A KISALFÖLD FELSZÍN ALATTI VÍZFORGALMA

Az 1991–1995 között a hollandiai ITC-ben végzett térinformatikai/hidrológiai kutatás Kisalfölddel kapcsolatos eredményeinek értékelése

Szakértői tanulmány

Vekerdy Zoltán

1996. augusztus

Megbízó: Vízgazdálkodási Tudományos Kutató Rt. Vízrajzi Intézete

Az eredeti kutatásra az International Institute for Aerospace Survey and Earth Sciences (ITC, Hollandia) doktori programjának keretében került sor a Vízgazdálkodási Tudományos Kutatóközpont és az Eötvös Loránd Tudományegyetem támogatásával.

Tartalom

1 Bevezetés	1
1.1 Előzmények	1
1.2 A munka során felhasznált adatok	1
2 A vízmérleg meghatározásának lehetőségei és korlátai a Kisalföldön	3
2.1 A vizsgált rendszer: a negyedkori víztartó és a fedőréteg	3
2.1.1 A víztartó horizontális kiterjedése	3
2.1.2 A negyedkori üledékek vastagsága	3
2.1.3 A fedőréteg	4
2.2 A regionális vízmérleg	4
2.2.1 Tározás	5
2.2.2 Csapadék	5
2.2.3 Aktuális evapotranszspiráció	5
2.2.4 A felszíni vizek és a felszín alatti vizek közti vízforgalom	6
2.2.5 A felszín alatti hozzáfolyás/elfolyás	6
2.2.6 A vízmérleg értékelése	6
3 Felszíni beszivárgás/talajvízpárolgás	8
4 A folyókon levonuló árhullámok hatása a talajvízre	10
5 A negyedidőszaki víztartó modellezése	11
5.1 A talajvízmodell kialakítása és a modellezett szcenáriók	11
5.2 A talajvíz-modellezés eredményének értékelése	12
5.2.1 A felszíni és a felszín alatti vizek közötti áramlás	12
5.2.2 A beszivárgási és talajvízpárolgási folyamatok	12
6 A továbblépés lehetséges irányai	14
Hivatkozások	15
Függelék I. – Ábrák	16
Függelék II. – Táblázatok	36

- - -

Függelék I. – Ábrák

1. ábra	A vizsgált terület	16		
2. ábra	A negyedkori üledékek vastagsága méterben [Scharek, 1990; 1991a; 1991b	és		
	1993 alapján]	17		
3. ábra	A fedőréteg vastagságának térbeli folytonosságát jellemző variogram felszíne	ek:		
	a.) Rába-hordalékkúp; b.) Duna-hordalékkúp	18		
4. ábra	A fedőréteg vastagságának térképe	19		
5. ábra	A fedőréteg vízszintes hidraulikai vezetőképességének térképe	20		
6. ábra	A fedőréteg függőleges hidraulikai vezetőképességének térképe	21		
7. ábra	Évi átlagos csapadék az 1979–89-es időszakban	22		
8. ábra Azonos vízálláshoz tartozó (-24 cm), különböző Q/H görbékkel s				
	vízhozamok a Rábán, Árpásnál	23		
9. ábra	A kétdimenziós modellezés eredménye	24		
10. ábra	A talajvízháztartási jelleggörbe és annak MODFLOW által használt lineá	ris		
	közelítése	25		
11. ábra	A linearizált talajvízháztartási jelleggörbe paramétereinek térképei I: $E_{tv, n}$	nar		
	/ D	26		
12. ábra	es B_t A linearizált talajvízháztartási jelleggörbe paramétereinek térképei II: $d_{Etv, n}$ és $d_{Etv, n}$	nax		
	$\acute{es} d_{Etv, cs}$	27		
13. ábra	Feszített talajvíztükrű területek a fedőréteg hidraulikai ellenállásán	ıak		
	feltüntetésével	28		
14. ábra	A folyókon levonuló karakterisztikus árhullámok által befolyásolt terüle	tek		
	térképe	29		
15. ábra	Győri-medence talajvízmodelljének elvi vázlata (a jelek magyarázata a szöve	eg-		
	ben található)	30		
16. ábra	A talajvízmodell vízszintes kiosztása	31		
17. ábra	A szimulált és a mért talajvízállások eltérésének térbeli eloszlása	32		
18. ábra	Az "elterelt Duna" szcenárió talajvízfelszíne (a.) és a két modellez	zett		
	talajvízfelszín különbsége (b.)	33		
19. ábra	A Győri-medence vízmérleg-egységeinek térképe	34		

Függelék II. – Táblázatok

1. táblázat	A háromdimenziós talajvízmodell ellenőrzésének statisztikai adatai	35
2. táblázat	A vízmérleg-egységek morfológiai leírása	36
3. táblázat	Az alrendszerek vízmérlegei az "eredeti" szcenárió alapján	38
4. táblázat	Az alrendszerek vízmérlegei az "elterelt Duna" szcenárió alapján	42
5. táblázat	A talajvízháztartási jelleggörbe különböző módszerekkel szán	ıított
	paraméterei	46
6. táblázat	A Duna elterelésének hatása a talajvízpárolgásra a Duna hordalékkúpj	ián 47

1 Bevezetés

Ez a fejezet áttekinti a kutatás előzményeit, valamint felsorolja a munka során felhasznált adatok legfontosabb forrásait.

1.1 Előzmények

A Szerző a térinformatika és a hidrológiai modellezés összekapcsolási lehetőségeit feltáró módszertani kutatást végzett 1991 és 1996 között a hollandiai International Institute for Aerospace Survey and Earth Sciences-ben (ITC). A kutatást több magyar intézmény is támogatta, amelyek közül a legfontosabb a Vízgazdálkodási Tudományos Kutató Rt. által biztosított tanulmányi szabadság és tudományos háttér volt. A kutatás eredményeit az Eötvös Loránd Tudományegyetem Természettudományi Karára benyújtott doktori disszertáció tárgyalja részletesen [Vekerdy, 1996a], melyet az ITC publikációs sorozatában is közreadott [Vekerdy, 1996b]. A módszertani elemzéshez kiválasztott mintaterület a Kisalföld volt.

Ez a tanulmány a Vízgazdálkodási Tudományos Kutató Rt. Hidrológiai Intézetének felkérésére a Kisalföld felszín alatti vízmérlegére vonatkozó eredményeket értékeli és foglalja össze. A módszertani megközelítés helyett itt nagyobb hangsúlyt kapnak a területre vonatkozó eredmények és észrevételek, ábrákkal és táblázatokkal részletesen illusztrálva.

A Kisalföld felszíne alatt található jelentős vízkészletek utánpótlódási és veszteségi viszonyainak a megértésére és az azt befolyásoló tényezők meghatározására számos kutatás folyt az elmúlt évtizedekben [pl. Erdélyi, 1979a; 1979b; Scharek, 1990; 1991a; 1991b; 1993]. Ezek eredményeinek részletezése a jelen tanulmány kereteit messze meghaladja, így csak azokra hivatkozik, amelyek a téma szempontjából a legfontosabb megállapításokat tartalmazzák.

1.2 A munka során felhasznált adatok

A kutatást az alábbi magyar intézmények támogatták adatokkal:

- A Vízgazdálkodási Tudományos Kutató Rt. a hidrológiai adatokkal valamint topográfiai és egyéb térképek biztosításával.
- A Magyar Állami Földtani Intézet digitalizált topográfiai adatokat, fedőréteg adatokat és egyéb földtani információkat adott.

- Az Észak-dunántúli Vízügyi Igazgatóság adta a felszíni vízhálózat digitalizált térképét, vízföldtani adatokat és sok helyismereti segítséget is nyújtott.
- A Keszthelyi Agrártudományi Egyetem Mosonmagyaróvári Mezőgazdaságtudományi Kara a szigetközi növénytermesztési információkkal járult hozzá a kutatáshoz.
- A Földmérési Intézet Távérzékelési Főosztálya űrfelvételeket és légifényképeket biztosított.
- A Meteorológiai Szolgálattól hőmérséklet, csapadék és evapotranszspirációs adatok kerültek beszerzésre.

A vizsgált régió legnagyobb része jelenleg Magyarország területére esik, míg egy-egy kisebb, peremterületi rész Ausztriához valamint Szlovákiához tartozik. A legtöbb adat természetesen a Magyarországhoz tartozó részről állt rendelkezésre, míg a két másik országhoz tartozó területekről jóval kevesebb információ volt elérhető. Ennek következtében a tanulmányban közölt térképek kevésbé pontosak a nem Magyarországhoz tartozó részeken.

2 A vízmérleg meghatározásának lehetőségei és korlátai a Kisalföldön

Minden hidrológiai vizsgálat első lépése a vízrendszer lehatárolása és vízmérlegének meghatározása. Ez a gyakorlatban számos problémába ütközhet, ami részben a meglévő adatok pontatlanságának, részben a hiányos ismereteknek következménye.

2.1 A vizsgált rendszer: a negyedkori víztartó és a fedőréteg

A kutatás a Kisalföld negyedkori víztartójára összpontosított. Az itt tárolt vízkészlet a Kárpát-medencében az egyik legfontosabb vízbázis. Mivel a felszínnel és a felszíni vizekkel közvetlen kapcsolatban áll, így igen sebezhető. Ennek következtében fontos az utánpótlódási és veszteségi viszonyainak ismerete.

2.1.1 A víztartó horizontális kiterjedése

A vizsgált terület horizontális kiterjedését az *l. ábra* mutatja. A határok észak-keleten és dél-keleten a Duna és a Rába vonalával azonosak, míg nyugaton a negyedkori üledékek felszíni határvonalát követik. Adathiány miatt a vizsgálat nem terjedhetett ki a Csallóközre, de ez hidraulikai szempontból nem jelent problémát, mivel a Duna határozza meg a talajvíz mozgását a teljes Duna-hordalékkúpon, így regionális méretű átfolyás a Duna főmedre alatt nem képzelhető el.

A negyedkori üledékek horizontális elterjedése gyakorlatilag egybeesik a Győri-medencével (beleértve a negyedkori víztartó Ausztriához és Szlovákiához tartozó részét is), így ez az elnevezés a vizsgált terület megjelölésére is szolgál a továbbiakban.

2.1.2 A negyedkori üledékek vastagsága

A negyedkori üledékek vastagsága a MÁFI legújabb kutatási eredményei alapján (2. *ábra*) nagyobb, mint azt korábban feltételezték. Ez különösen a Hanság alatt szembeötlő. A 2–300 méteres vastagság indokolja a Duna és a Rába hordalékkúpjának egységes víztartóként való vizsgálatát¹.

¹ Fontos megemlíteni, hogy a vízszintes kiterjedése a víztartónak még így is két nagyságrenddel nagyobb, mint a legnagyobb vastagsága.

Vekerdy Zoltán, 1996, A Kisalföld felszín alatti vízforgalma, szakértői tanulmány a VITUKI Rt. számára, kézirat

2.1.3 A fedőréteg

A negyedkori kavicsos-homokos üledékeket egy változó vastagságú és szemcseméretű, de általában finomabb szemcsézetű fedőréteg takarja. Ennek a fedőrétegnek igen fontos a szerepe a felszín alatti vízkészletek utánpótlódása valamint a felszínen keresztül történő vízvesztés szempontjából. Ezért a fedőréteg vastagsága és hidraulikai vezetőképességének térbeli folytonossága részletes elemzésre került.

