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Abstract. The Banzhaf power index was introduced in cooperative game
theory to measure the real power of players in a game. The Banzhaf in-

teraction index was then proposed to measure the interaction degree inside
coalitions of players. It was shown that the power and interaction indexes can
be obtained as solutions of a standard least squares approximation problem

for pseudo-Boolean functions. Considering certain weighted versions of this
approximation problem, we define a class of weighted interaction indexes that
generalize the Banzhaf interaction index. We show that these indexes define a
subclass of the family of probabilistic interaction indexes and study their most

important properties. Finally, we give an interpretation of the Banzhaf and
Shapley interaction indexes as centers of mass of this subclass of interaction
indexes.

1. Introduction

In cooperative game theory, various kinds of power indexes are used to measure
the influence that a given player has on the outcome of the game or to define a
way of sharing the benefits of the game among the players. The best known power
indexes are due to Shapley [21, 22] and Banzhaf [2, 8]. However, there are many
other examples of such indexes in the literature; see for instance [1, 5, 24].

When one is concerned by the analysis of the behavior of players in a game, the
information provided by power indexes might be far insufficient, for instance due
to the lack of information on how the players interact within the game. The notion
of interaction index was then introduced to measure an interaction degree among
players in coalitions. The first proposal goes back to Owen [18] who defined the
“co-value” of a pair of players {i, j} in a game v on N = {1, . . . , n} as an average
over all coalitions S ⊆ N \ {i, j} of the quantity

v(S ∪ {i, j})− v(S ∪ {i})− v(S ∪ {j}) + v(S).1

This definition was rediscovered and interpreted as an interaction index by Muro-
fushi and Soneda [17]. A systematic approach was then initiated by Grabisch [10,
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11] and Roubens [20] and led to the definition of the Shapley and Banzhaf inter-
action indexes as well as many others. For general background, see Fujimoto et
al. [9].

There is no universal power or interaction index that can be used in every single
practical situation. The choice of such an index often depends on the problem under
consideration. Several axiomatizations of power and interaction indexes have then
been proposed thus far (see [8, 21] for power indexes and [9, 13] for interaction
indexes).

In addition to being axiomatized, the Banzhaf and Shapley power indexes were
shown to be solutions of simple least squares approximation problems:

• Charnes et al. [3] considered the problem of finding the best efficient (hence
constrained) approximation of a given game by an additive game in the
sense of weighted least squares. They showed that the Shapley power index
appears as the unique solution of the approximation problem for a specified
choice of the weight system over the coalitions. By considering all the
possible weights in the approximation problem, they defined the class of
weighted Shapley values.

• Hammer and Holzman [14] considered the problem of approximating a
pseudo-Boolean function by another pseudo-Boolean function of smaller
degree in the sense of standard (non-weighted and non-constrained) least
squares. They showed that the Banzhaf power index appears as the coef-
ficients of the linear terms in the solution of the approximation problem
by functions of degree at most one. Later, this problem was generalized
by Grabisch et al. [12] who showed that the Banzhaf interaction index ap-
pears as the leading coefficients of the best least squares approximations by
functions of specified degrees.

A natural way to generalize the non-weighted approach of Hammer and Holzman
(we recall it in Section 2) consists in adding the following weighted, probabilistic
viewpoint: A weight w(S) is assigned to every coalition S of players and interpreted
as the probability that coalition S forms.2 On this issue, we note that the weighted
least squares problem associated with the probability distribution w was studied in
Ding et al. [6, 7] in the special case when the players behave independently of each
other to form coalitions.

In Section 3 we briefly recall the setting and main results of the approximation
problem considered by Ding et al. [6, 7]. We then introduce a weighted Banzhaf
interaction index associated with w by considering, as in Hammer and Holzman’s
approach, the leading coefficients of the approximations of specified degrees. We
also derive explicit expressions for this index, which allow us to generalize some of
the results in [7].

In Section 4 we investigate the main properties of this new class of indexes. For
instance we prove that they define a subclass of the family of so-called probabilistic
interaction indexes introduced in Fujimoto et al. [9], we analyze their behavior with
respect to null players and dummy coalitions, and we describe their symmetric
versions.

Finally, in Section 5 we discuss interpretations of the Banzhaf and Shapley in-
teraction indexes as centers of mass of weighted Banzhaf interaction indexes and
we introduce an absolute interaction index associated to each weighted Banzhaf

2This probabilistic approach was considered for instance in [3, 4, 18].
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interaction index, which allows us to compute the coefficient of determination of
the best kth approximations.

