DHAC-indukált transzgén-reaktiváció a 35S-gshI GMO szürkenyárban (Populus × canescens)

Gyulai Gábor

Szent István Egyetem Mezőgazdaság- és Környezettudományi Kar, Genetika és Biotechnológiai Intézet, Gödöllő gyulai.gabor@mkk.szie.hu

ÖSSZEFOGLALÁS

A transzgénikus szürkenyár (Populus × canescens) klónokba (6lgl, 11ggs) épített gshI-transzgén (E.coli), valamint az identikus (endogén) nvár gshl gén relatív expressziós szintjét határoztuk meg qRT-PCR analízissel (kvantitatív rerverz transzkriptáz polimeráz láncreakcióval) demetilációs hatású DHAC (5,6-dihidro-5'-azacitidin hidroklorid) kezelés indukciójával, a konstitutívan expresszálódó α-tubulin gén expressziójának kontrolljában. A kiértékelésben $2^{-\Delta\Delta Ct}$ módszert alkalmaztuk. A 6lgl klónban a gshI transzgén expressziója extrém magas értéket mutatott (13,5-szeres) a 11ggs (1,0) klónhoz képest, amely érték tovább növekedett a DHAC demetilációs indukciójával $(10^4 M,$ 7 napi kezelés) 6lgl klónban (180%). Ez a magas expressziós érték egy 60%-kal alacsonyabb kópiaszámú transzgén-beépülés (1,0-6lgl) ellenére érvényesült (1,6-11ggs). A DHAC-indukció a nyár endogén gsh1-génexpressziós szintjére szignifikánsan hatékonyabb volt a nem-transzformált (X) klónban (19,7-szeres), klónokban mint a transzformáns (6lgl-8,7-szeres; 11ggs-2,5-szeres).

Kulcsszavak: qPCR, DHAC, transzgénikus nyár

SUMMARY

Relative gene expression levels of transgene gshI (y-glutamylcysteine synthetase cloned from E. coli) were analyzed by qRT-PCR in two transgenic poplar (Populus \times canescens) clones (11ggs and 6lgl) and wild type (WT). An extremely high expression level of transgene gshI was observed in the 6lgl clone (13.5-fold) compared to 11ggs (1.0) samples, which level was doubled (1.8-fold) in the DHAC (5.6-dihydro-5'-azacytidine hydrochloride) treated (at 10⁻⁴ M for 7 days) 6lgl samples but not in the 11ggs clone (0.4-fold). Contrary to this result, relative copy number of transgene gshI in the 6lgl clone was found to be less 60% less (1.0) then in the 11ggs samples (1.6). Relative expression levels of proper poplar gene gsh1-poplar showed significantly higher responsiveness to DHAC treatment than transgene gshI with the highest expression level in the untransformed (WT) poplar clone (19.7-fold) compared to transformed 6lgl (8.7-fold) and 11ggs (2.5-fold) clones. For internal controls constitutively expressed housekeeping genes a-tubulin were applied. For data analysis, the $2^{-\Delta ACt}$ method was used. DHAC applied in long-term cultures (27 days) at low concentrations $(10^{-8} - 10^{-6} M)$ showed morphogenetic activity by initiating de novo root development of leaf discs.

Keywords: qRT-PCR, DHAC, transgenic poplar

BEVEZETÉS

A legstabilabb génkonstrukciók is ki vannak téve a gén-csendesítés (gene silencing) hatásának, amely elsősorban a DNS metilációján keresztül megy végbe a DNS metiltranszferáz (CMT) katalízisében (Wolfe és Matzke, 1999). A DNS citozin nukleotidjának metilációja 5-metilcitozinná (5-mC) a növények természetes molekuláris védelmi mechanizmusa (Linn et al., 1990). A CMT-inhibitor kezelésnek kitett növényekben a metilációs szint csökkenéséről, új metilációs mintázat, valamint elhallgattatott gének reaktivációja megy végbe. Vizsgálatainkban ezért a transz/gén reaktivációban hatékonynak bizonyult, DNS metiltranszferáz (CMT) enzim gátlásán keresztül ható DHAC (5,6-dihidro-5'-azacitidin hidroklorid) (Sheikhnejad et al., 1999) indukciót alkalmaztuk a 11ggs és 6lgl gshI-transzgémikus nyárfaklónokban, valamint a nem-transzformáns klónban. A gshl gén (és a kapcsolódó gének) aktivitásának mérésére reverz transzkripciós kvantitatív PCR-t (qRT-PCR) alkalmaztunk. A DHAC-indukált gsh1 gén reaktíváció végső célja egy alternatív molekuláris lehetőség kidolgozása volt a transzgénikus gshI nyárfaklónok kiváltására.