A MÁFI által rendelkezésre bocsájtott sekélyfúrási adatokból statisztikai módszerekkel kimutatható, hogy a Duna és a Rába hordalékkúpján – feltételezhetően a lerakódási viszonyok különbözősége miatt – a fedőréteg vastagságának és hidraulikai vezetőképességének térbeli folytonossága különböző. Ez jól megfigyelhető például a fedőréteg vastagságának térbeli folytonosságát jellemző variogram felszínen¹ (*3. ábra*). A variogram értékek valamint az anizotrópiát jellemző ellipszisek paraméterei is különbözőek. Az anizotrópia-ellipszis főtengelyét az ábra mindkét felén "A" jelöli. A különbségek figyelembevételére a két hordalékkúp adatainak interpolációját minden egyes változó esetében külön-külön kellett elvégezni, majd az így nyert térképeket utólag lehetett változónként egyesíteni.

Az eredményül kapott fedőréteg vastagság térképet a 4. *ábra*, a fedőréteg vízszintes hidraulikai vezetőképességének térképét az 5. *ábra*, míg a függőleges hidraulikai vezető-képességnek térképét a 6. *ábra* tartalmazza.

2.2 A regionális vízmérleg

1

A negyedkori víztartó regionális vízmérlegét a következő egyenlettel lehet leírni:

$$\Delta T = CS - ET_a + (Q_{fv,be} - Q_{fv,ki}) + (Q_{fav,be} - Q_{fav,ki})$$

A felszín elemzésével két fontos, a vizsgált változó térbeli folytonosságát leíró jellemző állapítható meg: a térbeli folytonosság irány szerinti változása (anizotrópia) és a folytonosság mértéke.

A variogram felszín értelmezéséhez érdemes összefoglalni szerkesztésének alapjait:

A mért adatokból párokat kell képezni, majd az elválasztó-távolság és -irány szerint a párokat csoportosítani/osztályozni kell. A távolsági- és irány-osztályközök számának és nagyságának megválasztása tapasztalati alapon történik.

Minden egyes csoportra ki kell számítani a variogram-értéket, ami azt jellemzi, hogy a csoport tagjainak értékei milyen mértékben különböznek egymástól. Ha a variogram-érték alacsony, akkor a tagok hasonlóak (ami térbeli folytonosságra utal), míg ha magas, akkor különbözőek (ami térbeli változékonyságra utal).

A kiszámított értékeket egy koordináta rendszerben kell feltüntetni úgy, hogy az ábra középpontjához közel helyezkednek el a kis elválasztó-távolságú pontpárokból számított variogram értékek, míg a középponttól egyre távolodva (az elválasztó-iránynak megfelelően) a nagyobbak. Az így keletkező felületet izovonalakkal lehet aztán érzékeltetni.

ahol:

ΔT	=	a tározásban beálló változás [L ³ T ⁻¹],
CS	=	csapadék [$L^3 T^{-1}$],
ETa	=	aktuális evapotranszspiráció [L ³ T ⁻¹],
Q_{fv}	=	a felszíni vizek és a felszín alatti víz közötti vízmozgás hozama [$L^3 T^{-1}$],
Q_{fav}	=	a felszín alatti vizek hozama [L ³ T ⁻¹],
index be	=	a víztartóban tárolt vízhez való hozzáfolyás,
index _{ki}	=	a víztartóból való kifolyás.
11		

A következőkben vegyük sorra a vízmérleg egyes elemeit az 1979–1989-es időszak adatainak alapján.

2.2.1 Tározás

A talajvíz megfigyelő kutak adatain végzett trend-elemzés bebizonyította, hogy nem következett be változás a talajvíz felszínének átlagos elhelyezkedésében a vizsgált időszakban, így $\Delta T = 0$.

Korábbi számítások alapján Erdélyi [1990] 5,4 km³-re becsülte a negyedkori üledékekben tárolt víz mennyiségét. A *4. ábra* alapján kiszámítható, hogy a negyedkori üledékek köbtartalma 422,6 km³, amiből – 20 %-os porozitást feltételezve – a tárolt víz mennyiségére 84,5 km³ adódik. Ez, mint látható, egy nagyságrenddel nagyobb, mint az Erdélyi által becsült mennyiség. Természetesen ennek a vízmennyiségnek csak töredéke hasznosítható közvetlenül.

2.2.2 Csapadék

Az átlagos évi csapadék térképe az 1979–89-es időszakra 38 állomás adatainak felhasználásával készült (7. *ábra*). Ebből a Győri-medencére hulló csapadék átlagosan évi 583 mm.

A csapadékmennyiség meghatározása során előforduló pontatlanságok jól ismertek a hidrológusok előtt [Woolhiser, 1992; Smith 1992]. Az előforduló hiba gyakorlati tapasztalatok alapján 2 - 10 % körülire tehető.

2.2.3 Aktuális evapotranszspiráció

Az átlagos regionális evapotranszspiráció közvetlenül nem mérhető, így meghatározása még több bizonytalansággal terhelt, mint a csapadékmérés. Potenciális evapotranszspirációs számítások és az irodalomban fellelhető adatok alapján [Tóth, 1985] a Győri-medencében az aktuális evapotranszspiráció területi átlaga évi 630 mm. Ez az érték azonban a csapadékmennyiség meghatározásánál feltételezhetően nagyobb hibával terhelt.

2.2.4 A felszíni vizek és a felszín alatti vizek közti vízforgalom

A vizsgált területre belépő és az azt elhagyó vízhozamok különbségéből következtetni lehet a vízfolyások és a felszín alatti vizek közt lejátszódó vízforgalom eredőjére. Ez a Győrimedence esetében két nehézségbe ütközik:

- A nagyobb vízfolyásokon a vízállás és a vízhozam összefüggését leíró Q/H görbét ugyan rendszeresen hitelesítik, de a hitelesítések között lejátszódó mederváltozások és egyéb hatások ismeretlenek. Így sok helyen előfordul, hogy jelentős eltérések mutatkoznak az azonos vízálláshoz tartozó, de különböző időpontra meghatározott vízhozamok között. A 8. ábra például 50 %-os eltérést is mutat az 1979 81 és az 1983 85 közötti időszakok számított vízhozamai között a Rába árpási szelvényében.
- A Győri-medencén keresztül levonuló vizek befogadója a Mosoni-Duna amit a bácsai vízmérce jól jellemezhetne. Itt azonban a Duna visszaduzzasztása miatt alkalmanként ellenirányú vízáramlás is kialakulhat, és így a vízállás és a vízhozam között nem áll fent egyértelmű kapcsolat.

A fentiek alapján megállapítható, hogy a Q/H görbék alapján számított vízhozamok nagy valószínűséggel 10 %-nál nagyobb hibával terheltek.

A rendelkezésre álló adatok azt mutatták, hogy a legfontosabb vízfolyásokon 82,5 m³/s víz lép be átlagosan a Győri-medencébe, míg Bácsánál mintegy 80 m³/s távozik. A különbség kisebb mint a fentiek alapján becsült mérési hiba.

2.2.5 A felszín alatti hozzáfolyás/elfolyás

Viszonylag gyenge vízvezetésű Pannon rétegek képezik a negyedkori üledékek feküjét, amelyekről feltételezhető azonban, hogy nem mindenütt egyformán vízzáróak [Erdélyi, 1971]. Egy-egy kétdimenziós stacionárius modell készült a Kisalföld két keresztszelvényére a Pannon és a negyedkori rétegek közötti vízáramlás nagyságának megállapítására. A modellek kalibrálásához az Erdélyi Mihály által publikált [pl. Erdélyi, 1979a] hidrodinamikai keresztszelvények szolgáltak alapul. Az egyik modell (9. ábra) 1,75 mm/év hozzáfolyást mutatott Lébénynél és 2 mm/év hozzáfolyást Oslinál. A másik modellen a legnagyobb átfolyási érték 5,5 mm/év-nek adódott. Ez azt bizonyítja, hogy a Pannon rétegekből a negyedkori rétegekbe csak néhány mm víz jut be évente, ami a talajvíz felszínén keresztül történő áramlás Tóth [1985] által megadott legnagyobb értékeinek (150 mm/év) mintegy 2 - 4%-a.

2.2.6 A vízmérleg értékelése

A számított aktuális evapotranszspiráció területi átlaga 47 mm/év-vel több, mint a csapadék. Ez az érték kevesebb, mint az elemek egyenkénti meghatározási pontossága (10 %, ami a csapadék esetében kb. 58 mm/év). A párolgási többletet (47 mm/év \approx 3,5 m³/s) érdekes

összehasonlítani a folyók vízhozamaiból számított regionális vízveszteséggel $(2,5 \text{ m}^3/\text{s})$, valamint a Pannon rétegekből történő legnagyobb beáramlás mennyiségével $(5,5 \text{ mm/év} \approx 0.4 \text{ m}^3/\text{s})$. Az állapítható meg, hogy a Győri-medence nagyságrendileg annyi vizet párologtat, mint amennyi a rá jutó csapadék. Feltételezhető, hogy a párolgás mértéke valamivel nagyobb, mint a csapadék, és ez a többlet nagyobb valószínűséggel származik a folyókból elszivárgó vízből, mint a felszín alatti hozzáfolyásból. Az egyes elemek meghatározásában rejlő pontatlanságok miatt a hagyományos úton készített vízmérleg alapján ennél pontosabb megállapítást nem lehet tenni.

A Győri-medence felszínalatti vízforgalmának pontosabb meghatározására fel kellett állítani a felszín alatti vizek háromdimenziós hidrológiai modelljét. Ehhez a negyedkori víztartó peremein lejátszódó legfontosabb folyamatokat, (a felszíni beszivárgást/talajvízpárolgást és a folyók hatását a talajvízre) részletesebb vizsgálat alá kellett venni.

A modell a MODFLOW nevű programmal készült. A további lépések tehát ezen porgram sajátosságainak figyelembevételével történtek.

3 Felszíni beszivárgás/talajvízpárolgás

A talajvíz felszínén keresztül történő vízforgalom (a felszíni beszivárgás és a talajvízpárolgás¹) növényzet nélküli és adott áteresztőképességű talaj esetében a talajvíz mélységétől függő folyamat. Ha a talajvíz közel van a talajfelszínhez akkor az év folyamán – a meteorológiai feltételektől és a növényzettől függően – mind beszivárgás, mind talajvízpárolgás előfordulhat. A talajfelszínhez képest mélyen elhelyezkedő talajvíz esetén csak beszivárgás fordulhat elő. A függőleges vízforgalom ilyetén való mélységfüggését a talajvízháztartási jelleggörbe írja le (10. ábra).

A talajvízháztartási jelleggörbének függőleges tengelye mentén a talajvíz mélysége, míg a vízszintes tengely mentén az egységnyi idő alatt (esetünkben egy év alatt) beszivárgó vagy elpárolgó víz mennyisége van feltüntetve. A 10. ábra a beszivárgás (B) és a talajvízpárolgás (E_{tv}) görbéi mellett feltünteti azoknak a MODFLOW által használt linearizált közelítéseit is $(B_k \text{ és } E_{tv, k})$.