2. Interaction indexes

In this section we recall the concepts of power and interaction indexes introduced
in cooperative game theory and how the Banzhaf index can be obtained from the
solution of a standard least squares approximation problem.

Recall that a (cooperative) game on a finite set of players N = {1, . . . , n} is a
set function v : 2N → R which assigns to each coalition S of players a real number
v(S) representing the worth of S.3 Through the usual identification of the subsets
of N with the elements of {0, 1}n, a game v : 2N → R can be equivalently described
by a pseudo-Boolean function f : {0, 1}n → R. The correspondence is given by
v(S) = f(1S) and

(1) f(x) =
∑
S⊆N

v(S)
∏
i∈S

xi

∏
i∈N\S

(1− xi).

To avoid cumbersome notation, we will henceforth use the same symbol to denote
both a given pseudo-Boolean function and its underlying set function (game), thus
writing f : {0, 1}n → R or f : 2N → R indifferently.

Equation (1) shows that any pseudo-Boolean function f : {0, 1}n → R can always
be represented by a multilinear polynomial of degree at most n (see [15]), which
can be further simplified into

(2) f(x) =
∑
S⊆N

a(S)
∏
i∈S

xi ,

where the set function a : 2N → R, called the Möbius transform of f , is defined by

a(S) =
∑
T⊆S

(−1)|S|−|T | f(T ).

Let GN denote the set of games on N . A power index [21] on N is a function
ϕ : GN × N → R that assigns to every player i ∈ N in a game f ∈ GN his/her
prospect ϕ(f, i) from playing the game. An interaction index [13] on N is a function
I : GN × 2N → R that measures in a game f ∈ GN the interaction degree among
the players of a coalition S ⊆ N .

For instance, the Banzhaf interaction index [13] of a coalition S ⊆ N in a game
f ∈ GN is defined by

IB(f, S) =
∑
T⊇S

(1
2

)|T |−|S|
a(T )

and the Banzhaf power index [8] of a player i ∈ N in a game f ∈ GN is defined by
ϕB(f, i) = IB(f, {i}).

It is noteworthy that IB(f, S) can be interpreted as an average of the S-difference
(or discrete S-derivative) ∆Sf of f . Indeed, it can be shown (see [12, §2]) that

(3) IB(f, S) =
1

2n

∑
x∈{0,1}n

∆Sf(x) =
1

2n−|S|

∑
T⊆N\S

(∆Sf)(T ),

3Usually, the condition v(∅) = 0 is required for v to define a game. However, we do not need
this restriction in the present paper.
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where ∆Sf is defined inductively by ∆∅f = f and ∆Sf = ∆{i}∆S\{i}f for i ∈ S,
with ∆{i}f(x) = f(x | xi = 1)− f(x | xi = 0).

By extending formally any pseudo-Boolean function f to [0, 1]n by linear inter-
polation, we can define the multilinear extension of f (see Owen [18, 19]), that is,
the multilinear polynomial f̄ : [0, 1]n → R defined by

f̄(x) =
∑
S⊆N

f(S)
∏
i∈S

xi

∏
i∈N\S

(1− xi) =
∑
S⊆N

a(S)
∏
i∈S

xi .

By extending also the concept of S-difference to the multilinear polynomials
defined on [0, 1]n, we also have the following identities (see [19])

(4) IB(f, S) = (∆S f̄)
(
1
2

)
=

∫
[0,1]n

∆S f̄(x) dx,

where 1
2
stands for

(
1
2 , . . . ,

1
2

)
.

Since the S-difference operator ∆S has the same effect as the S-derivative op-
erator DS (i.e., the partial derivative operator with respect to the variables in S)
when applied to multilinear polynomials defined on [0, 1]n, we also have

(5) IB(f, S) = (DS f̄)
(
1
2

)
=

∫
[0,1]n

DS f̄(x) dx.