A glutation (GSH) első leírása a növényi sejtekből De Rey-Pailhade (1888a, b) kísérleteihez kötődik. Élesztőben és más seitekben azonosított egy vegyületet, amely spontán reakcióba lépett elemi kénnel hidrogén-szulfidot létrehozva. Az új vegyületet philotion-nak nevezte el. 1921-ben Hopkins arra a következtetésre jutott (tévesen), hogy ez a vegyület egy dipeptid, amely ciszteinből és glutaminsavból áll, és valószínűleg γ-glutamilciszteinről van szó (Hopkins és Dickinson, 1922). Egy későbbi vizsgálata során 1929-ben mutatta ki az új vegyületben a glicint (Hopkins, 1929), majd 1930-ban írta le a ma ismert szerkezetét, és vezette be a glutation elnevezést, amely az eredeti filotion és a peptideket jelző pepton végződésre vezetett vissza (Simoni et al., 2002). Ma már ismert, hogy a GSH a legfontosabb és a legnagyobb mennyiségben előforduló tioltartalmú antioxidáns vegyület növényi szövetekben (Bittsánszky, 2006; Gullner et al., 2001; Gullner és Kőmíves, 1998).

A glutationnak ez a tulajdonsága hívta életre az antioxidánsokat kódoló génekkel történő transzformációs kutatásokat, amely a hosszú élettartamú fás növényeknél különösen nagy jelentőségű. A glutation anyagcserében történő stabil genetikai módosításokhoz az INRA 717-1-B4 jelű *Populus×canescens* klónok kerültek felhasználásra a szürkenyár fitoextrakciós kapacitása, valamint a szürkenyár előnyös *Agrobacterium tumefaciens*-el szembeni fogékonysága miatt. A transzformációk célja minden esetben a redukált glutation tartalom növelése volt (Leple et al., 1992; Rennenberg és Peuke, 2005).

A 11ggs és a 6lgl klón előállítása. A szürkenyár klónokat az Escherichia coli baktériumból származó γ -glutamil-cisztein szintáz (γ -ECS) enzimet kódoló génnel (gshI) transzformálták (Leple et al., 1992). Az enzim a glutation tripeptid bioszintézisének egyik fontos lépését, a glutaminsav és cisztein aminósavak peptid-kötés reakcióját katalizálja, amely lépéssel a γ -glutamilcisztein (γ -EC) dipeptid, a glutation prekurzora jön létre.

A gsh1 gén cDNSe klóntárból állt rendelkezésre (Watanabe et al., 1986). A gén eredeti start-kodonját (TTG) előbb az eukariótákra jellemző ATG szekvenciára módosították. Magát a kódoló szekvenciát (1,7 kb) tartalmazó HindIII/SmaI fragmentumot a pLBR19 plazmidba klónozták, a promóter a karfiol mozaik vírus (CaMV) konstitutív 35S promótere volt, dupla felerősítő (enhancer) a CaMV szekvenciával (p70) és poli-A szekvenciájával. Ezt a CaMV-35S promóter – gshl – poli-A gén-kazettát a pBIN19 (Bevan, 1984) bináris vektorba klónozták egy Sstl / Xbal inszertben. Az így megkonstruált vektort építették be az Agrobacterium tumefaciens C58 pMP90 törzsébe (Koncz és Schell, 1986), amellyel a végső transzformációt végezték (P.×canescens) (Leple et al., 1992).

Kétféle gsh1-génnel transzformált klóntípust állítottak elő. A 11ggs klónban a transzgén fehérjeterméke a citoszolban expresszálódik (Arisi et al., 1997), a 6lgl klónban a CaMV-35S promóter és a gshl gén közé beépített borsó RUBISCO gén kis alegységének tranzit peptid génje (borsó rbcS) következtében a gshl gén terméke beszállítódik a kloroplasztiszba (Noctor et al., 1998a). Α transzgénikus klónokban а GSH tartalom 2-4-szeresen magasabbnak bizonyult, mint a kontroll klónokban.