A beszivárgás közelítő görbéje egy paraméterrel adható meg:

- a tényleges beszivárgással (B_t) , ami akkor is eléri a talajvízfelszínt, ha az mélyen helyezkedik el.
- A talajvízpárolgás közelítő görbéje három paraméterrel írható le:
 - a maximális talajvízpárolgással ($E_{tv, max}$);
 - a maximális talajvízpárolgás zónájának vastagságával ($d_{Etv, max}$), azon zóna vastagságával, amin belül a maximális talajvízpárolgás érvényesül;
 - a talajvízpárolgás csökkenési zónájának vastagságával $(d_{Etv, cs})$, azon zóna vastagságával, amin belül a talajvízpárolgás fokozatosan csökken a maximálistól egészen a megszűnésig.

Ahhoz, hogy a talajvíz felszínén keresztül történő vízforgalom területi eloszlását figyelembe lehessen venni a talajvíz modellezése során, meg kellett határozni a fenti négy paraméter területi eloszlását. Erre két módszer alkalmazásával került sor:

- Gyors becslés a vizsgált folyamatok térbeli eloszlásáról, egyszerű döntési algoritmusok (fedvénytechnika) alkalmazásával. Ez a vizsgálat az ILWIS térinformatikai szoftverrel készült.
- A telítetlen zóna vízforgalmának egydimenziós modellezésével. A térképezés lépései a következők:
 - A telítetlen zóna függőleges vízmozgását szimuláló HYDRUS modell hidraulikai paramétereinek kalibrálása a Kisalföldön előforduló fő talajtípusokra.

¹ A talajvízpárolgás fogalma alatt a talajvízből közvetlenül vagy közvetve (pl a növények evapotranszspirációján keresztül) a légtérbe jutó veszteséget értjük. Ilyen értelemben használja ezt a kifejezést pl. Major [1976] is.

Vekerdy Zoltán, 1996, A Kisalföld felszín alatti vízforgalma, szakértői tanulmány a VITUKI Rt. számára, kézirat

- 2.) A terület felosztása a HYDRUS modell bemeneti paraméterei szempontjából homogénnek tekinthető térképezési egységekre.
- 3.) A modell futtatása mindegyik térképezési egységre az 1.) lépésben meghatározott hidraulikai paraméterek alkalmazásával.
- 4.) Az eredmények megjelenítése a térképezési egységek alapján.

Mindkét módszert részletesen ismerteti Vekerdy [1994 és 1996]. Az eredményül kapott térképek (11. ábra és 12. ábra) összehasonlításából¹ az alábbi következtetéseket lehet levonni:

- Miután a talajvízfelszínen keresztül történő függőleges vízáram közvetlenül nem mérhető, így az eredmények ellenőrzése csak egy kalibrált háromdimenziós talajvízmodellben oldható meg maradéktalanul. A talajvízháztartási jelleggörbét leíró paraméterek térképeinek egymással való összehasonlítása csak a meghatározási módszerek relatív értékelésére alkalmas.
- A *gyors becslés* kevés, a függőleges vízforgalmat meghatározó tényezőt vett figyelembe igen egyszerűsített módon, így az eredményei csak közelítő képet adhatnak a talajvízháztartási jelleggörbe területi eloszlásáról.
- A telítetlen zónában történő vízmozgás egydimenziós modellezésének érzékenységvizsgálata azt mutatta, hogy a térképezés pontossága a talajrétegek vastagságának az alkalmazottnál részletesebb figyelembevételével növelhető lenne. A modellezés tovább finomítható lenne a HYDRUS növényzeti paramétereinek árnyaltabb meghatározásával is.
- Habár a tényleges beszivárgás területi átlaga igen hasonló mindkét módszer alapján (gyors becslés – 16 mm/év, telítetlen zóna modellezése – 14 mm/év), viszont jelentős különbségeket mutat a területi eloszlás. Az első módszer szinte kizárólag csak a Duna hordalékkúpján, itt is a kevésbé megbízható adatokkal rendelkező területeken mutat tényleges beszivárgást, míg a modellezésen alapuló módszer alapján a tényleges beszivárgás területi eloszlása egyenletesebb.

¹ A paraméterek területi eloszlásának értékelésénél figyelembe kell venni, hogy a Szlovákiához és az Ausztriához tartozó területekről csak igen korlátozott mértékben álltak adatok rendelkezésre (lásd 1.2 szakasz).

Vekerdy Zoltán, 1996, A Kisalföld felszín alatti vízforgalma, szakértői tanulmány a VITUKI Rt. számára, kézirat

4 A folyókon levonuló árhullámok hatása a talajvízre

A regionális vízmérleg rámutatott (2. *fejezet*), hogy a folyók fontos szerepet játszanak a Kisalföld felszín alatti vízforgalmában. A folyókból történő beszivárgás azonban talán az egyik legnehezebben meghatározható beszivárgásfajta [Lerner et al., 1990].

A folyókon levonuló árhullámok hatásának nagysága a folyómeder és a víztartó hidraulikai tulajdonságaitól függ. Feszített tükrű talajvíz esetén az árhullám keltette talajvízmozgást leíró egyenletben figyelembe kell venni a fedőréteg hidraulikai tulajdonságait is.

A Győri-medencében a vizsgálat célja a folyókban történő vízállásváltozás talajvízre gyakorolt hatása kiterjedésének meghatározása volt.

Az alkalmazott vizsgálati módszer a talajvízmozgást leíró differenciál-egyenletek analitikai megoldásának raszteres térinformatikai környezetre való adaptálása volt. Az első lépésben elkészült a feszített talajvíztükrű területek térképe a fedőréteg hidraulikai ellenállásának feltüntetésével (*13. ábra*). A második lépésben a raszteres térinformatikai környezetre adaptált egyenletek segítségével elkészült a folyókon levonuló árhullámok hatástérképe (*14. ábra*)¹.

Az eredmény a későbbiekben a háromdimenziós talajvízmodell kalibrációját segítette, ráirányítva azokra a területekre a figyelmet, ahol a folyók számottevő hatással vannak a talajvízre.

¹ Megjegyzendő, hogy a Lajta és a Mosoni-Duna Rajka-Mosonmagyaróvár közötti szakaszának hatása technikai okok miatt (rossz adat) nem szerepel a térképen.

Vekerdy Zoltán, 1996, A Kisalföld felszín alatti vizforgalma, szakértői tanulmány a VITUKI Rt. számára, kézirat

5 A negyedidőszaki víztartó modellezése

Az előzőekben felvázolt vizsgálatok alapján egy kétrétegű modell került kidolgozásra, amelynek elvi felépítését a 15. ábra mutatja. A modellben a negyedidőszaki rétegek oldalról és alulról vízzáró rétegekkel határoltak, vagy egy vízfolyás jelenti a hidraulikailag át nem eresztő határt (az ábrán: Folyó 1). Figyelembevételre kerül a talajvízpárolgás (E_{tv}) , a tényleges beszivárgás (B_t) , a vízkitermelő kutak vízkivételei (Q_k) , valamint a folyókból történő beszivárgás (B_f) és a folyók megcsapoló hatása (Q_f) .

5.1 A talajvízmodell kialakítása és a modellezett szcenáriók

A megvalósítás eszköze a véges differencia módszert alkalmazó MODFLOW program volt. A modellezett terület felosztása egyenközű (1 km) rácshálóval történt (*16. ábra*).

A kalibráció részleteinek ismertetése meghaladja ezen tanulmány kereteit, bővebb információt a kutatást részletesen leíró disszertáció nyújt [Vekerdy, 1996]. Itt csak a modellezés eredményeinek értékelése szempontjából legfontosabb adatokat említjük.

A modell kalibrálása permanens módban, az 1979 – 1989-es időszak átlagos talajvízállása alapján történt. Az eredeti elképzeléstől eltérően egy helyen, a Répce völgye mentén oldal irányú felszín alatti hozzáfolyást is figyelembe kellett venni. A kalibrációval kapott adatokat a következőkben "eredeti" szcenárióként említjük. A kalibráció pontosságának jellemzésére a talajvízkutaknál mért és a modellel számított talajvízállások statisztikai összehasonlítását a *l. táblázat* tartalmazza. A mért és a modellel számított talajvízállások különbségeinek területi eloszlását, a *17. ábra* szemlélteti.

A peremfeltételeknek a Dunán – a bősi vízlépcső által érintett szakaszon – való megváltoztatásával (350 m³/s-nak megfelelő vízállás) készült az "elterelt Duna" szcenárió. Ez a szcenárió nem veszi figyelembe a mesterséges vízpótlás hatását. Az "elterelt Duna" szcenárió talajvízfelszínét, és a két modellezett talajvízfelszín különbségét a *18. ábra* mutatja.

A Győri-medence felszín alatti vízrendszerében lezajló folyamatoknak, az egyes alrendszerek között áramló vízmennyiségeknek a meghatározásához a terület 47 vízmérlegegységre lett felosztva (19. ábra). Az így kialakított alrendszerek két csoportba oszthatók: egy részük egy felszíni vízfolyást is magába foglal, míg a másik részük nem tartalmaz felszíni vízfolyást. Az előbbiekkel főként a felszíni vizek és a talajvíz közti áramlási viszonyok tanulmányozhatók, míg az utóbbiakkal a beszivárgási és talajvízpárolgási viszonyok. Az alrendszerek leírásait és vízmérlegeit a 2. - 4. táblázatok tartalmazzák.

5.2 A talajvíz-modellezés eredményének értékelése

A felállított permanens talajvízmodell bepillantást nyújt a terület áramlási viszonyaiba. Permanens állapot ritkán jelentkezik a természetben, de a hosszú időszak átlagai alapján készült permanens modell a regionális trendek jó közelítésének tekinthető.

A Győri-medence modelljének térbeli felbontása nem teszi lehetővé a folyók hatásának részletekbe menő elemzését, mivel a folyók közelében nagyobb gradiens alakulhat ki, mint ami az 1 km-es oldalú modell cellákkal leírható.

5.2.1 A felszíni és a felszín alatti vizek közötti áramlás

A Rába hordalékkúpján a két vizsgált szcenárió nem mutat különbséget. Itt a folyókból összesen 0,7 m³/s táplálja a talajvizet, míg 0,3 m³/s jut a talajvízből a folyókba.

A Duna öt szakaszra lett felbontva (*19. ábra*), melyekből összesen 4,7 m³/s víz szivárog el és mindössze 0.06 m³/s jut vissza a folyóba az "eredeti" szcenárió alapján. Ez a tendencia nem változik az "elterelt Duna" szcenárióban, de kisebb a talajvíz táplálása (2 m³/s) és több vizet (0,32 m³/s) szállít el a folyó a talajvízből. A különbség főként a Dunakiliti és Rajka közötti szakaszon mutatkozik.

A Duna mellékágai az "eredeti" szcenárióban 0,6 m³/s-ot táplálnak a talajvízbe és $0,01 \text{ m}^3$ /s-ot vezetnek el a talajvízből, míg az "elterelt Duna" szcenárióban a betáplálás $0,012 \text{ m}^3$ /s és a megcsapolás $0,12 \text{ m}^3$ /s. Ezek az értékek csak közelítésként kezelhetők, mivel a modell felbontása nem tette lehetővé a mellékágak részletes modellezését.