We now recall how the Banzhaf interaction index can be obtained from a least
squares approximation problem, as investigated by Hammer and Holzman [14] and
Grabisch et al. [12]. For k ∈ {0, . . . , n}, denote by Vk the set of all multilinear
polynomials g : {0, 1}n → R of degree at most k, that is of the form

g(x) =
∑
S⊆N
|S|6k

c(S)
∏
i∈S

xi ,

where the coefficients c(S) are real numbers. For a given pseudo-Boolean func-
tion f : {0, 1}n → R, the best kth approximation of f is the unique multilinear
polynomial fk ∈ Vk that minimizes the squared distance

(6)
∑

x∈{0,1}n

(
f(x)− g(x)

)2
=

∑
T⊆N

(
f(T )− g(T )

)2
among all functions g ∈ Vk. A closed-form expression of fk was given in [14] for
k = 1 and k = 2 and in [12] for arbitrary k 6 n. In fact, when f is given in its
multilinear form (2) we obtain

(7) fk(x) =
∑
S⊆N
|S|6k

ak(S)
∏
i∈S

xi,

where

(8) ak(S) = a(S) + (−1)k−|S|
∑
T⊇S
|T |>k

(
|T | − |S| − 1

k − |S|

)(1
2

)|T |−|S|
a(T ).

It is then easy to see that

(9) IB(f, S) = a|S|(S).

Thus IB(f, S) is exactly the coefficient of the monomial
∏

i∈S xi in the best ap-
proximation of f by a multilinear polynomial of degree at most |S|.
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3. Weighted Banzhaf interaction indexes

The approximation problem described in the previous section uses the standard
(non-weighted) Euclidean distance (6), for which all the subsets (or coalitions of
players) are considered on the same footing. Now, suppose that some coalitions
are more important than some others, for instance because they are more likely to
form. To take these importances into consideration, it is natural to generalize the
approximation problem by considering an appropriate weighted Euclidean distance.
Thus modified, this approximation problem will then allow us to define a concept
of weighted Banzhaf interaction index.

This weighted approximation problem was actually presented and solved (under
the independence assumption) in Ding et al. [6, 7]. We now briefly recall the setting
of this problem as well as some of the most relevant results.

Given a weight function w : {0, 1}n → ]0,∞[ and a pseudo-Boolean function
f : {0, 1}n → R, we define the best kth approximation of f as the unique multilinear
polynomial fk ∈ Vk that minimizes the squared distance

(10)
∑

x∈{0,1}n

w(x)
(
f(x)− g(x)

)2
=

∑
S⊆N

w(S)
(
f(S)− g(S)

)2
among all functions g ∈ Vk.

Clearly, we can assume without loss of generality that the weights w(S) are
(multiplicatively) normalized so that

∑
S⊆N w(S) = 1. We then immediately see

that the weights define a probability distribution over 2N and we can interpret
w(S) as the probability that coalition S forms, that is, w(S) = Pr(C = S), where
C denotes a random coalition.

Now, suppose that the players behave independently of each other to form coali-
tions, which means that the events (C ∋ i), for i ∈ N , are independent. In this case,
also the indicator random variables Xi = Ind(C ∋ i), for i ∈ N , are independent.
Setting pi = Pr(C ∋ i) =

∑
S∋i w(S), we then have pi = Pr[Xi = 1] = E[Xi],

0 < pi < 1, and

w(S) =
∏
i∈S

pi
∏

i∈N\S

(1− pi)

or, equivalently,

w(x) =
∏
i∈N

pxi
i (1− pi)

1−xi .

Remark 1. This interpretation of w(T ) as a probability is precisely the one proposed
by Owen [19] in the interpretation of the multilinear extension of a game as an
expected value: Given a game f : 2N → R, we have

f̄(p1, . . . , pn) =
∑
S⊆N

w(S)f(S) = E[f(C)],

where C is a random coalition.

The set Vk is clearly a linear space of dimension
∑k

s=0

(
n
s

)
spanned by the ba-

sis Bk = {uS : S ⊆ N, |S| 6 k}, where the functions uS : {0, 1}n → R (called
unanimity games in game theory) are defined by uS(x) =

∏
i∈S xi. Note that the

distance defined in (10) is the natural L2-distance associated with the measure w
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and corresponds to the weighted Euclidean inner product

⟨f, g⟩ =
∑

x∈{0,1}n

w(x)f(x)g(x).

Thus the solution of this approximation problem exists and is uniquely determined
by the orthogonal projection of f onto Vk. This projection can be easily expressed
in any orthonormal basis of Vk. In this respect, it was shown in [7] that the set
B′

k = {vS : S ⊆ N, |S| 6 k}, where vS : {0, 1}n → R is given by

vS(x) =
∏
i∈S

xi − pi√
pi(1− pi)

=
∑
T⊆S

∏
i∈S\T (−pi)∏

i∈S

√
pi(1− pi)

uT (x)

forms such an orthonormal basis for Vk.
The following immediate theorem gives the components of the best kth approx-

imation of a pseudo-Boolean function f : {0, 1}n → R in the basis B′
k.

