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ABSTRACT. The first author [1] proved that all zeros of the reciprocal polynomial

Pm(z) =
m∑

k=0

Akzk (z ∈ C),

of degreem ≥ 2 with real coefficientsAk ∈ R (i.e. Am 6= 0 andAk = Am−k for all k =
0, . . . ,

[
m
2

]
) are on the unit circle, provided that

|Am| ≥
m∑

k=0

|Ak −Am| =
m−1∑
k=1

|Ak −Am|.

Moreover, the zeros ofPm are near to them + 1st roots of unity (except the root1). A.
Schinzel [3] generalized the first part of Lakatos’ result for self–inversive polynomials i.e. poly-
nomials

Pm(z) =
m∑

k=0

Akzk

for whichAk ∈ C, Am 6= 0 andεĀk = Am−k for all k = 0, . . . ,m with a fixedε ∈ C, |ε| = 1.
He proved that all zeros ofPm are on the unit circle, provided that

|Am| ≥ inf
c,d∈C, |d|=1

m∑
k=0

|cAk − dm−kAm|.

If the inequality is strict the zeros are single. The aim of this paper is to show that for real
reciprocal polynomials of odd degree Lakatos’ result remains valid even if

|Am| ≥ cos2
π

2(m + 1)

m−1∑
k=1

|Ak −Am|.

We conjecture that Schinzel’s result can also be extended similarly: all zeros ofPm are on the
unit circle if Pm is self-inversive and

|Am| ≥ cos
π

2(m + 1)
inf

c,d∈C, |d|=1

m∑
k=0

|cAk − dm−kAm|.
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2 PIROSKA LAKATOS AND LÁSZLÓ LOSONCZI

1. I NTRODUCTION

Studying the spectral properties of the Coxeter transformation Lakatos [1] found that all zeros
of the reciprocal polynomial

Pm(z) =
m∑

k=0

Akz
k (z ∈ C)

of degreem ≥ 2 with real coefficients, i.e.

(1.1) Am 6= 0, Ak ∈ R, and Ak = Am−k

(
k = 0, . . . ,

[
m
2

])
are on the unit circle, provided that

(1.2) |Am| ≥
m−1∑
k=1

|Ak − Am|.

She used Chebyshev transformation to prove this result.
The manuscript on this was sent to A. Schinzel for his comments. He generalized the above

theorem [3] for self-inversive polynomials by proving that all zeros of the polynomialPm(z) =∑m
k=0 Akz

k where

(1.3) Am 6= 0, Ak ∈ C, and andεĀk = Am−k (k = 0, . . . ,m) with ε ∈ C, |ε| = 1

are on the unit circle, provided that

(1.4) |Am| ≥ inf
c,d∈C, |d|=1

m∑
k=0

|cAk − dm−kAm|

holds.
Schinzel’s proof was based on a theorem of Cohn [4] and on the estimate

(1.5) min
z∈C,|z|=1

∣∣∣∣∣
m∑

k=1

kzm−k

∣∣∣∣∣ ≥ m

2
.

Learning of Schinzel’s generalization, the first author made an attempt to improve her result.
Although the method of Chebyshev transformation does not seem to work for self-inversive
polynomials, it can be used to obtain information about the location of the zeros on the unit
circle. She could prove [1] that condition (1.2) ensures that the distribution of the zeroseiuj (j =
1, . . . ,m) of Pm(z) =

∑m
k=0 Akz

k satisfying (1.1), (1.2) is quite regular. They can be arranged
such that

(1.6)
∣∣εj − eiuj

∣∣ <
π

m + 1
(j = 1, . . . ,m)

holds, where

εj = ei j
m+1

2π (j = 1, 2, . . . ,m)

are them + 1st roots of unity except1.
If m = 2n + 1 is odd then−1 = eiun+1 is always a zero and all zeros ofP2n+1 are single.
If m = 2n is even, (1.2) holds with equality and

sgn A2n = sgn(−1)k+1(Ak − A2n)

for all k = 1, 2, . . . , n with Ak−A2n 6= 0, thenun = un+1 = π, the number−1 = eiun = eiun+1

is a double zero ofP2n. Otherwise all zeros ofP2n are single.
The aim of this paper is to show that for polynomials of odd degree both results can be

improved. For even degree polynomials this is not possible. Since, for first degree reciprocal
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ON ZEROS OFRECIPROCALPOLYNOMIALS OF ODD DEGREE 3

or self-inversive polynomials the only zero of the polynomial has modulus one we may assume
that the degreem ≥ 2.