A Mosoni-Duna 3,5 m³/s-ot vezet el a talajvízből az "eredeti" szcenárióban, ami csökken a Duna főágának elterelése után. A legfelső szakaszból (*Mosoni-Duna III: 6 sz. vízmérlegegység*) a betáplálás jelentősen megnövekedik az elterelés hatására, ami felhívja a figyelmet ennek a szakasznak igen fontos szerepére a felszín alatti vizek utánpótlása szempontjából.

A Lajta azonos szerepet játszik mindkét szcenárióban.

A csökkent regionális gradiens következtében a Duna elterelése után a Hanság-főcsatorna és a Rábca alsó szakasza 10 %-kal kevesebb vizet vezet el, mint az "eredeti" szcenárióban, habár ezen folyók közvetlen környezetében nem csökken jelentősen a talajvíz nyomása.

5.2.2 A beszivárgási és talajvízpárolgási folyamatok

Az 5. táblázat a beszivárgást és a talajvízpárolgást leíró paraméterek különböző módszerekkel meghatározott területi átlagait mutatja. Megállapítható, hogy mind a gyors becslés és a telítetlen zóna egydimenziós modellezése általában nagyobb területi átlagokat eredményezett, mint a felszínalatti vízrendszer 3D-s modellezése. A telítetlen zóna modellezésének pontatlansága két okra vezethető vissza:

- A növényzet hatásának figyelembe vételéhez nem álltak rendelkezésre részletes adatok (adathiány).
- A telítetlen zóna egydimenziós modellje hidraulikai paramétereinek kalibrálása csak pontszerű mérések alapján végezhető el. Az egy pontban meghatározott adatok nagy területre való alkalmazása jelentős hibát eredményezhet (reprezentativitási probléma).

A kalibrált háromdimenziós talajvízmodellel számított beszivárgási és párolgási adatok területi eloszlása jól tükrözi a tapasztalat alapján várható eloszlást, de néhány helyen kisebb eltérések is tapasztalhatók:

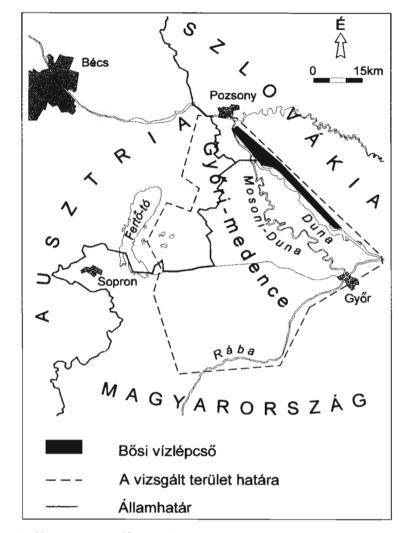
- Viszonylag magas talajvízpárolgási értékeket mutat azokon a helyeken a modell, ahol a valóságban a sűrű felszíni vízhálózatból is erre lehet következtetni (pl. 28 – 30 sz. vímérleg-egységek).
- A Répce völgyének sűrű vízhálózata felszínközeli talajvízre enged következtetni a valóságban, de a modell nem mutat jelentős talajvízpárolgást. Ebből jelentős, a külső területekről jövő, oldal irányú felszín alatti hozzáfolyásra lehet következtetni. A modellben alkalmazott hozzáfolyás mennyisége valószínűleg kevés. (Ezen a helyen nem volt elegendő, a kalibrációt segítő talajvíz adat.)
- A legmagasabb talajvízpárolgás érték lenne várható a modellben a Győri-medence legmélyebben fekvő részein, a mocsaras erdőkkel és legelőkkel borított területeken (34, 35 és 41 sz. vízmérleg-egységek). Habár ezeken a területeken a modell vízszintjei jól illeszkednek a mért adatokra, a talajvízpárolgás értéke nem kiugróan magas. Ez valószínűleg annak tulajdonítható, hogy a valóságban a felszínt sűrűn szabdalják a vízelvezető csatornák, amiket a Mosoni-Duna felől bejuttatott vízzel altalaj öntözésre is használnak. A modellezés számára nem volt adat elérhető a bejuttatott és az elvezetett vízmennyiségekről, így ezek hatását a vízmérlegre nem lehetett figyelembe venni.

Az "elterelt Duna" szcenárió azt mutatta, hogy vízpótlás nélkül az egész Dunahordalékkúpot érintené kisebb-nagyobb mértékben a folyó fő ágának szigetelt csatornába való terelése. A modellben a talajvízpárolgás adatai valójában azt a vízmennyiséget adják meg, ami a növényzet számára a talajvízből elérhető. Az elterelés következtében a Duna hordalékkúpján elehelyezkedő vízmérleg-egységeken beálló talajvízpárolgás változásokat a két szcenárió összehasonlításából a 6. táblázat tartalmazza. Ezek az értékek azt az átlagos változást mutatják, ami akkor következne be, ha nem történne vízpótlás a területen.

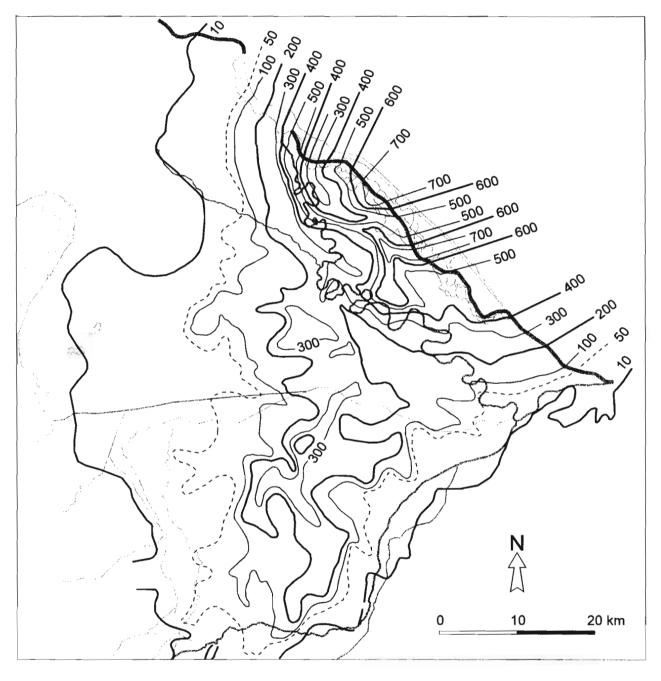
A növények számára elérhető talajvízben a legnagyobb csökkenést a modell a hullámtéri erdőknél mutatja (45 és 46 sz. vízmérleg-egységek). Az értékelésnél azonban figyelembe kell venni, hogy ezeken a területeken a felszíni vízhálózat csak igen elnagyoltan volt figyelembe vehető a modell viszonylag durva felbontása miatt. A következő legnagyobb talajvízpárolgáscsökkenés nem azokon a területeken jelentkezik, ahol a talajvíz süllyedése a legnagyobb, hanem a Szigetköz középső részén (37 sz. vízmérleg-egység). Ennek magyarázata az, hogy míg az "eredeti" szcenárióban a talajvíz a fedőrétegben volt ezen a területen, addig az "elterelt Duna" szcenárióban a talajvíz nem éri el a fedőréteget. Az "eredeti" szcenárióban tehát a fedőréteg nagyobb kapilláris emelése következtében a növények jóval több vizet tudtak a talajvízből hasznosítani, mint ami az elterelés után a rendelkezésükre áll. A legnagyobb talajvízszint süllyedés területén, a Szigetköz felső részén azonban eredetileg sem érte el a talajvíz a fedőréteget, így ott eredetileg is kisebb volt a talajvízpárolgás.

6 A továbblépés lehetséges irányai

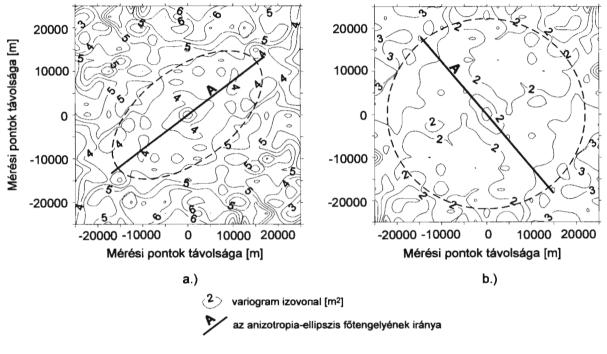
A Győri-medence negyedidőszaki víztartójának modellje a regionális folyamatok megismerésére alkalmas és nem teszi lehetővé a lokális áramlások szimulálását. Ezt a látszólagos hátrányt az ellensúlyozza, hogy az egész régió területére egyenletes, jó kiindulási alapot jelenthet a további, részletekbe menő modellek kialakításához.


A fentiekben ismertetett kutatások továbbfejleszése a következő főbb irányokban lehetséges:

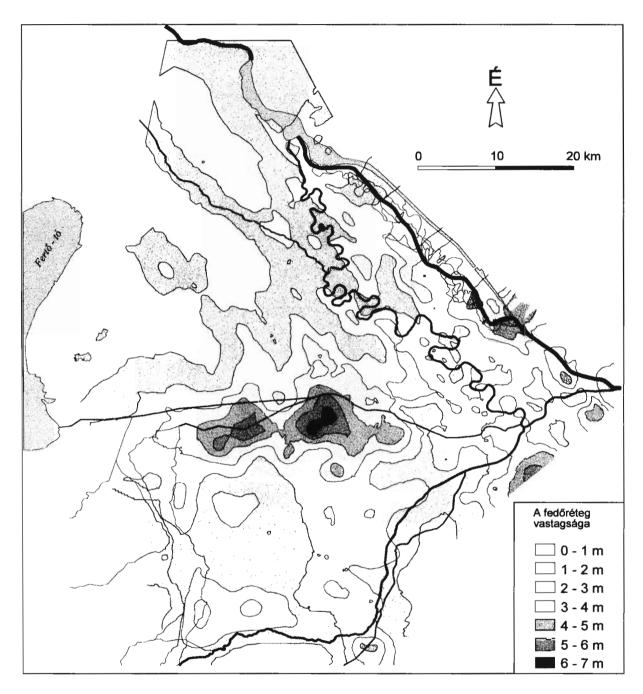
- A beszivárgási és talajvízpárolgási folyamatok árnyaltabb modellezését egyik oldalról a növényzet hatásmechanizmusának jobb feltárása tenné lehetővé.
- Amint az a HYDRUS érzékenységvizsgálata során bebizonyosodott, a beszivárgás és a talajvízpárolgás szempontjából az egyik legfontosabb paraméter a fedőréteg vastagsága, amit csak igen durva kategória beosztás alapján lehetett a fent ismertetett munka során figyelembe venni. A talajvízháztartási jelleggörbén alapuló beszivárgás/talajvízpárolgás térképezést tovább lehet fejleszteni a fedőréteg vastagság és a hidraulikai paraméterek figyelembevételi módjának optimalizálásával.
- A fentiekben ismertetett háromdimenziós talajvízmodell permanens. A beszivárgási és talajvízpárolgási folyamatokat csak a talajvíz mélysége függvényében veszi figyelembe, míg azok a valóságban időben változó hatásoknak vannak kitéve. Ezeket azonban nempermanens modellel lehet csak leírni. Egy ilyen modell kialakításához a telített és a telítetlen zóna modelljeit össze kell kötni.
- Nemzetközi összefogásra van szükség a peremterületeken lejátszódó folyamatok jobb megismerésére és a Duna balparti területeinek a modellbe való integrálására.
- A Rábaköz területén sűrűbb észlelőhálózatra van szükség a modell megbízhatóbb kalibrálásához, a folyamatok pontosabb leírásához.