Öt transzformáns klónban sikerült az enzimet túltermeltetni (ggs típusok), amelyekben a bakteriális y-ECS a citoszolban termelődött. Az öt vonalból négyben mutatott a transzgén jelentős expressziót. A levélkivonatokban a bakteriális fehérje mennyisége összefüggésben volt a transzgén expressziójával. A transzformáns vonalakban a GS (glutation szintáz) és GR (glutation reduktáz) aktivitás nem mutatott változást a kontroll vonalakhoz képest, viszont 2-4-szer nagyobb GSH tartalom volt mérhető a levelekben. A GSH tartalom növekedése együtt járt a redukált glutation (GSSG) növekedésével. A y-EC tartalom is 5-15-szeres mértékben nőtt. A szabad aminosavak mennyiségének meghatározása azt hogy levelek glutaminsavmutatta, а és glicintartalma nincs befolyással а γ-ECS túltermeltetésére (Arisi et al., 1997; Noctor et al., 1998b).

Későbbi munkákban a bakteriális γ -ECS enzimet a kloroplasztiszban termeltették túl (*lgl* klónok). Hét független stabil vonalat állítottak elő a többezer transzformációs kísérletből, amelyekből öt klón különösen nagy γ -ECS aktivitást mutatott, amely

korrelált a western hibridizációban kapott sáv intenzitásokkal. Kloroplasztisz izolálás után végzett megerősítették, hogy mérések а transzgén fehérjeterméke az lgl klónokban a kloroplasztiszban, a ggs klónokban pedig a citoszolban jelenik meg. Az lgl klónokban 4-5-ször magasabb enzimaktivitás volt tapasztalható, ami a GR enzimhez hasonlóan a kloroplasztiszban való stabilabb állapottal magyarázható. Hasonlóan a ggs klónokhoz az lgl konstrukciókban is erősen nőtt a tiol tartalom. A γ-EC a levelekben még a ggs klónokénál is nagyobb mennyiségben volt jelen (a kontrollhoz képest 50-szeres mennyiségben). Ezek a transzgénikus γ-ECS bizonyították, növénvek hogy а túltermeltetésével a növényekben megemelhető a GSH tartalom a növény növekedésének károsodása nélkül (Noctor et al., 1998b).

Korábbi konstrukciók. A kísérletek kezdeti szakaszában az E. coli baktérium GR enzim gor génjét építették be, így a transzformáns növények leveleiben a kivonható GR aktivitása 2-10-szer nagyobb értéket mutatott a kontrollhoz képest, de ezerszeresére is növekedett, amikor a tranzit-peptid konstrukciót a kloroplasztiszba jutatták. A GR az oxidált glutation diszulfid kötésének redukcióját katalizálja. A különbség azzal volt magyarázható, bakteriális enzim stabilabb hogy а а kloroplasztiszban, citoszolban. mint а А kloroplasztiszba juttatott glutation reduktáz enzim nagyobb glutationtartalmat eredményezett, ami a kifejeztetésnél nem citoszolban történő volt tapasztalható. Azonban, ezek a transzgénikus növények kevésbé bizonyultak érzékenynek a paraquattal előidézett oxidatív stresszben (Foyer et al., 1995).

Egy későbbi munka során a glutation bioszintézis utolsó lépését katalizáló GS enzim gsh2 génjével transzformálták nyárfa klónokat. а Α transzformánsokban az enzim citoszolban а halmozódott föl. A kivonható GS aktivitás egyes klónokban 300-szorosára növekedett a kontrollhoz képest. Az óriási aktivitásnövekedés ellenére a tiol tartalom a levelekben nem változott. A transzformáns levelekből vágott korongok akkor halmoztak fel több glutationt, ha az exogén y-EC-t adagoltak hozzájuk (Strohm et al., 1995). A GS enzimet a kloroplasztban is túltermeltették. Ezekben a növényekben a kivonható GS aktivitása akár 500-szorosára is megnőtt, viszont a GSH mennyiség ebben a konstrukcióban sem változott szignifikánsan (Noctor et al., 1998a, b).