2. THE M AIN RESULT

The theorem of Lakatos can be improved as follows.

Theorem 2.1.All zeros of the reciprocal polynomial

(2.1) P2n+1(z) =
2n+1∑
k=0

Akz
k (z ∈ C)

of odd degree2n + 1 ≥ 3 with real coefficients i.e.

(2.2) A2n+1 6= 0, Ak ∈ R, and Ak = A2n+1−k (k = 0, . . . , n)

are on the unit circle, provided that

(2.3) |A2n+1| ≥ cos2 π

2(2n + 2)

2n∑
k=1

|Ak − A2n+1|.

Moreover, if (2.2), (2.3) hold then all zeroseiuj (j = 1, 2, . . . , 2n + 1) of P2n+1 are single,
−1 = eiun+1 is always a zero and the zeros can be arranged such that

(2.4)
∣∣εj − eiuj

∣∣ <
π

2n + 2
(j = 1, . . . , 2n + 1),

where

εj = ei j
2n+2

2π (j = 1, 2, . . . , 2n + 1)

are the2n + 2 nd roots of unity except1.

Proof. With the notation

l := A2n+1 = A0, a1 := A2n − l = A1 − l, . . . , an := An+1 − l = An − l

we have

h2n+1(z) : = l(z2n+1 + z2n + · · ·+ z + 1) +
n∑

k=1

ak

(
z2n+1−k + zk

)
= P2n+1(z) =

2n+1∑
k=0

Akz
k (z ∈ C).

(2.2) goes over into
l 6= 0, l, ak ∈ R (k = 1, . . . , n)

while (2.3) goes over into

(2.5) |l| ≥ 2 cos2 π

2(2n + 2)

n∑
k=1

|ak|.

We haveh2n+1(z) = (z + 1)h̄2n(z) with

h̄2n(z) = lv̄2n(z) +
n∑

k=1

akek(z)w̄2n−2k(z)
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4 PIROSKA LAKATOS AND LÁSZLÓ LOSONCZI

where

v̄2n(z) = z2n + z2n−2 + · · ·+ z2 + 1

w̄2n−2k(z) =
z2n+1−2k + 1

z + 1
, ek(z) = zk.

The Chebyshev transformT h̄2n of h̄2n was calculated in [1]:

T h̄2n(x) = lT v̄2n(x) +
n∑

k=1

akT (ek · w̄2n−2k)(x)

= l Un

(x

2

)
+

n∑
k=1

ak

[
Un−k

(x

2

)
− Un−k−1

(x

2

)]
,

whereUn is the Chebyshev polynomial of degreen of the second kind defined byUn(cos x) :=
sin(n+1)x

sin x
(n = 1, 2, . . . ) andU−1(x) := 0. Evaluating ofT h̄2n at the points

xj = 2 cos yj with yj =
j + 1

2

2n + 2
2π (j = 0, . . . , n)

of the open interval]− 2, 2[ gives that (see [1])

T h̄2n(xj) =
l(−1)j

sin yj

+
n∑

k=1

ak

cos 2n−2k+1
2

yj

cos
yj

2

=
l(−1)j + 2

∑n
k=1 ak sin

yj

2
cos 2n−2k+1

2
yj

sin yj

.