Hivatkozások

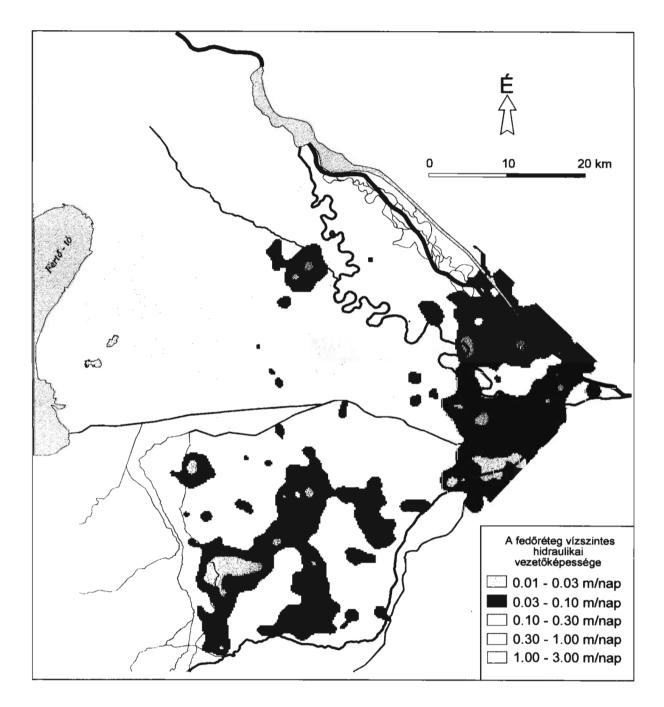
- Erdélyi M., 1971: A Nyugat-Dunántúl és a Kisalföld vízföldtana, *Hidrológiai Közlöny* 1971/11, pp. 485-492
- Erdélyi M., 1979a: A Kisalföld hidrogeológiája és hidrodinamikája, *Hidrológiai Közlöny* 1979/7, pp. 290-301
- Erdélyi M., 1979b: A Magyar Medence hidrodinamikája, VITUKI Közlemények 18 sz., VITUKI, Budapest, 82 p.
- Erdélyi M., 1990: A Kisalföld hidrogeológiája a vízlépcsők megépítése előtt és után, *Földrajzi Értesítő*, XXXIX./1-4, pp. 7-27
- Lerner, D.N., A.S. Issar, I. Simmers, 1990: Groundwater recharge, A guide to understanding and estimating natural recharge, International contributions to hydrogeology, Vol. 8, IAH/Heise, Hannover, Németország, 345 p.
- Major P., 1976: A talajvízpárolgás és a tényleges beszivárgás figyelembevétele talajvíz kitermelés számításakor, VITUKI jelentés (kézirat), VITUKI, Budapest
- Scharek P. (szerk.), 1990: A Kisalföld földtani térképsorozata Győr-Dél, MÁFI, Budapest
- Scharek P. (szerk.), 1991a: A Kisalföld földtani térképsorozata Győr-Észak, MÁFI, Budapest
- Scharek P. (szerk.), 1991b: A Kisalföld földtani térképsorozata Mosonmagyaróvár, MÁFI, Budapest
- Scharek P. (szerk.), 1993: A Kisalföld földtani térképsorozata Kapuvár, MÁFI, Budapest
- Smith, J.A., 1992: Precipitation, in *Handbook of hydrology* (szerk. D.R. Maidment), McGraw-Hill, pp.3.1-3.47
- Tóth Gy., 1985: Magyarország talajvízforgalmi térképe, M = 1:500 000, MÁFI, Budapest
- Vekerdy Z., 1994: A felszíni beszivárgás térképezése a Szigetköz területére, Jelentés a VITUKI számára (kézirat), Budapest, 42 p.
- Vekerdy Z., 1996: Geographical information system based hydrological modelling of alluvial regions using the example of the Kisalföld, Hungary (doktori disszertáció), Eötvös Loránd Tudományegyetem, Budapest, 298 p.
- Vekerdy Z., 1996: Geographical information system based hydrological modelling of alluvial regions using the example of the Kisalföld, Hungary, ITC publication Nr. 42, ITC, Enschede, The Netherlands, 294 p.
- Woolhiser, D.A., 1992: Modeling daily precipitation progress and problems, in Statistics in the environmental & earth sciences, Szerk.: A.T. Walden és P. Guttorp, Edward Arnold, London, United Kingdom, pp.71-89


Függelék I. – Ábrák

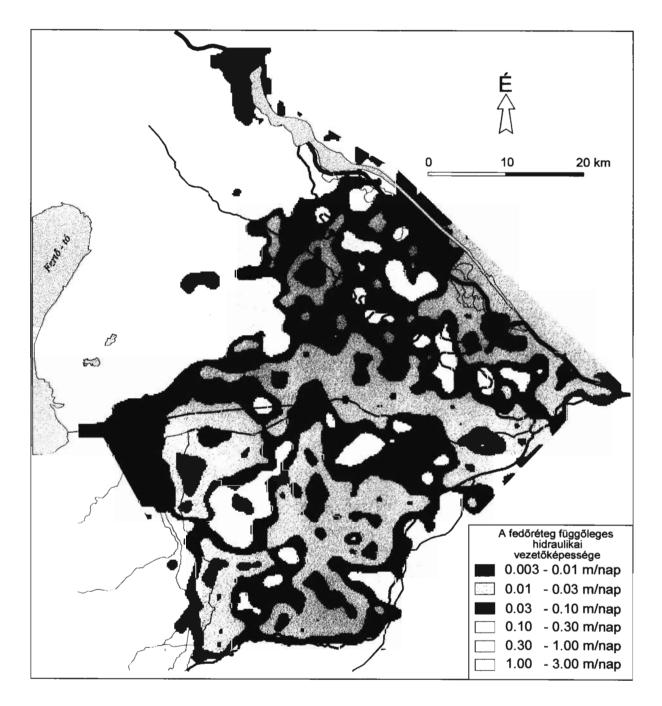
1. ábra A vizsgált terület



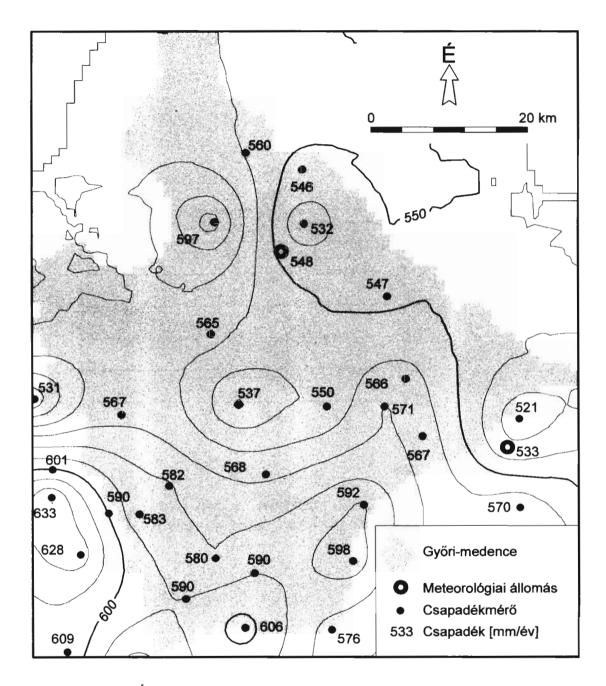
2. ábra A negyedkori üledékek vastagsága méterben [Scharek, 1990; 1991a; 1991b és 1993 alapján]


3. ábra

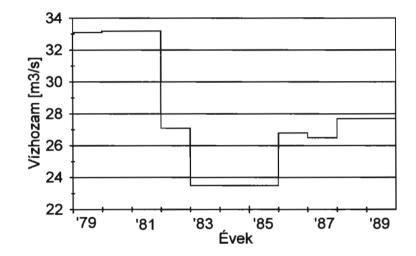
A fedőréteg vastagságának térbeli folytonosságát jellemző variogram felszínek: a.) Rába-hordalékkúp; b.) Dunahordalékkúp

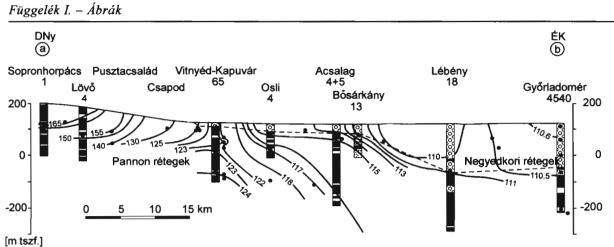


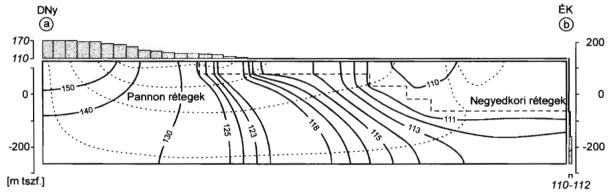
A fedőréteg vastagságának térképe

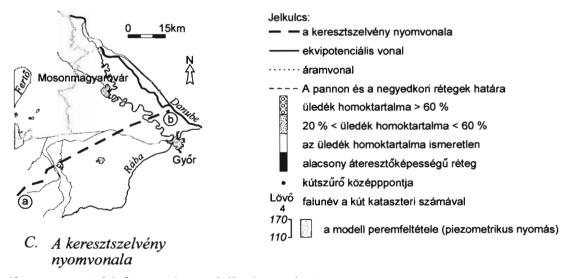


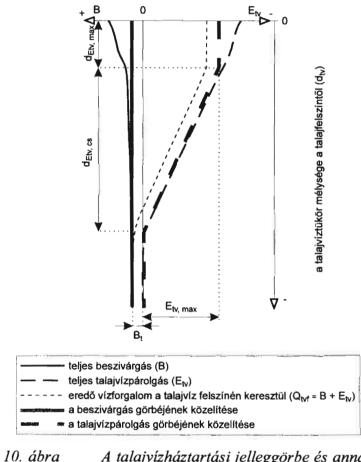
A fedőréteg vízszintes hidraulikai vezetőképességének térképe