ANYAG ÉS MÓDSZER

Növényanyag. A Populus×canescens hibridek két gshI-transzformáns klónját a 11ggs (Arisi et al., 1997) és a 6lgl (Noctor et al., 1998a) klónokat, valamint a nem transzformáns (WT) kontroll klónt (1. ábra) alkalmaztuk. A klónokat in vitro hajtástenyészetben tartottuk fenn WPM (Woody Plant Medium) táptalajon (Lloyd és McCown, 1980).

l~dbra: A gshI transzgén relatív expressziónövekedése a DHAC-kezelt (10⁻⁴ M, 7 nap) transzgénikus szürkenyár klónokban (11ggs, 6lgl) (SD_{5%})

Figure 1: Increase of the relative gene expression levels of gshI-transgene in the DHAC-treated samples of poplar (Populus× canescens) clones (Standard Deviations were less than 5% of the mean value in each case)

Relative Gene Expression(1), Untreated(2), DHAC-treated(3)

DHAC-kezelés. A steril növények leveleiből 9 mm átmérőjű levélkorongokat vágtunk (Bittsánszky, 2006; Gyulai et al., 2005), majd DHAC-t (5,6-dihidro-5'-azacitidin hidroklorid) tartalmazó (10^{-4} M) táptalajra helyeztük (Gyulai et al., 1995, 2005; Gullner et al., 2005), és inkubáltuk 7 napig, 16/8 világos/sötét (40 µEm²s⁻¹) megvilágítás mellett (Bittsánszky et al., 2005b).

RNS izolálás. Totál RNS-t 0,05 g tömegű levélkorongokból izoláltunk (Gyulai et al., 2005; Bittsánszky et al., 2005a, 2006). Az RNS izolálást Absolutely RNA Miniprep Kit-tel (# 400800,

Stratagene, USA – Biomedica, Hungary) végeztük. A kivont RNS minták minőségét és mennyiségét (2 μl RNS) NanoDrop ND-1000 UV-Vis spektrofotométer (NanoDrop Technologies, Montchanin, DE, USA – BioScience, Budapest, Hungary) segítségével állapítottuk meg.

cDNS szintézis. Az egyszálú cDNS-t a mRNS templáton reverz transzkripcióban oligo(dT)18 primer alkalmazásával végeztük (Fermentas – Biocenter (Szeged, Hungary; # K1622) a gyártó eljárását követve

qPCR elemzés. A transzgén-gsh1 (E.coli), nyárgsh1 (Populus×canescens) gének expressziós szintjét qPCR elemzéséhez DyNAmo HS SybrGreen I qPCR Kit-et (F-410L, Finnzymes, Finnország – Izinta, Hungary) alkalmaztunk. A reverz transzkripció (RT) a kvantitatív polimeráz láncreakcióval (qPCR) kombinálva a legérzékenyebb módszere mind az abszolút, mind а relatív génexpresszió kvantifikálásának (Bittsánszky et al., 2006). A SybrGreen fluoreszcens festék a kétszálú DNS (dsDNA) kis árkába interkalálódik, ezzel téve lehetővé PCR termék ciklusonkénti а amplifikációjának nyomon követését. A cDNS (2,5 µl) minták génexpressziós analíziséhez gén specifikus primereket terveztünk a "Primer3" számítógépes program segítségével (1. táblázat). A reakciókat MX3000P qPCR (Stratagene, USA -Biomedica, Hungary) készüléken végeztük, a termékek felszaporodásának és disszociációjának (olvadáspont vizsgálat) elemzésével. A reakciók kvantifikálásához a cDNS mintából tízszeres hígítási sorozatot (1, 10⁻¹, 10⁻², 10⁻³) készítettünk, és NTC-t (nem DNS templát kontroll) alkalmaztunk. Belső kontrollnak a konstitutívan expresszálódó α-tubulin gént alkalmaztuk.

