 40, 41, 11]. For
that, analytical or numerical methods capable of detecting nonstationarity are
needed. From the results shown in Tables 4, 5, 6 and 7, and without any math-
ematical proof, we propose the Bayesian MCMC method as a tool to detect
nonstationarity in time series.
Finally, it must be emphasized that the spectral index α determines the esti-
mation of parameters from geodetic time series and their uncertainties as well
[27, 25, 11]. A recent study [28] shown that it also affects the estimation of
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real-time vehicles positions from Global Navigation Satellite System (GNSS)
signals [28] (a different application of GNSS as presented here). These examples
highlight the importance of estimating the spectral index and its uncertainty.
For that, and without any closed-form function for the likelihood, should the
stochastic noise be estimated, MCMC provides more realistic estimations than
optimization methods do.
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Table 1: Priors on the parameters in terms of the real values for the synthetic
data

Parameter Interval

α̂ α > 0

σ̂pl [−102, 102]× σpl

σ̂wn [−102, 102]× σwn

v̂0 [−102, 102]× v0

ŷ0 [−102, 102]× y0

Âc [−102, 102]×Ac

Âs [−102, 102]×As

Table 2: Estimated Parameters in arbitrary units for cases I and II (N = 500)

Parameter Ia Ib II Real Value

α̂ 1.07± 0.07 1.11± 0.06 1.11± 0.12 1.10

σ̂pl 1.01± 0.03 1.00± 0.03 0.93+0.09
−0.10 1.00

σ̂wn −− −− 0.36± 0.18 0.20

Table 3: Estimated Parameters for case IIIa (with an a priori α = 1.1) and
case IIIb (any a priori parameter value)

Parameter IIIa IIIb Real Value

α̂ 1.10 1.26± 0.10 1.10

σ̂pl 0.99± 0.04 0.95± 0.07 1.00

σ̂wn 0.19± 0.13 0.27± 0.17 0.20

v̂0 20.21+1.21
−1.28 20.30+1.97

−2.06 20.00

ŷ0 −0.74± 0.70 0.32± 0.80 0.00

Âc 10.11± 0.16 10.02± 0.18 10.00

Âs 5.12± 0.16 5.09± 0.18 5.00

Table 4: Estimated spectral index for cases I, II and III (N = 500)

Case α = 0.5 α = 1.17 α = 1.83 α = 2.5

I 0.46± 0.07 1.25± 0.07 1.80± 0.08 2.54± 0.07

II 0.57± 0.13 1.23± 0.11 1.82± 0.10 2.58± 0.10

III 0.67± 0.14 1.11± 0.11 1.84± 0.10 2.42± 0.11
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Table 5: Estimated spectral index for case I (N = 500)

Chain α = 0.5 α = 1.17 α = 1.83 α = 2.5

1st 0.46± 0.07 1.25± 0.07 1.80± 0.08 2.54± 0.08

2nd 0.46± 0.07 1.25± 0.07 1.80± 0.08 2.54± 0.08

3rd 0.46± 0.07 1.25± 0.07 1.80± 0.08 2.54± 0.08

4th 0.46± 0.07 1.25± 0.07 1.80± 0.08 2.54± 0.07

5th 0.46± 0.07 1.25± 0.07 1.80± 0.08 2.54± 0.08

6th 0.46± 0.07 1.25± 0.07 1.80± 0.08 2.54± 0.08

7th 0.45± 0.07 1.25± 0.07 1.80± 0.08 2.54± 0.07

8th 0.45± 0.07 1.25± 0.07 1.80± 0.08 2.54+0.08
−0.07

9th 0.45± 0.07 1.25± 0.07 1.80± 0.08 2.54± 0.08

10th 0.46± 0.07 1.25± 0.07 1.80± 0.08 2.54± 0.07

Table 6: Estimated spectral index for case II (N = 500)

Chain α = 0.5 α = 1.17 α = 1.83 α = 2.5

1st 0.57+0.10
−0.12 1.24± 0.11 1.81± 0.10 2.58± 0.10

2nd 0.57+0.12
−0.11 1.23± 0.10 1.82± 0.10 2.58± 0.10

3rd 0.57± 0.11 1.22± 0.10 1.81± 0.10 2.58± 0.10

4th 0.56+0.10
−0.11 1.24± 0.11 1.82± 0.10 2.58± 0.10

5th 0.56± 0.10 1.22± 0.10 1.82± 0.10 2.58± 0.10

6th 0.56± 0.12 1.24± 0.11 1.82± 0.10 2.58± 0.10

7th 0.57+0.12
−0.11 1.23± 0.11 1.82± 0.10 2.58± 0.10

8th 0.56± 0.10 1.23± 0.11 1.82± 0.10 2.58± 0.10

9th 0.57+0.12
−0.11 1.23± 0.11 1.82± 0.10 2.58± 0.10

10th 0.59± 0.13 1.23± 0.10 1.82± 0.10 2.58± 0.10

Table 7: Estimated spectral index for case III (N = 500)

Chain α = 0.5 α = 1.17 α = 1.83 α = 2.5

1st 0.69+0.16
−0.15 1.10+0.10

−0.11 1.84± 0.09 2.43± 0.12

2nd 0.66± 0.11 1.1± 0.10 1.86± 0.10 2.41± 0.11

3rd 0.71+0.17
−0.15 1.11± 0.10 1.85± 0.09 2.42± 0.11

4th 0.66± 0.11 1.12± 0.11 1.85± 0.09 2.41+0.12
−0.11

5th 0.67± 0.12 1.11± 0.11 1.84± 0.09 2.41± 0.11

6th 0.65± 0.11 1.10± 0.10 1.84± 0.09 2.41± 0.11

7th 0.65± 0.11 1.11± 0.11 1.84± 0.09 2.42± 0.11

8th 0.67+0.12
−0.11 1.11± 0.10 1.83± 0.09 2.45+0.13

−0.12

9th 0.65+0.11
−0.12 1.10± 0.10 1.84± 0.09 2.41± 0.11

10th 0.71+0.17
−0.15 1.11± 0.11 1.84± 0.09 2.41± 0.11
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Table 8: Estimated Parameters for GPS data case
Parameter Estimate

α̂ 0.67± 0.07

σ̂pl 12.4± 0.8 mm/yr0.17

σ̂wn 1.3± 0.8 mm

v̂0 2.6± 0.9 mm/yr

ŷ0 −4.1± 1.6 mm

Âc 0.7± 0.5 mm

Âs 1.3± 0.7 mm

Table 9: Parameters for convergence and good-mixing test

Case r k∗ kmin β

I 10−4 81± 4 0.03 1.73± 0.08

II 10−3 2.7± 0.2 0.03 1.02± 0.02

III 0.009 2.8± 0.3 0.06 1.3± 0.1

GPS 0.002 8.9± 0.7 0.06 1.47± 0.07
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Figure 1: Correlation function vs. lag, from bottom to top, for α = 0.5, 1.0, 1.5,
respectively.
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Figure 2: Histograms of parameters for synthetic data for case IIIb.
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Figure 3: Confidence levels for 2D marginalized likelihoods for case I (a) and
II (b, c).
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Figure 4: Confidence levels for 2D marginalized likelihoods for case IIIb.
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Figure 5: Histograms of parameters for GPS data (Up coordinate).
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Figure 6: Confidence levels for 2D marginalized likelihoods for the GPS data
case.
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