We have forj = 0, . . . , n− 1

(2.6) (0 <) sin
yj

2
< sin

yn

2
= sin

(
π

2
− π

2(2n + 2)

)
= cos

π

2(2n + 2)
,

while for j = n there is equality here. The absolute value of the factor

cos
2n− 2k + 1

2
yj = cos

2(n− k)j + j + (n− k) + 1
2

2n + 2
π (k = 1, . . . , n; j = 0, . . . , n)

takes its maximum if the fraction

2(n− k)j + j + (n− k) + 1
2

2n + 2

is nearest to an integer. Clearly the nearest possible value of this fraction to an integer is1
2(2n+2)

(this value is attained atj = 0, k = n). Thus we have shown that

(2.7)

∣∣∣∣cos
2n− 2k + 1

2
yj

∣∣∣∣ ≤ cos
π

2(2n + 2)
(k = 1, . . . , n; j = 0, . . . , n).

Let for j = 0, . . . , n

Sj := 2

∣∣∣∣∣
n∑

k=1

ak sin
yj

2
cos

2n− 2k + 1

2
yj

∣∣∣∣∣ .

Then, forj = 0, . . . , n− 1 by (2.6), (2.7) we have

Sj ≤ 2 sin
yj

2

n∑
k=1

|ak| cos
π

2(2n + 2)
< 2 cos2 π

2(2n + 2)

n∑
k=1

|ak|

unless
∑n

k=1 |ak| = 0.
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ON ZEROS OFRECIPROCALPOLYNOMIALS OF ODD DEGREE 5

Thus, by (2.3) or (2.5) we have

Sj < 2 cos2 π

2(2n + 2)

n∑
k=1

|ak| ≤ |l|

and the resulting inequality
Sj < |l|

remains valid even if
∑n

k=1 |ak| = 0.
For j = n we have

Sn ≤ 2 sin
yn

2

n∑
k=1

|ak|
∣∣∣∣cos

2(n− k)n + n + (n− k) + 1
2

2n + 2
π

∣∣∣∣
= 2 cos

π

2(2n + 2)

n∑
k=1

|ak|
∣∣∣∣cos

(
n− k +

k + 1
2

2n + 2

)
π

∣∣∣∣
= 2 cos

π

2(2n + 2)

n∑
k=1

|ak| cos
k + 1

2

2n + 2
π

< 2 cos2 π

2(2n + 2)

n∑
k=1

|ak|

unless
∑n

k=1 |ak| = 0. Thus, by (2.3) or (2.5) we have

Sn < 2 cos2 π

2(2n + 2)

n∑
k=1

|ak| ≤ |l|.

and the inequality
Sn < |l|

remains valid even if
∑n

k=1 |ak| = 0.
Looking again at the Chebyshev transform we can see that by the inequalitiesSj < |l| (j =

0, . . . , n) we have

sgn
(
T h̄2n(xj)

)
= sgn l sgn(−1)j (j = 0, 1, . . . , n)

thereforeT h̄2n hasn different zeros in] − 2, 2[. Writing these zeros in the form2 cos vj with
0 ≤ v1 ≤ v2 ≤ · · · ≤ vn ≤ π and applying Lemma 1 of [1] we conclude that all zeros ofh̄2n

are single, and of the forme±ivj , where

(2.8) yj−1 < vj < yj (j = 1, . . . , n).

Let uj := vj for j = 1, . . . , n, un+1 := π andun+1+j := 2π − un+1−j (j = 1, . . . , n), then we
obtain that all zeros ofP2n+1 = h2n+1 areeiuj (j = 1, . . . , 2n + 1) and by (2.8) the condition
(2.4) holds. �

3. REMARKS ON SCHINZEL ’ S THEOREM

Schinzel’s result can be generalized as follows.

Theorem 3.1. Let Pm(z) =
∑m

k=0 Akz
k be a self–inversive polynomial of degreem, i.e. let

Ak ∈ C, Am 6= 0 andεĀk = Am−k for all k = 0, . . . ,m with a fixedε ∈ C, |ε| = 1. If

(3.1) |Am| ≥
m

2µm

inf
c,d∈C, |d|=1

m∑
k=0

|cAk − dm−kAm|,
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6 PIROSKA LAKATOS AND LÁSZLÓ LOSONCZI

where

(3.2) µm := min
|z|≤1

∣∣∣∣∣
m∑

k=1

kzm−k

∣∣∣∣∣
then all zeros ofPm are on the unit circle. If the inequality is strict the zeros are single.