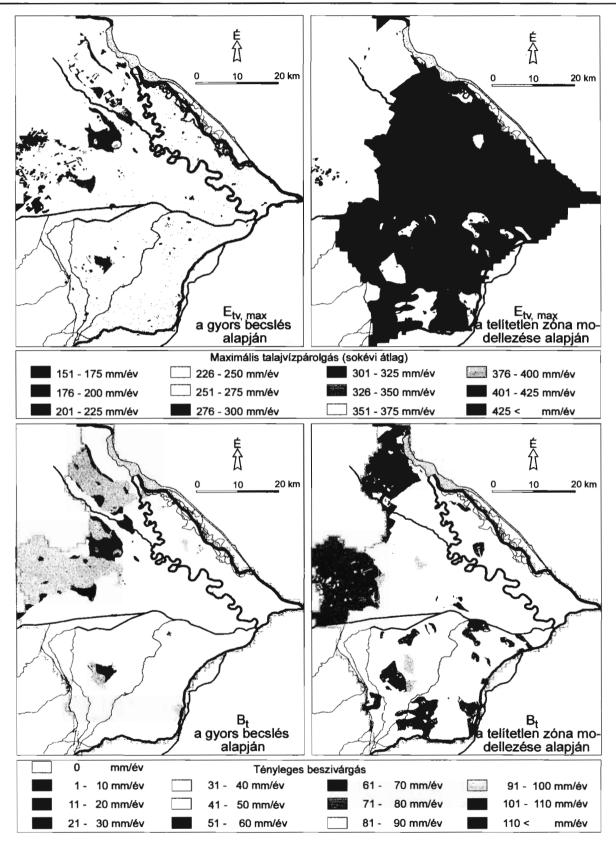

A fedőréteg függőleges hidraulikai vezetőképességének térképe


7. ábra Évi átlagos csapadék az 1979–89-es időszakban

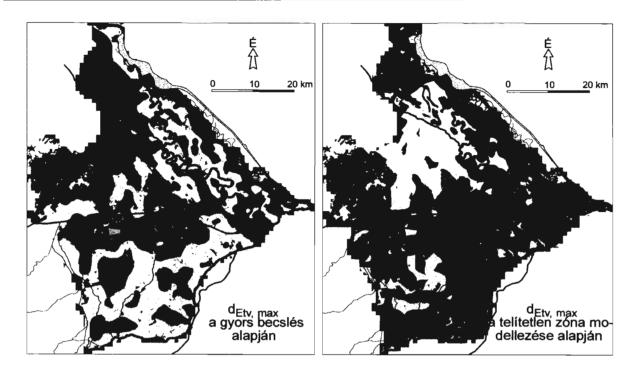

8. ábra Azonos vízálláshoz tartozó (-24 cm), különböző Q/H görbékkel számított vízhozamok a Rábán, Árpásnál


A. A Kisalföld hidrodinamikai szelvénye. Az ekvipotenciális vonalakat a kutakban mért piezometrikus magasságok alapján szerkesztette Erdélyi [1979a].

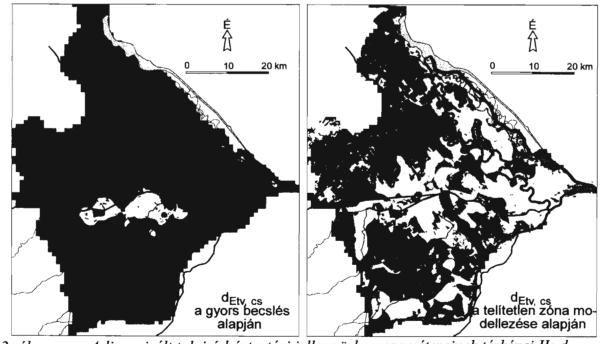
B. Modellezett ekvipotenciális és áramvonalak a Kisalföldnek ugyanazon szelvényében mint ami az ábra "A" részén szerepel. A modell kalibrálása a hidraulikai vezetőképesség változtatásával történt úgy, hogy a modellezett áramkép az "A"-n látható áramképpel egyezzen. Referencia adatok hiányában a kalibráció a pannon és a negyedkori rétegek határára és annak közvetlen környezetére koncentrálódott.



9. ábra A kétdimenziós modellezés eredménye

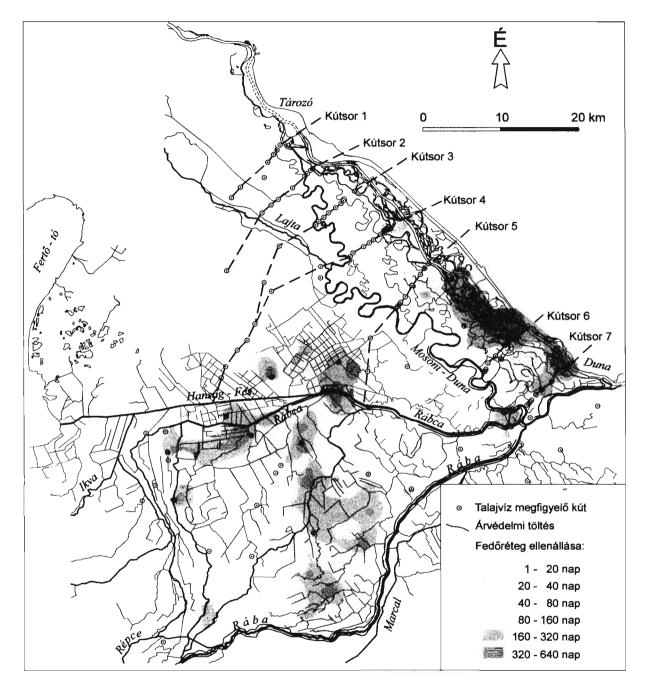

függőleges vízforgalom a talajvíz felszínén keresztül

10. ábra A talajvízháztartási jelleggörbe és annak MODFLOW által használt lineáris közelítése

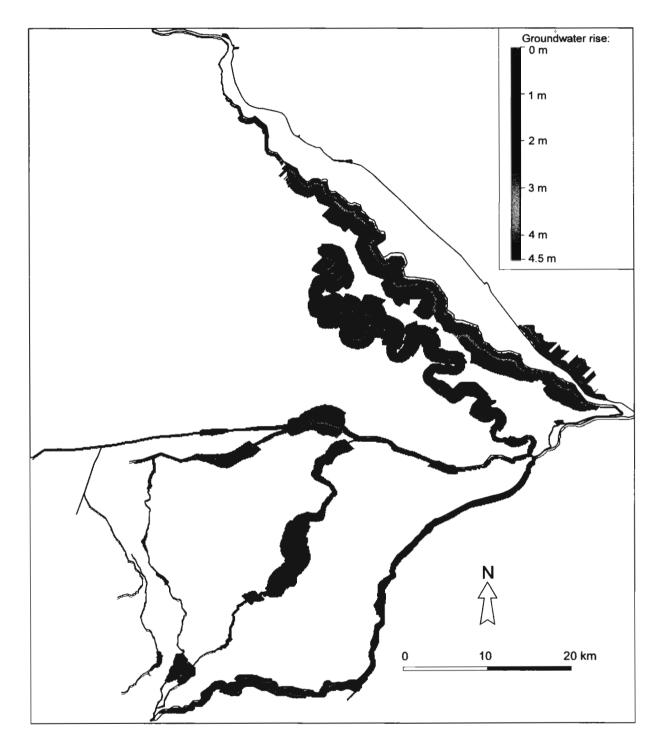


11. ábra A linearizált talajvízháztartási jelleggörbe paramétereinek térképei I: $E_{tv, max}$ és B_t

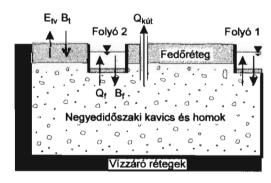
Vekerdy Zoltán, 1996, A Kisalföld felszín alatti vízforgalma, szakértői tanulmány a VITUKI Rt. számára, kézirat

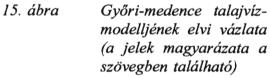


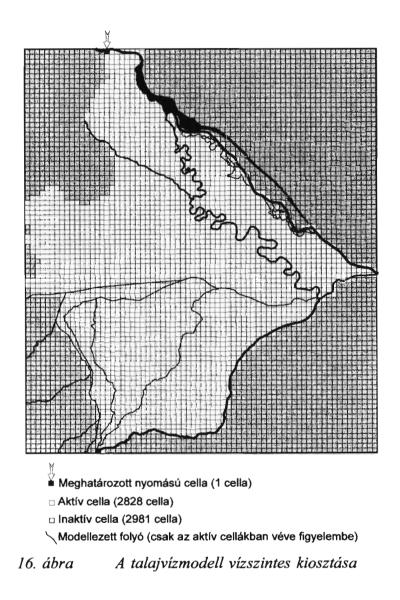
Zónavastagság						
0.01 - 0.50 m	1.51 - 2.00 m	3.01 - 3.50 m	4.51 - 5.00 m			
0.51 - 1.00 m	2.01 - 2.50 m	3.51 - 4.00 m	5.01 - 5.50 m			
1.01 - 1.50 m	2.51 - 3.00 m	4.01 - 4.50 m	5.51 < m			

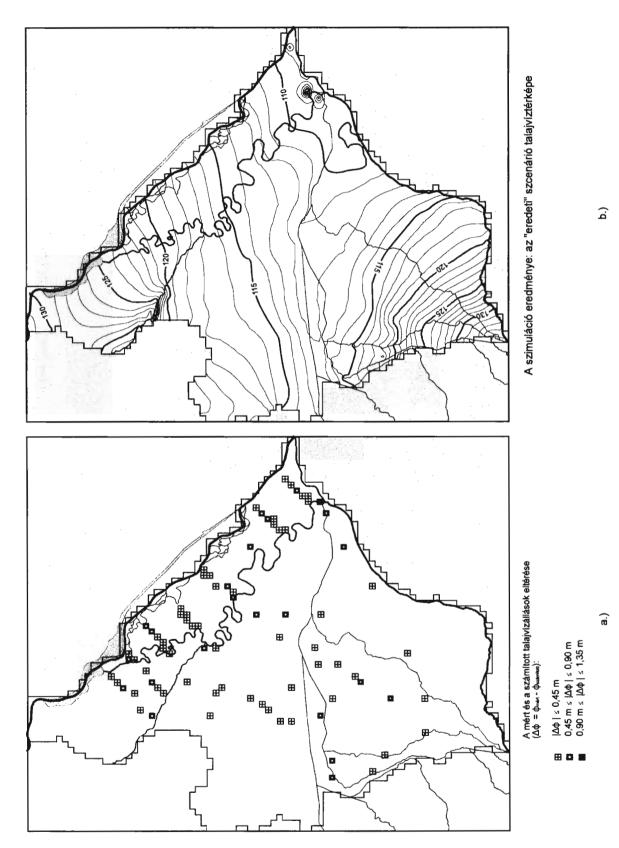


12. ábra A linearizált talajvízháztartási jelleggörbe paramétereinek térképei II: $d_{Etv, max}$ és $d_{Etv, cs}$