1. táblázat

Gén(1)	Primer párok	PCR termék	Tm	
	(5'-3')(2)	(bp)(3)	(°C)(4)	
Nyár-gsh1(5)	5'-AGTTCCGAGGCTGACATGAT -3'	160	60	
	5'-CAGCACGGTTGTTGTCAGTA-3'		60	
Transzgén-gshI(6)	5'-AGGTCAGGACATCGAACTGG -3'	272	60	
	5'-GATGCACCAAACAGATAAGG -3'		60	
α-tubulin(7)	5'-TAACCGCCTTGTTTCTCAGG-3'	112	60	
	5'-CCTGGGGTATGGAACCAAGT-3'		60	

Az alkalmazott primer párok szekvencia adatai

Table 1: Sequence data of primer pairs applied

Gene(1), Primer pairs(2), PCR product(3), Tm(°C)(4), gsh1-poplar(5), gshI transgene(6), a-tubulin(7)

 (átl. $\Delta Ct_{gén}$) határoztuk meg. $\Delta \Delta Ct$ értékek meghatározása során a kezelt minták (átl. $\Delta Ct_{gén-kezelt}$) értékeit a kezeletlen kontrollhoz (átl. $\Delta Ct_{gén-kezeletlen}$) hasonlítottuk a következő képlet alapján: (átl. $\Delta Ct_{gén-kezelt}$ – átl. $\Delta Ct_{gén-kezeletlen}$). Az adatok abszolút értékké történő alakítása 2^{- $\Delta \Delta Ct$} képlettel történt (Livak és Schmittgen, 2001).

EREDMÉNYEK ÉS MEGVITATÁS

ORT-PCR eredmények. A demetiláció hatására nem csak a gshI-transzgén, hanem a glutation metabolizmusban résztvevő nyárfa saját (endogén), stressz-induktív promóterekkel hajtott, nem konstitutívan expresszálódó gsh1 gén expressziónövekedése is megemelkedett (2., 3. ábra). Ebben a folyamatban központi szerepet játszott a megnövekedett gshI-transzgén aktivitás, amely túltermelte a glutationt (Gullner és Kőmíves, 1998; Kőmíves et al., 1998; Gullner et al., 2001).

A transzgén-*gsh*I relatív expressziós szintje a *6lgl* klónokban 13,5-szor nagyobb volt, mint a 11*ggs* klónbank (1,0) expressziós szintjénél a kezeletlen növényekben (*2. ábra*). Ez a különbség a demetiláció hatására megkétszereződött a *6lgl* klónban (23,7), míg a 11*ggs* klónban csökkent (0,4). Ez a magas expressziós érték egy 60%-kal alacsonyabb kópiaszámú transzgén-beépülés (1,0-6*lgl*) ellenére érvényesült (1,6-11*ggs*) (*2. táblázat*). 2. ábra: A nyár-gsh1 gén relatív expresszió növekedése a DHAC-kezelt (10⁴ M, 7 nap) transzgénikus (11ggs, 6lgl) és a nem transzformált (WT) szürkenyár klónokban (SD_{5%})

Figure 2: Increase of the relative gene expression levels of poplar-gsh1 gene in DHAC-treated samples of poplar (Populus×canescens) clones (transgenic 11ggs and 61g; and WT) (Standard Deviations were less than 5% of the mean value in each case)

Relative Gene Expression(1), Untreated(2), DHAC-treated(3)

2. táblázat

A gshI transzgén (E. coli) relatív kópiaszáma a transzformált szürkenyár (Populus×canescens) klónokban: 11ggs (A) és 6lgl (B) (három minta kétszeres ismétlésben)

Klónok(1)	1) gshI		a-tubulin		ΔCt		ΔΔCt		kópia # (2 ^{-ΔΔCt})(2)		
(A)	Ct	SD	Ct	SD	érték(3)	SD	érték(3)	SD	érték(3)	_/+	érték(3)
11 <i>ggs</i> /1	22,71		23,02		-0,31						
11 <i>ggs</i> /1	22,82		23,11		-0,29						
11ggs/1	22,59		22,89		-0,3						
11ggs/2	22,33		22,88		-0,55						
11 <i>ggs</i> /2	22,44		22,88		-0,44						
11 <i>ggs</i> /2	22,11		22,70		-0,59						
átlag(4)	22,50	0,26	22,91	0,14	-0,41	0,13	-0,75	0,13	1,69	1,5	4 1,85
Klónok(1)	gshI		actin		ΔCt		ΔΔCt		kópia # (2 ^{-ΔΔCt})(2)		
(B)	Ct	SD	Ct	SD	érték(3)	SD	érték(3)	SD	érték(3)	_/+	érték(3)
6 <i>lgl</i> /1	23,9		23,76		0,14						
6 <i>lgl</i> /1	23,68		23,28		0,4						
6 <i>lgl</i> /1	23,66		23,07		0,59						
6 <i>lgl</i> /2	23,86		23,55		0,31						
6 <i>lgl</i> /2	23,86		23,32		0,54						
6 <i>lgl</i> /2	23,56		23,49		0,07						
átlag(A)	23 75	0.14	23 /1	0.24	0.34	0.21	0	0.21	1	0.86	5 1 16