Apart from minor changes Schinzel’s proof [3] is valid for this more general result hence we
omit the proof.

By Cohn’s theorem [4] any self–inversive polynomialPm and the polynomial

zm−1P ′
m(z−1) =

m∑
k=1

kAkz
m−k (z ∈ C)

have the same number of zeros inside the unit circle. Applying this for the polynomial
∑m

k=0 zk

we obtain that
∑m

k=1 kzm−k has no zeros inside the unit circle, thus the modulus of the latter
takes its positive minimum in the unit disk on the unit circle:

µm = min
|z|=1

∣∣∣∣∣
m∑

k=1

kzm−k

∣∣∣∣∣ > 0.

By some known identities (see [2, Part 6, Problems 16, 18]) for trigonometric sums we easily
get that

Dm(t) : =

∣∣∣∣∣
m∑

k=1

kzm−k

∣∣∣∣∣
z=eit

=

√√√√[
m∑

k=1

k cos(m− k)t

]2

+

[
m∑

k=1

k sin(m− k)t

]2

=

√√√√[
m

2
+

1

2

(
sin mt

2

sin t
2

)2
]2

+

[
m sin t− sin mt

4 sin2 t
2

]2

.

From this it follows thatµm = min
t∈[0,2π]

Dm(t) ≥ m
2

and for evenm = 2n we have equality here,

since fort = π

Dm(π) =
m

2
.

This means that for evenm Theorem 3.1 coincides with Schinzel’s result.
For oddm however

µm >
m

2
.

Let for t ∈ [0, 2π]

xm(t) :=
m

2
+

1

2

(
sin mt

2

sin t
2

)2

,

ym(t) :=
m sin t− sin mt

4 sin2 t
2

,

zm(t) := xm(t) + iym(t),

thenD2
m(t) = |zm(t)|2 = xm(t)2 + ym(t)2. As Dm(π + t) = Dm(π− t) it is enough to consider

Dm on the interval[0, π].

J. Inequal. Pure and Appl. Math., 4(3) Art. 60, 2003 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


ON ZEROS OFRECIPROCALPOLYNOMIALS OF ODD DEGREE 7

0

10

20

30

40

10 20 30 40 0

1

2

3

4

1 2 3 4 5

Figure 3.1: Graph ofz9.

The next figure shows the graph ofz9 in the complex plane and an enlargement of the part
which is nearest to the origin. In the latter the distance of the origin from the graph ofz9 is also
shown. The point of the graph witht = tm = m−1

m
π is distinguished by a small circle.

Our numerical experiments give base to the following conjecture.

Conjecture 3.2. For oddm we have

µm = min
t∈[0,2π]

Dm(t) ≥ m

2
sec

π

2m + 2
.

A simple calculation shows that for oddm = 2n + 1

Dm (tm) =
m

2
sec

π

2m
.

It is clear thatµm is thedistance of the graph ofzm from the origin. The minimum ofDm is
attained near totm. It is relatively easy to show that the minimum is attained in the interval
[tm, π]. Numerical calculations seem to justify that the minimum point is in the smaller interval[

tm, tm +
2π

m2

]
.

Theorem 3.1 and Conjecture 3.2 give

Conjecture 3.3. All zeros of the self–inversive polynomial

P2n+1(z) =
2n+1∑
k=0

Akz
k (z ∈ C)

of odd degree2n + 1, i.e.

A2n+1 6= 0, Ak ∈ C, and εĀk = A2n+1−k (k = 0, . . . , 2n + 1) with ε ∈ C, |ε| = 1

are on the unit circle, provided that

|A2n+1| ≥ cos
π

2(2n + 2)
inf

c,d∈C, |d|=1

2n+1∑
k=0

|cAk − d2n+1−kA2n+1|.

holds. If the inequality is strict here then the zeros are single.
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