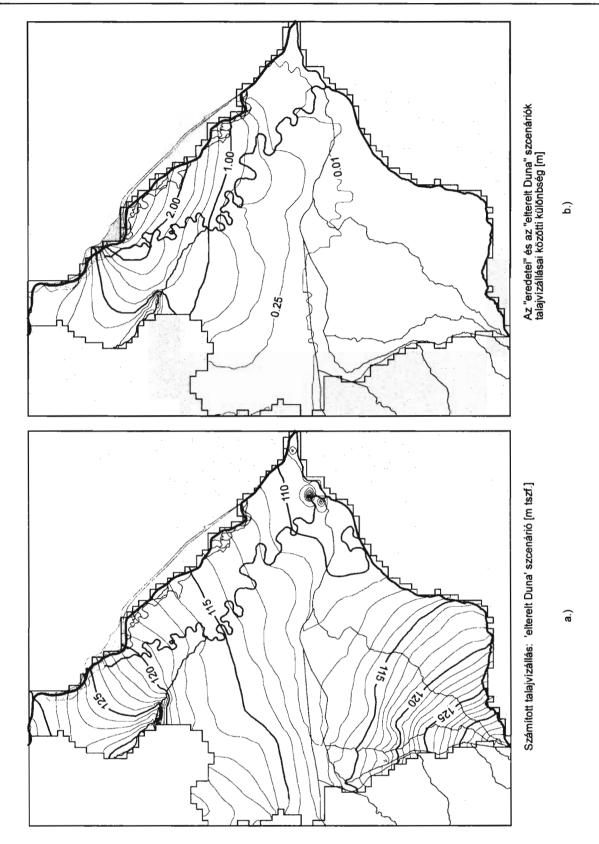

Vekerdy Zoltán, 1996, A Kisalföld felszín alatti vízforgalma, szakértői tanulmány a VITUKI Rt. számára, kézirat

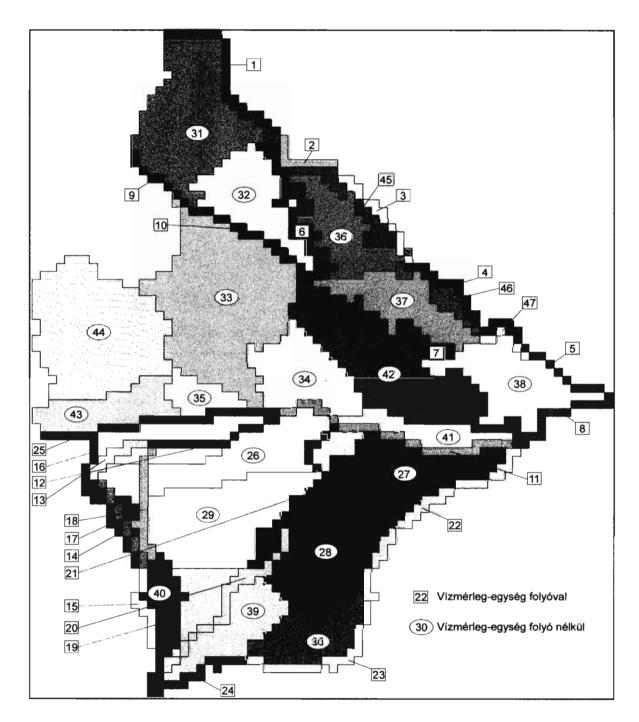



13. ábra Feszített talajvíztükrű területek a fedőréteg hidraulikai ellenállásának feltüntetésével



14. ábra A folyókon levonuló karakterisztikus árhullámok által befolyásolt területek térképe





17. ábra A szimulált és a mért talajvízállások eltérésének térbeli eloszlása

18. ábra Az "elterelt Duna" szcenárió talajvízfelszíne (a.) és a két modellezett talajvízfelszín különbsége (b.)

Vekerdy Zoltán, 1996, A Kisalföld felszín alatti vízforgalma, szakértői tanulmány a VITUKI Rt. számára, kézirat

A Győri-medence vízmérleg-egységeinek térképe

Függelék II. – Táblázatok

1. táblázat A háromdimenziós talajvízmodell ellenőrzésének statisztikai adatai

az eltérések átlaga $(\overline{\Delta \phi})$ [m]	-0.021
az eltérések szórása ($s_{\Delta\phi}$) [m]	0.408
az eltérések minimuma (Δφ _{min}) [m]	-0.897
az eltérések maximuma (Δφ _{max}) [m]	0.994
az eltérések mediánja (ρ ₅₀ (Δφ)) [m]	-0.013
∆φ ≤ 0,45 m	64 kút, az összes 70 %-a
$0,45 \text{ m} \leq \Delta\phi \leq 0,90 \text{ m}$	26 kút, az összes 29 %-a
Δφ > 0,90 m	1 kút, az összes 1%-a

Az eltérések számításának módja: $\Delta \phi = \phi_{ment} - \phi_{modellezett}$

Azonosító	Vízmérleg-egység	Földrajzi elhelyezkedés	Leírás / morfológia	Terület [km²]	
1	Duna V	Rajka - Pozsony (1850 - 1872 rkm)	Folyó (kb. 2000 m ³ /s)	24	
2	Duna IV	Dunakiliti - Rajka (1842 - 1850 rkm)	Folyó (kb. 2000 m ³ /s)	10	
3	Duna III	Dunaremete - Dunakiliti (1826 - 1842 rkm)	Folyó (kb. 2000 m ³ /s)	15	
4	Duna II	Medve - Dunaremete (1811 - 1826 rkm)	Folyó (kb. 2000 m ³ /s)	20	
5	Duna I	Vének - Medve (1796 - 1811 rkm)	Folyó (kb. 2000 m ³ /s)	14	
6	Mosoni-Duna III	Mosonmagyaróvár - Rajka (88 - 126 rkm)	Folyó (kb. 20 m ³ /s)	40	
7	Mosoni-Duna II	Győr - Mosonmagyaróvár (15 - 88 rkm)	Folyó (kb. 30 m ³ /s)	85	
8	Mosoni-Duna I	Duna - Gyðr (0 - 15 rkm)	Folyó (approx 80 m ³ /s)	16	
9	Lajta II	Államhatár - Gattendorf (18 - 29 rkm)	Kis vízfolyás (kb. 4 m ³ /s)	8	
10	Lajta I	Mosonmagyaróvár - Államhatár (0 - 18 rkm)	Kis vízfolyás (kb. 4 m ³ /s)	19	
11	Rábca I	Győr - Hanság-főcsatorna (0 - 29 rkm)	Kis vízfolyás (kb. 15 m ³ /s)	30	
12	Rábca II	Hanság-főcsatorna - Kis-Rába (29 - 47 rkm)	Kis vízfolyás (kb. 8 m ³ /s)	16	
13	Répce I	Kis-Rába - Agyagosszergény (0 - 8 rkm)	Kis vízfolyás (kb. 5 m ³ /s)	11	
14	Répce II	Agyagosszergény - Hövej (8 - 20 rkm)	Kis vízfolyás (kb. 5 m ³ /s)	11	
15	Répce III	Hövej - Répcelak (20 - 38 rkm)	Kis vízfolyás (kb. 5 m ³ /s)	12	
16	lkva	Hanság-főcsatorna - Kardos-ér (0 - 6 rkm)	Kis vízfolyás (kb. 1.5 m ³ /s)	4	
17	Kardos-ér	lkva - Hövej (0 - 14 rkm)	Kis vízfolyás (kb. 1 m ³ /s)	14	
18	Kis-Rába II	Hövej - Rábca (23 - 40 rkm)	Kis vízfolyás (kb. 3 m ³ /s), öntözőcsatorna	16	
19	Kis-Rába I	Nick - Hövej (0 - 23 rkm)	Kis vízfolyás (kb. 3 m ³ /s), öntözőcsatorna	23	
20	Keszeg-ér II	Csorna-dél - Nick (20 - 50 rkm)	Kis vízfolyás (kb. 3 m ³ /s), öntözőcsatorna	27	
21	Keszeg-ér i	Rábca - Csorna-dél (0 - 20 rkm)	Kis vízfolyás (kb. 3 m ³ /s), öntözőcsatorna	18	
22	Rába I	Győr - Árpás (0 - 29 rkm)	Folyó (kb. 40 m ³ /s)	34	
23	Rába II	Árpás - Vág (29 - 51 rkm)	Folyó (kb. 30 m ³ /s)	22	
24	Rába III	Vág - Nick (51 - 68 rkm)	Folyó (kb. 30 m ³ /s)	16	
25	Hanság- főcsatorna	Rábca - Mexikópuszta (0 - 32 rkm)	Csatorna (kb. 7 m ³ /s)	30	
26	Hanság I	Győrsövényház - Agyagosszergény	Vízrendezett egykori mocsaras terület sűrű csatornahálózattal	133	
27	Rábaköz I	A Rába és a Rábca zuga	Síkvidék néhány szélfújta dűnével, közepes vízfolyás-sűrűséggel	118	
28	Rábaköz II	Középső rész I (Rábapordány környéke)	Síkvidék közepes vízfolyás-sűrűséggel	169	
29	Rábaköz III	Közéső rész II. (Kapuvár - Csorna)	Síkvidék közepes vizfolyás-sűrűséggel		
30	Rábaköz IV	Sobor környéke	Vízrendezett egykori mocsaras terület sűrű csatornahálózattal	71	

2. táblázat A vízmérleg-egységek morfológiai leírása

Azonosító	Vízmérleg-egység	Földrajzi elhel y ezkedés	Leírás / morfológia	Terület [km²]			
31	Mosoni-síkság IV	Mosoni-síkság ausztriához és szlovákiához tartozó része	A Duna hordalékkúpjának legfelső része; gyér vízfolyáshálózat	178			
32	Mosoni-síkság III	A Lajta és a Mosoni-Duna közti terület	A Duna hordalékkúpjának felső része; gyér vízfolyáshálózat	90			
33	Mosoni-síkság II	Síkság a Lajta és a Hanság között	A Duna hordalékkúpjának középső része nincs vízfolyáshálózat	269			
34	Hanság III	Lébény - Hany (Jánossomorja - Lébény)	Mocsaras erdő; sűrű csatornahálózat	95			
35	Hanság II	Nyugati - Hany (Jánossomorja - Osli)	Mocsaras erdő; sűrű csatornahálózat	90			
36	Szigetköz III	Szigetköz (felső rész) Mosonmagyaróvár felett	A Duna hordalékkúpjának felső része; néhány száraz, meanderező holtággal	77			
37	Szigetköz II	Szigetköz (középső rész) Mosonmagyaróvár - Mecsér	A Duna hordalékkúpjának középső része; néhány száraz, meanderező holtággal	79			
38	Szigetköz I	Szigetköz (alsó rész) Mecsér - Vének	A Duna hordalékkúpjának alsó része; sűrű vízfolyáshálózat	103			
39	Rábaköz V	A Rába hordalékkúpjának magasabban fekvő része	A Rába magas terasza; ritka vízfolyáshálózat	109			
40	Répce völgye	Kapuvár - Répcelak	Síkság sűrű vízfolyáshálózattal	34			
41	Rábca völgye	Rábca balpartja (Lébény - Győr)	Nedves rétek felhagyott meanderező folyómedrekkel	41			
42	Mosoni-síkság l	Síkság a MosoniDuna és a Hanság közt	A Duna hordalékkúpjának középső része; közepesen sűrű vízhálózat	130			
43	Fertőzug I	A Fertőzug alacsonyabban fekvő része	Lecsapolt mocsár; közepesen sűrű vízhálózat	68			
44	Fertőzug II	A Fertőzug magasabban fekvő része	Magas terasz vízfolyások nélkül, a mélyedésekben néhány kis tóval	222			
45	45 Duna-ártér III Hullámtéri erdő Dunaremete felett		Időszakonként elöntött erdő az árvédelmi töltések között	30			
46	46 Duna-ártér II Hullámtéri erdő Ásványrárónál		Időszakonként elöntött erdő az árvédelmi töltések között	16			
47	Duna-ártér I	Hullámtéri erdő Nagybajcsnál	Időszakonként elöntött erdő az árvédelmi töltések között				