Theorem 3.1. [7, Theorem 4] The best kth approximation of f : {0, 1}n → R is
the function

(11) fk =
∑
T⊆N
|T |6k

⟨f, vT ⟩ vT .

By expressing the functions vT in the basis Bk, we immediately obtain the fol-
lowing expression of fk in terms of the functions uS :

(12) fk =
∑
S⊆N
|S|6k

ak(S)uS ,

where

(13) ak(S) =
∑
T⊇S
|T |6k

∏
i∈T\S(−pi)∏

i∈T

√
pi(1− pi)

⟨f, vT ⟩.

Let p stand for (p1, . . . , pn). By analogy with (9), in order to measure the
interaction degree among players in a game f : {0, 1}n → R, we naturally define an
index IB,p : GN × 2N → R as IB,p(f, S) = a|S|(S), where a|S|(S) is obtained from
f by (13). We will see in the next section that this index indeed measures a power
degree when |S| = 1 and an interaction degree when |S| > 2.

Definition 3.2. Let IB,p : GN × 2N → R be defined as

IB,p(f, S) =
⟨f, vS⟩∏

i∈S

√
pi(1− pi)

,

that is,

(14) IB,p(f, S) =
1∏

i∈S pi(1− pi)

∑
x∈{0,1}n

w(x)f(x)
∏
i∈S

(xi − pi).

Clearly, formula (14) can be immediately rewritten as a sum over subsets as
follows:

(15) IB,p(f, S) =
∑
T⊆N

(−1)|S\T | f(T )
∏

i∈T\S

pi
∏

i∈N\(T∪S)

(1− pi).
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Remark 2. The definition of the index IB,p is close to that of the transforma-
tion T considered in Ding et al. [7], where the components of T (f) are defined by
αS(f) = ⟨f, vS⟩. However, our approach (which is closer to Hammer and Holz-
man’s [14]) is not only equivalent to Ding et al.’s but leads to easier interpretations
and computations as will be shown in the next paragraphs.

We have defined an interaction index from an approximation (projection) prob-
lem. Conversely, this index characterizes this approximation problem. Indeed, as
the following result shows, the best kth approximation of f : {0, 1}n → R is the
unique function of Vk that preserves the interaction index for all the s-subsets such
that s 6 k. The non-weighted analogue of this result was established in [12] for the
Banzhaf interaction index IB.

Proposition 3.3. A function fk ∈ Vk is the best kth approximation of f : {0, 1}n →
R if and only if IB,p(f, S) = IB,p(fk, S) for all S ⊆ N such that |S| 6 k.

Proof. By definition, we have IB,p(f, S) = IB,p(fk, S) if and only if ⟨f−fk, vS⟩ = 0
for all S ⊆ N such that |S| 6 k, and the latter condition characterizes the projection
of f onto Vk. �

Since the best nth approximation of f is f itself, by (11) we immediately see
that f can be expressed in terms of IB,p as

(16) f(x) =
∑
T⊆N

IB,p(f, T )
∏
i∈T

(xi − pi),

which shows that the map f 7→ {IB,p(f, S) : S ⊆ N} is a linear bijection.
We also have the following representation result, which generalizes the first equal-

ities in (4) and (5).

Proposition 3.4. For every f : {0, 1}n → R and every S ⊆ N , we have

(17) IB,p(f, S) = (DS f̄)(p) = (∆S f̄)(p).

In particular, IB,p(f,∅) = f̄(p) =
∑

x∈{0,1}n w(x)f(x).

Proof. The result immediately follows from comparing (16) with the Taylor expan-
sion of f̄ at p. The particular case was discussed in Remark 1. �

Example 3.5. Consider the 3-person majority game defined by

f(x1, x2, x3) = x1x2 + x2x3 + x3x1 − 2x1x2x3.

By (4) and (17), we have IB(f, {i, j}) = 0 and IB,p(f, {i, j}) = 1 − 2pk, where
{i, j, k} = {1, 2, 3}. Intuitively, if pk is close to 1, then the coalitions containing
k are most likely to form. In these coalitions, the presence of only one of the
remaining players is sufficient to form a winning coalition, thus explaining the
negative interaction between i and j. A similar conclusion can be drawn if pk is
close to 0.