 Table 2: Relative copy numbers of transgene gshI (E. coli) in the transgenic poplar (Populus × canescens) clones 11ggs (A) and 6lgl (B)

 (three repetitions of two samples in each case)

Clones(1), Copy numbers(2), -/+ range(3), Mean(4)

Az identikus nyár-gsh1 (3., 4. ábra) gén relatív expressziós szintje is igen nagymértékű emelkedést mutatott a demetilációs kezelések hatására (19,7-szeres expresszió növekedés). A 11ggs klónban nyár-gsh1 gén preferencia hatását tapasztaltuk a 2,0-szeres relatíve expresszió növekedéssel, szemben a *gsh*I-transzgén reaktiváció 0,4-szeres értékével. A *6lgl* klónban a *gsh*I-transzgén mutatott magasabb demetilációs induktivitást (23,7), mint a saját nyár-*gsh*1 (13,9). 3 ábra: Kompetitív génexpresszió. A gshI-transzgén, valamint a gsh1-nyárfagén relatív expresszió növekedése a DNS-indukált demetiláció hatására (DHAC; 10⁻⁴ M, 7 nap) a nem-transzformált (WT – vad típus) és a gshI-transzformált szürkenyár klónokban (11ggs, 6lgl) (SD_{5%})

Figure 3: Competitive gene expressions of gshI-transgene and a gsh1-poplar gene in the DHAC-treated (10^{-4} M, 7 days) samples of poplar (Populus×canescens) clones (transgenic 11ggs, 6lg; and WT) (Standard Deviations were less than 5% of the mean value in each case)

Relative Gene Expresssion(1)

Eredményeink igazolják, hogy a DHAC-indukált demetiláción keresztüli transzgén-reaktivációval növelhető a stresszgének expressziója.

Annak köszönhetően, hogy a DNS metilációs mintázata öröklődik ("epigenetikus memória"), a DHAC-kezelt nyárfa új forrása lehet a növények szerzett molekuláris védelmi mechanizmusainak tanulmányozására.

A 6lgl klónok gshI és gsh1 génexpressziójának összehasonlítása alapján igazolható, hogy a gshlgén szignifikánsabb mértékben nvárfa volt reaktiválhatóbb (1,6-ról 13,9-re, amely 8,7-szoros növekedés), mint a transzgén, amely magas expressziós szintje csak 1,8-szorosára (23,7) nőtt gshI-transzgén és a gsh1-nyárfagén meg. Α kompetícióját igazolja, hogy a gsh1-nyárfagénnek a nem-transzfomált (WT) klónban mért DHACindukált génexpresszió-növekedését (1,0-ről 19,7-re, 19,7-szeres relatív expresszió növekedés), sem a 11ggs (0,8-ról 2,0-re, 2,5-szörös expresszió növekedés), sem a 6lgl (1,6-ról 13,9-re, 8,7-szeres expresszió növekedés) nem múlta felül. Mindezek mellett, a DHAC-nem-kezelt gshI-transzformált 6lgl klón igen magas transzgén-gsh1 expressziós szintje (13,5-ször magasabb a 11ggs klónban mért értéknél) igazolja a 6lgl klón hatékonyabb fitormediációs kapacitását, amelyet in vitro nehézfém felvételi eredmények is alátámasztanak (Gyulai et al., 2005).

Morfogenetikai hatás. A hosszú idejű (28 nap) DHAC kezelés egy szignifikáns morfogenetikai hatást eredményezett mindhárom klónban, a 10^{-8} M – 10^{-7} M – 10^{-6} M tartományokban, de novo járulékos gyökérfejlődés indukciójával (*4. ábra*).

KÖSZÖNETNYILVÁNÍTÁS

A szerző köszönetet mond Dr. Bittsánszky A., Dr. Gullner G., Dr. Kiss J., Prof. Kőmíves T., Prof. Heszky L. közreműködéséért.

 4. ábra: A DHAC (10⁻⁸ M – 10⁻⁵ M) morfogenetikai hatása: járulékos gyökérindukció a transzgénikus (11ggs, 6lgl) és a nem-transzformált (WT) szürkenyár (*Populus × canescens*) klónokban

Figure 4: Root initiation capacity of DHAC (10^{-8} M – 10^{-5} M) on leaf discs of untransformed (WT) and gshI-transformed clones (11ggs, 6lgl) of hybrid poplar (P.×canescens) incubated in long-term cultures (28 days) Untreated(1)

IRODALOM

- Arisi, A. C. M.-Noctor, G.-Foyer, C. H.-Jouanin, L. (1997): Modification of thiol contents in poplars (*Populus tremula*× P. alba) overexpressing enzymes involved in glutathione synthesis. Planta 203:362-372.
- Bevan, M. (1984): Binary Agrobacterium Vectors For Plant Transformation. Nucleic Acids Research 12:8711-8721.
- Bittsánszky A. (2006): A gsh1-transzgénikus szürkenyár stresszindukciója Zn²⁺ és paraquat tesztben; feketenyár sejtklónok SSR diverzitása. PhD Disszertáció, Gödöllő.
- Bittsánszky, A.-Gyulai, G.-Gullner, G.-Kiss, J.-Csintalan, Zs.-Szabó, Z.-Lágler, R.-Kőmíves, T. (2005a): Stress tolerance and in vitro phytoremediation of poplar (*Populus*). Hung Agric Research 2005/1:13-15.
- Bittsánszky, A.-Kőmíves, T.-Gullner, G.-Gyulai, G.-Kiss, J.-Heszky, L.-Radimszky, L.-Rennenberg, H. (2005b): Ability of transgenic poplars with elevated glutathione content to tolerate Zinc (2+) stress. Environment International 31:251-254.
- Bittsánszky, A.-Gyulai, G.-Humphreys, M.-Gullner, G.-Csintalan, Zs.-Kiss, J.-Szabó, Z.-Lágler, R.-Tóth, Z.-Rennenberg, H.-Heszky, L.-Kőmíves, T. (2006): RT-PCR analysis and stress response capacity of transgenic gshI-poplar clones (*Populus×canescens*) in response to paraquat exposure. Z. Naturforschung 61c:699-730.
- De Rey-Pailhade, J. (1888a): Sur un corps d'origine organique hydrogenant le soufre a froid. (On a body of organic origin hydrogenated cold sulfer.) Compte Rendus Hebdomadaire Séances de l'Académie des Sciences 1888;106:1683-4 (in French).
- De Rey-Pailhade, J. (1888b): Nouvelles recherches physiologiques sur la substance organique hydrogenant le soufre a froid. (New physiological research on an organic substance cold sulfer.) Compte Rendus Hebdomadaire Séances de l'Académie des Sciences 1888; 107:43-4 (in French).
- Foyer, C. H.-Sourian, N.-Perret, S.-Lelendais, M.-Kunert, K. J.-Provost, C.-Joianin, L. (1995): Overexpression of glutathionereductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiology 109:1047-1057.
- Gullner G.-Kőmíves T. (1998): A glutation szerepe növénykórokozó kölcsönhatásokban. Biokémia 22:83-88.
- Gullner, G.-Kőmíves, T.-Rennenberg, H. (2001): Enhanced tolerance of transgenic poplar plants overexpressing gammaglutamylcysteine synthetase towards chloroacetanilide herbicides. J. Exp. Botany 52:971-979.
- Gullner, G.-Gyulai, G.-Bittsánszky, A.-Kiss, J.-Heszky, L.-Kömíves, T. (2005): Enhanced inducibility of glutathione stransferase activity by paraquat in poplar leaf discs in the presence of sucrose. Phyton 45:39-44.
- Gyulai, G.-Jekkel, Z.-Kiss, E.-Kiss, J.-Heszky, L. (1995): A selective auxin and cytokinin bioassay based on root and shoot formation in vitro. J Plant Physiol 145:379-382.
- Gyulai, G.-Humphreys, M.-Bittsánszky, A.-Skøt, K.-Kiss, J.-Skøt, L.-Gullner, G.-Heywood, S.-Szabó, Z.-Lovatt, A.-Radimszky, L.-Roderick, H.-Abberton, M.-Rennenberg, H.-Kőmíves, T.-Heszky, L. (2005): AFLP analysis and improved phytoextraction capacity of transgenic gshI-poplar clones (*Populus canescens* L.) in vitro. Z. Naturforschung 60c:300-306.