Explicit conversion formulas between the interaction index and the best approx-
imation can be easily derived from the preceding results. On the one hand, by (13),
we have

(18) ak(S) =
∑
T⊇S
|T |6k

IB,p(f, T )
∏

i∈T\S

(−pi) , for |S| 6 k.
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On the other hand, by Propositions 3.3 and 3.4 and Equation (12), we also have

IB,p(f, S) = IB,p(fk, S) = (∆S f̄k)(p)

=
∑
T⊆N
|T |6k

ak(T ) (∆
S ūT )(p) ,

that is, since ∆S ūT = ūT\S if S ⊆ T and 0 otherwise,

(19) IB,p(f, S) =
∑
T⊇S
|T |6k

ak(T )
∏

i∈T\S

pi , for |S| 6 k.

Taking k = n in (19), we immediately derive the following expression of IB,p(f, S)
in terms of the Möbius transform of f :

(20) IB,p(f, S) =
∑
T⊇S

a(T )
∏

i∈T\S

pi .

Combining formulas (18) and (20) allows us to express the coefficients ak(S)
explicitly in terms of the Möbius transform of f . We give this expression in the
following proposition, which generalizes (8) and [7, Theorem 7].

Proposition 3.6. The best kth approximation of f : {0, 1}n → R is given by (7),
where

ak(S) = a(S) + (−1)k−|S|
∑
T⊇S
|T |>k

(
|T | − |S| − 1

k − |S|

)( ∏
i∈T\S

pi

)
a(T ) , for |S| 6 k.

Proof. By combining (18) and (20) and then permuting the sums, we obtain

ak(S) =
∑
T⊇S

( ∏
i∈T\S

pi

)
a(T )

∑
R:S⊆R⊆T

|R|6k

(−1)|R|−|S|,

where the explicit computation of the inner sum was done in [7, p. 20]. �
It is important to remember that the special case p = 1

2
corresponds to the

non-weighted approximation problem investigated first by Hammer and Holzman
and for which the index IB,p reduces to the Banzhaf interaction index IB. For
this reason, we will call the index IB,p the weighted Banzhaf interaction index.
Its expressions in (14) and (15) provide the following alternative formulas for the
Banzhaf interaction index. The second one was found in [12, Table 3].

Corollary 3.7. For every f : {0, 1}n → R and every S ⊆ N , we have

IB(f, S) =
1

2n−|S|

∑
x∈{0,1}n

f(x)
∏
i∈S

(2xi − 1) =
1

2n−|S|

∑
T⊆N

(−1)|S\T |f(T ).

4. Properties and interpretations

Most of the interaction indexes defined for games, including the Banzhaf inter-
action index, share a set of fundamental properties such as linearity, symmetry, and
monotonicity (see [9]). Many of them can also be expressed as expected values of
the discrete derivatives (differences) of their arguments (see for instance (3)). In
this section we show that the index IB,p fulfills many of these properties.

The first result follows from the very definition of the index.
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Proposition 4.1. For every S ⊆ N , the mapping f 7→ IB,p(f, S) is linear.

We now provide an interpretation of IB,p(f, S) as an expected value of the S-
difference ∆Sf of f . This interpretation is a direct generalization of the one ob-
tained for the Banzhaf index IB; see formula (3). The proof immediately follows
from Proposition 3.4 and thus is omitted.

Proposition 4.2. For every f : {0, 1}n → R and every S ⊆ N , we have

(21) IB,p(f, S) =
∑

x∈{0,1}n

w(x)∆Sf(x).

Rewriting (21) as a sum over subsets, we obtain

(22) IB,p(f, S) =
∑
T⊆N

w(T ) (∆Sf)(T ) = E[(∆Sf)(C)],

where C denotes a random coalition. Notice that formula (22) can also be obtained
from (20) by using the random indicator vector X = (X1, . . . , Xn). Indeed, we have

IB,p(f, S) =
∑
T⊇S

a(T )E

[ ∏
i∈T\S

Xi

]
= E[∆Sf(X)].

Remark 3. By combining Propositions 3.3 and 4.2, we see that the best kth approx-
imation of f is the unique multilinear polynomial of degree at most k that agrees
with f in all average S-differences for |S| 6 k.

Since (∆Sf)(T ) = (∆Sf)(T \ S), we can actually rewrite the sum in (22) as a
sum over the subsets of N \ S. We then obtain the following result, which also
generalizes (3).

Theorem 4.3. For every f : {0, 1}n → R and every S ⊆ N , we have

(23) IB,p(f, S) =
∑

T⊆N\S

pST (∆Sf)(T ),

where pST = Pr(T ⊆ C ⊆ S ∪ T ) =
∏

i∈T pi
∏

i∈(N\S)\T (1− pi). Moreover, we have

(24)
∑

T⊆N\S

pST = 1.

Proof. Partitioning T ⊆ N into K ⊆ N \ S and L ⊆ S, we can rewrite the sum in
(22) as

IB,p(f, S) =
∑

K⊆N\S

(∆Sf)(K)
∑
L⊆S

w(K ∪ L)

where the inner sum is exactly Pr(K ⊆ C ⊆ K ∪ S). Moreover, we have

Pr(K ⊆ C ⊆ K ∪ S)

= Pr(Xi = 1 ∀i ∈ K and Xi = 0 ∀i ∈ (N \ S) \K)

= E

[ ∏
i∈K

Xi

∏
i∈(N\S)\K

(1−Xi)

]
=

∏
i∈K

pi
∏

i∈(N\S)\K

(1− pi),

which proves the first part of the theorem. For the second part, we simply apply
(23) to f = uS to obtain

∑
T⊆N\S pST = IB,p(uS , S) = 1. �
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Remark 4. When S is a singleton, S = {i}, from (23) we derive the following
explicit expression for the weighted Banzhaf power index

IB,p(f, {i}) =
∑

T⊆N\{i}

(
w(T ) + w(T ∪ {i})

) (
f(T ∪ {i})− f(T )

)
.

Interaction indexes of the form (23) with nonnegative coefficients satisfying prop-
erty (24) are called probabilistic interaction indexes (see [9]). These indexes share
the following probabilistic interpretation. Suppose that any coalition S ⊆ N joins
a coalition T ⊆ N \ S at random with (subjective) probability pST . Then the right-
hand side in (23) is simply the expected value of the marginal interaction (∆Sf)(T )
(called marginal contribution, if |S| = 1); see also [12, §2].

In the case of the index IB,p, we have the following additional interpretations of
pST as conditional probabilities. The proof is straightforward and hence omitted.

Proposition 4.4. For every S ⊆ N and every T ⊆ N \S, the coefficient pST defined
in (23) satisfies

pST = Pr(C = S ∪ T | C ⊇ S) = Pr(C = T | C ⊆ N \ S),

where C denotes a random coalition.

In terms of the multilinear extension f̄ of f , we also have the following interpre-
tation of IB,p, which generalizes the second equalities in (4) and (5).

Proposition 4.5. Let F1, . . . , Fn be cumulative distribution functions on [0, 1].
Then

(25) IB,p(f, S) =

∫
[0,1]n

(∆S f̄)(x) dF1(x1) · · · dFn(xn)

for every f : {0, 1}n → R and every S ⊆ N if and only if pi =
∫ 1

0
x dFi(x) for every

i ∈ N .

Proof. By linearity of the index, Equation (25) holds for every f : {0, 1}n → R and
every S ⊆ N if and only if it holds for every f = uT , with T ⊆ N , and every
S ⊆ N . Thus this condition is equivalent to

(26)
∏

i∈T\S

pi =

∫
[0,1]n

∏
i∈T\S

xi dF1(x1) · · · dFn(xn)

for every T ⊆ N and every S ⊆ T . The result then immediately follows since the

right-hand integral in (26) reduces to
∏

i∈T\S
∫ 1

0
xi dFi(xi). �

Remark 5. Clearly, the functions F1, . . . , Fn in Proposition 4.5 are not uniquely de-
termined by p. For instance, we could choose the power function Fi(x) = xpi/(1−pi)

or the one-step function Fi(x) = χ[pi,1]. We could as well consider the beta distri-
bution with parameters pi and 1− pi.

We now analyze the behavior of the interaction index IB,p on some special classes
of functions. We continue to identify pseudo-Boolean functions on {0, 1}n with
games on N and vice versa.