- Hopkins, F. G. (1929): On glutathione: A reinvestigation J. Biol. Chem. 84:269-320.
- Hopkins, F. G.-Dickinson, M. (1922): On Glutathione. II. A thermostable oxidation-reduction system J. Biol. Chem. 54 (3):527-563.
- Koncz, C.-Schell, J. (1986): The promoter of Tl-DNA gene 5 controls the tissue-specific expression of chimeric genes carried by a novel type of Agrobacterium binary vector. Molecular and General Genetics 204:383-396.
- Kőmíves, T.-Gullner, G.-Király, Z. (1998): Role of glutathione and glutathione-related enzymes in response of plants to environmental stress. Stress of life. From molecules to man 851:251-258.
- Leple, J. C.-Brasileiro, A. C. M.-Michel, M. F.-Delmotte, F.-Jouanin, L. (1992): Transgenic poplars-expression of chimeric genes using 4 different constructs. Plant Cell Reports 11:137-141.
- Linn, F.-Heidmann, I.-Saedler, H.-Meyer, P. (1990): Epigenetic changes in the expression of the maize A1 gene in Petunia hybrida: role of numbers of integrated gene copies and state of methylation. Molecular and General Genetics 222:329-336.
- Livak, K. J.-Schmittgen, T. D. (2001): Analysis of relative gene expression data using real-time quantitative PCR and the 2^{-ΔΔCt} method. Methods 25:402-408.
- Lloyd, G.-McCown, B. H. (1980): Commercially feasible micropropagation of mountain laurel, *Kalmia latifolia*, by use of shoot-tip culture. Com.Proc Int Plant Prop Soc 30:421-427.
- Noctor, G.-Arisi, A. C. M.-Jouanin, L.-Foyer, C. H. (1998a): Manipulation of glutathione and amino acid biosynthesis in the chloroplast. Plant Physiology 118:471-482.
- Noctor, G.-Arisi, A. C. M.-Jouanin, L.-Kunert, K. J.-Rennenberg, H.-Foyer, C. H. (1998b): Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J Exp Botany 49:623-647.
- Rennenberg, H.-Peuke, A. D. (2005): Phytoremediation with transgenic trees. Z. Naturforschung C60:199-207.
- Sheikhnejad, G.-Brank, A.-Christman, J. K.-Goddard, A.-Alvarez, E.-Ford, Jr. H.-Marquez, V. E.-Marasco, C. J.-Sufrin, J. R.-O'Gara, M.-Cheng, X. (1999): Mechanism of inhibition of DNA (cytosine C5)-methyltransferases by oligodeoxyribonucleotides containing 5,6-dihydro-5azacytosine. Mol. Biol. 285:2021-2034.
- Simoni, R. D.-Hill, R. L.-Vaughan, M. (2002): The Discovery of Glutathione by F. Gowland Hopkins and the Beginning of Biochemistry at Cambridge University J. Biol. Chem. 277:27-28.
- Strohm, M.-Jouanin, L.-Kunert, K. J.-Provost, C.-Polle, A.-Foyer, C. H.-Rennenberg, H. (1995): Regulation of glutathione synthesis in leaves of transgenic poplar (*Populus* tremula×Populus alba) overexpressing glutathione synthetase. Plant Journal 7:141-145.
- Watanabe, K.-Yamamoto, Y.-Murata, K.-Kimura, A. (1986): The nucleotide-sequence of the gene for gamma-glutamylcysteine synthetase of *Escherichia coli*. Nucleic Acids Research 14:4393-4400.
- Wolfe, A. P.-Matzke, M. A. (1999): Epigenetics: regulation through repression. Science 286:481.
- Fermentas Life Science (2007): RevertAid[™] First Strand cDNA Synthesis Kit.