Recall that a null player in a game f ∈ GN is a player i ∈ N such that f(T ∪
{i}) = f(T ) for all T ⊆ N \ {i}. Equivalently, we have ∆{i}f(x) = 0 for all
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x ∈ {0, 1}n and the variable xi is said to be ineffective for f . In this case, we have

f(x) =
∑

T⊆N\{i}

(∆T f)(0)
∏
j∈T

xj =
∑

T⊆N\{i}

a(T )
∏
j∈T

xj ,

where 0 = (0, . . . , 0).
Define If = {i ∈ N : xi ineffective for f}; that is, If is the set of null players in

f . From either (21), (22), or (23), we immediately derive the following result, which
states that any coalition containing at least one null player in f has necessarily a
zero interaction.

Proposition 4.6. For every f : {0, 1}n → R and every S ⊆ N such that S∩If ̸= ∅,
we have IB,p(f, S) = 0.

Recall also that a dummy player in a game f ∈ GN is a player i ∈ N such that
f(T ∪ {i}) = f(T ) + f({i}) − f(∅) for all T ⊆ N \ {i}. We say that a coalition
S ⊆ N is dummy in f ∈ GN if f(R∪T ) = f(R)+f(T )−f(∅) for every R ⊆ S and
every T ⊆ N \ S. Thus a coalition S and its complement N \ S are simultaneously
dummy in any game f ∈ GN .

The following proposition gives an immediate interpretation of this definition.

Proposition 4.7. A coalition S ⊆ N is dummy in a game f ∈ GN if and only
if there exist games fS , fN\S ∈ GN such that IfS ⊇ N \ S, IfN\S ⊇ S and f =
fS + fN\S.

Proof. For the necessity, just set fS(T ) = f(T ∩S) and fN\S(T ) = f(T \S)−f(∅).
The sufficiency can be checked directly. �

Thus Proposition 4.7 states that a coalition S ⊆ N is dummy in f ∈ GN if and
only if f is of the form

f(x) =
∑
T⊆S

a(T )
∏
i∈T

xi +
∑

T⊆N\S
T ̸=∅

a(T )
∏
i∈T

xi .

The following result expresses the natural idea that the interaction for coalitions
that are properly partitioned by a dummy coalition must be zero. It is an immediate
consequence of Propositions 4.1, 4.6, and 4.7.

Proposition 4.8. If a coalition S ⊆ N is dummy in a game f ∈ GN , then for every
coalition K ⊆ N such that K ∩ S ̸= ∅ and K \ S ̸= ∅, we have IB,p(f,K) = 0.

We also have the following result, which immediately follows from Proposi-
tion 4.2.

Proposition 4.9. If f : {0, 1}n → R is S-increasing for some S ⊆ N (i.e.,
∆Sf(x) > 0 for all x ∈ {0, 1}n), then IB,p(f, S) > 0.

We end this section by describing the weighted Banzhaf interaction indexes that
are symmetric. An interaction index IB,p is said to be symmetric (see [13]) if
IB,p(π(f), π(S)) = IB,p(f, S) for every function f : {0, 1}n → R, every subset S ⊆
N , and every permutation π on N , where π(f) denotes the function defined by
π(f)(x1, . . . , xn) = f(xπ(1), . . . , xπ(n)).

Proposition 4.10. The index IB,p is symmetric if and only if the function w is
symmetric (i.e., p1 = · · · = pn).
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Proof. If w is symmetric, then the coefficients pST in (23) depend only on p, |T |,
and |S|. Therefore the index IB,p is a cardinal-probabilistic index (see [9]), which
is symmetric. Conversely, if IB,p is symmetric, then, by (17), we have

pi = IB,p(u{i,j}, {j}) = IB,p(u{i,j}, {i}) = pj

for every i, j ∈ N , i ̸= j, and hence w is also symmetric. �

By Proposition 4.10, we immediately see that the Banzhaf interaction index
IB = IB,1/2 is symmetric. Considering the limiting case p = 0, we also see that
the Möbius transform of f (i.e., a = IB,0) can be regarded as a symmetric weighted
Banzhaf interaction index.

5. Related indexes

In this final section, we establish interesting links between the weighted Banzhaf
interaction index and the Banzhaf and Shapley interaction indexes, which provide
new interpretations of the latter indexes. We also introduce a normalized version
of the weighted Banzhaf index to compare interactions from different functions
(games) and to compute the coefficient of determination of the best kth approxi-
mations.

5.1. Links with the Banzhaf and Shapley indexes. Since the mapping f 7→
IB,p(f, ·) is a bijection, we can find conversion formulas between f , its Möbius
transform a, and IB,p(f, ·).

The conversion from a to IB,p(f, ·) is given in (20). From (18), we immediately
obtain the conversion from IB,p(f, ·) to a, namely

(27) a(S) =
∑
T⊇S

IB,p(f, T )
∏

i∈T\S

(−pi).

By combining (20) and (27), we easily obtain a conversion formula from IB,p(f, ·)
to IB,p′(f, ·) for every p′ ∈ ]0, 1[

n
, namely

(28) IB,p′(f, S) =
∑
T⊇S

IB,p(f, T )
∏

i∈T\S

(p′i − pi) .

Now, as already discussed, the index IB can also be expressed in terms of IB,p

simply by setting p = 1
2
. However, combining (4) with (17), we also obtain the

following alternative expression

(29) IB(f, S) =

∫
[0,1]n

IB,p(f, S) dp.

Equation (29) can be interpreted as follows. Suppose that the players behave
independently of each other to form coalitions, each player i with probability pi ∈
]0, 1[, but this probability is not known a priori. Then, to define an interaction
index, it is natural to consider the average (center of mass) of the weighted indexes
over all possibilities of choosing the probabilities. Equation (29) shows that we then
obtain the Banzhaf interaction index.

The Shapley interaction index [12, 13] of a coalition S ⊆ N in a game f ∈ GN is
defined by

(30) ISh(f, S) =
∑
T⊇S

a(T )

|T | − |S|+ 1
=

∫ 1

0

(∆S f̄)(x, . . . , x) dx,
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where the set function a : 2N → R is the Möbius transform of f .
Combining (17) with (30), we obtain an interesting expression of ISh in terms of

IB,p, namely

(31) ISh(f, S) =

∫ 1

0

IB,(p,...,p)(f, S) dp.

Here, the players still behave independently of each other to form coalitions but
with the same probability p. The integral in (31) simply represents the average
value of the weighted indexes over all the possible probabilities.

Remark 6. (a) Formulas (20) and (27) clearly generalize the conversion formu-
las between IB and a given in [12, p. 175].

(b) Expressions of power indexes as integrals similar to (30) and (31) were
proposed and investigated by Straffin [23].

(c) Every cardinal-probabilistic index [9] can be expressed as an integral of
IB,(p,...,p) with respect to some distribution function (see [9, Theorem 4.4]).

5.2. Normalized index and coefficients of determination. We have seen that
the interaction index IB,p is a linear map. This implies that it cannot be considered
as an absolute interaction index but rather as a relative index constructed to assess
and compare interactions for a given function.

If we want to compare interactions for different functions, we need to consider an
absolute (normalized) interaction index. Such an index can be defined as follows.
Considering again 2N as a probability space with respect to the measure w, we see
that, for a nonempty subset S ⊆ N , the index IB,p(f, S) is the covariance of the

random variables f and vS/
∏

i∈S

√
pi(1− pi). It is then natural to consider the

Pearson correlation coefficient instead of the covariance.

Definition 5.1. The normalized interaction index is the mapping

r : {f : {0, 1}n → R : f is non constant} × (2N \ {∅}) → R

defined by

r(f, S) =
IB,p(f, S)

σ(f)

∏
i∈S

√
pi(1− pi) =

⟨f − E(f)

σ(f)
, vS

⟩
,

where E(f) and σ(f) are the expectation and the standard deviation of f , respec-
tively, when f is regarded as a random variable.

From this definition it follows that −1 6 r(f, S) 6 1. Moreover, this index
remains unchanged under interval scale transformations, that is, r(af + b, S) =
r(f, S) for all a > 0 and b ∈ R.

Remark 7. By definition of the normalized interaction index, for every nonempty
S ⊆ N , we have the inequality

|IB,p(f, S)| 6
σ(f)∏

i∈S

√
pi(1− pi)

.

The equality holds if and only if there exist a, b ∈ R such that f = a vS + b.

The normalized index is also useful to compute the coefficient of determination
R2

k(f) = σ2(fk)/σ
2(f) of the best kth approximation of f (assuming f noncon-

stant). Since E(fk) = IB,p(fk,∅) = IB,p(f,∅) = E(f) (see Proposition 3.3), by
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(11), we obtain

R2
k(f) =

1

σ2(f)
∥fk − E(fk)∥2

=
1

σ2(f)

∑
T⊆N

16|T |6k

⟨f, vT ⟩2 =
∑
T⊆N

16|T |6k

r(f, T )2.
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