2. táblázat (folytatás) A vízmérleg-egységek morfológiai leírása

				I. réteg	_		2. réteg				
		Q _h	В	B	E.	E _{tv}	Q_	Qz	Q	Ber	Quit
		[m ^{3//} s]	[m ³ /s]	[mm/év]	<i>E_{tv}</i> [m ³ /s]	[mm/év]	Q _z [m ^{3/} s]	[mm/év]	[m ^{3/} /s]	B _{foly} [m ³ /s]	Q _{kút} [m ³ /s]
1	be	3.2e-05	1.2e-02	16			1.2e-02	16	1.5e-01	6.2e-01	0.0
Duna V	ki	-1.6e-04	0.0	0	-2.5e-03	-3	-2.7e-03	-3	-7.8e-01	-8.6 e- 03	0.0
	Σ	-1.3e-04	1.2e-02	16	-2.5e-03	-3	9.5 e- 03	13	-6.3e-01	6.1e-01	0.0
2	be	2.7e-05	0.0	0			0.0	0	1. 4e- 01	1.1e+00	0.0
Duna IV	ki	-1.7 e -03	0.0	0	-2.0e-02	-63	-2.2e-02	-68	-1.2e+00	0.0	0.0
	Σ	-1.6e-03	0.0	0	-2.0e-02	-63	-2.2e-02	-68	-1.1e+00	1.1e+00	0.0
3	be	1.9e-03	4.3e-03	9			4.3e-03	9	1.2e+00	1.6e+00	0.0
Duna III	ki	-6.0e-03	0.0	0	-5.5e-02	-116	-5.9 e -02	-124	-2.7e+00	0.0	0.0
	Σ	-4.1e-03	4.3e-03	9	-5.5 e -02	-116	-5.5e-02	-115	-1.5e+00	1.6e+00	0.0
4	be	9.4e-04	0.0	0			0.0	0	1.1e+00	7.7e-01	0.0
Duna II	ki	-1.4e-03	0.0	0	-1.0e-01	-165	-1.1e-01	-166	-1.8e+00	-1.7e-02	0.0
	Σ	-4.8e-04	0.0	0	-1.0e-01	-165	-1.1e-01	-166	-6.5e-01	7.6 e -01	0.0
5	be	1.2e-04	0.0	0			2.6e-06	0	1.8e-01	1.6e-01	0.0
Duna I	ki	-2.7e-04	0.0	0	-6.5e-02	-146	-6.5 e -02	-147	-2.4e-01	-3.2e-02	0.0
	Σ	-1.5e-04	0.0	0	-6.5e-02	-146	-6.5e-02	-147	-6.4e-02	1.3e-01	0.0
6	be	6.5e-04	0.0	0			3.3e-04	0	4.1e+00	2.0e-01	0.0
Mosoni- Duna III	ki	-5.9e-04	0.0	0	-5.7 e- 03	-5	-6.0e-03	-5	-4.1e+00	-1.7e-01	0.0
	Σ	6.5e-05	0.0	0	-5.7e-03	-5	-5.7e-03	-4	-2.6e-02	3.2e-02	0.0
7	be	1.4e-03	1.6e-03	1	0.0		1.9e-03	1	5.2e+00	1.1e-01	0.0
Mosoni- Duna II	ki	-5.7e-04	0.0	Ő	-5.2e-02	-19	-5.1e-02	-19	-1.7e+00	-3.3e+00	- 1.8e-01
Duna n	Σ	8.6e-04	1.6e-03	1	-5.2e-02	-19	-4.9e-02	-18	3.4e+00	-3.2e+00	-1.8e-0 1
8	be	2.5e-05	4.9e-03	10	0.0		3.4e-03	7	6.5e-03	5.2e-03	0.0
Mosoni-	ki	-5.1e-06	0.0	0	-1.5e-03	-3	-6.0e-06	0	-5.0e-03	-1.8e-02	0.0
Duna I	Σ	2.0e-05	4.9e-03	10	-1.5e-03	-3	3.3e-03	7	1.5e-03	-1.3e-02	0.0
9	be	0.0	0.0	0	0.0		0.0	0	1.6e-03	3.4e-02	0.0
Lajta II	ki	0.0	0.0	0	0.0	0	0.0	0	-4.7e-02	-1.6e-04	0.0
	Σ	0.0	0.0	0	0.0	0	0.0	0	-4.5e-02	3.4e-02	0.0
10	be	4.4e-06	3.2e-03	5	0.0		4.5e-06	0	6.8e-01	9.8e-02	0.0
Lajta I	ki	-4.5e-06	0.0	0	-4.7e-03	-8	-1.4e-03	-2	-7.7e-01	-9.0e-03	0.0
	Σ	-1.3e-07	3.2e-03	5	-4.7e-03	-8	-1.4 e- 03	-2	-8.9e-02	8.9 e -02	0.0
11	be	9.2e-05	0.0	0	0.0		2.5e-05	0	3.7e-01	3.6e-03	0.0
Débag	ki	-1.6e-05	0.0	0	-8.3e-03	-9	-8.3e-03	-9	-2.1e-02	-3.5e-01	0.0
Rábca I	Σ	7.6e-05	0.0	0	-8.3e-03	-9	-8.2e-03	-9	3.5e-01	-3.5e-01	0.0
12	be	5.9e-05	2.5e-03	5	0.0		1.3e-03	3	4.7e-02	3.9e-02	0.0
Rábca II	ki	-1.2e-04	0.0	0	-1.8e-02	-36	-1.7e-02	-34	-6.1e-02	-9.3e-03	0.0
	Σ	-6.3e-05	2.5e-03	5	-1.8e-02	-36	-1.6e-02	-31	-1.4e-02	3.0e-02	0.0
13	be	5.0e-06	0.0	0	0.0		4.9e-07	0	6.7e-04	2.1e-02	0.0
Répce I	out	-6.6e-05	0.0	0	-1.4e-02	-39	-1.4e-02	-40	-7.9e-03	0.0	0.0
Repce	Σ	-6.1e-05	0.0	0	-1.4e-02	-39	-1.4e-02	-40	-7.2e-03	2.1e-02	0.0

3. táblázat Az alrendszerek vízmérlegei az "eredeti" szcenárió alapján (a táblázat folytatása a következő oldalon)

				I. réteg			2. réteg				
			В	I. reteg	F	E _{tv}	Q ₇	Qz	2. reteg	B	
		Q _h [m ³ /s]	[m ³ /s]	[mm/év]	E _/ [m ³ /s]	<i>⊏_{tv}</i> [mm/év]	[m ³ /s]	[mm/év]	[m ³ /s]	<i>В_{fp/y}</i> [m ³ /s]	Q _{kút} [m³/s]
14	be	1.3e-05	0.0	0	0.0		2.6e-06	0	1.2e-02	8.6e-03	2.5e-03
Répce II	ki	-3.3e-05	0.0	0	-4.4e-03	-13	-4.4e-03	-13	-9.8e-03	-5.6e-03	-6.8e-03
	Σ	-1.9 e- 05	0.0	0	-4.4e-03	-13	-4.4e-03	-13	2.6e-03	3.0e-03	-4.3e-03
15	be	1.3e-05	3.0e-03	8	0.0		1.7e-03	4	1.2e-02	2.1e-02	6.3e-03
Répce III	ki	-1.3e-05	0.0	0	-3.8e-03	-10	-2.4e-03	-6	-3.6e-02	-1.6e-02	0.0
	Σ	-2.9e-07	3.0 e -03	8	-3.8e-03	-10	-7.9e-04	-2	-2.4e-02	5.5e-03	6.3e-03
16	be	0.0	0.0	0	0.0		0.0	0	2.8e-03	1.2e-04	0.0
Ikva	ki	0.0	0.0	0	0.0	0	0.0	0	-3.0e-04	-2.6e-03	0.0
	Σ	0.0	0.0	0	0.0	0	0.0	0	2.5e-03	-2.5e-03	0.0
17	be	3.4e-07	0.0	0	0.0		5.3e-08	0	3.1e-03	1.2e-03	8.2e-03
Kardos-ér	ki	-9.8e-06	0.0	0	-6.8e-05	0	-7.7e-05	0	-6.5e-03	-1.4e-02	0.0
	Σ	-9.5e-06	0.0	0	-6.8e-05	0	-7.7e-05	0	-3.4e-03	-1.2e-02	8.2 e- 03
18	be	9.3e-05	0.0	0	0.0		2.2e-06	0	5.9e-03	3.0e-02	0.0
Kis-Rába II	ki	-6.2e-05	0.0	0	-1.3e-02	-27	-1.3e-02	-27	-2.2e-02	0.0	0.0
	Σ	3.1e-05	0.0	0	-1.3e-02	-27	-1.3e-02	-27	-1.6e-02	3.0e-02	0.0
19	be	2.1e-05	0.0	0	0.0		3.1e-07	0	8.4e-02	1.8e-01	1.9e-03
Kis-Rába I	ki	-1.7e-04	0.0	Ō	-5.8e-03	-8	-5.9e-03	-8	-2.6e-01	0.0	0.0
	Σ	-1.5e-04	0.0	0	-5.8e-03	-8	-5.9e-03	-8	-1.8e-01	1.8e-01	1.9e-03
20	be	2.5e-04	1.6e-03	2	0.0		1.7e-03	2	6.0e-01	2.3e-01	0.0
Keszeg-ér	ki	-2.7e-04	0.0	0	-2.0e-02	-23	-2.0e-02	-23	-8.1e-01	0.0	0.0
11	Σ	-1.9e-05	1.6e-03	2	-2.0e-02	-23	-1.8e-02	-21	-2.1e-01	2.3e-01	0.0
21	be	5.3e-05	1.6e-03	3	0.0		1.7e-03	3	1.3e-01	3.4e-03	0.0
Keszeg-ér ł	ki	-3.5e-05	0.0	0	-1.4e-02	-24	-1.4e-02	-24	-1.0e-01	-1.5e-02	-7.4e-03
	Σ	1.9e-05	1.6e-03	3	-1.4e-02	-24	-1.2e-02	-21	3.1e-02	-1.2e-02	-7.4e-03
22	be	2.5e-05	3.0e-03	3	0.0		3.1e-03	3	7.9e-02	6.5e-03	0.0
Rába I	ki	-9.9e-06	0.0	0	-5.0e-03	-5	-5.0e-03	-5	-7.3e-03	-8.3e-02	0.0
	Σ	1.5e-05	3.0e-03	3	-5.0e-03	-5	-2.0e-03	-2	7.2e-02	-7.6e-02	0.0
23	be	3.2e-05	9.7e-03	14	0.0		8.5e-03	12	6.9 e- 02	1.2e-01	0.0
Rába II	ki	-2.8e-04	0.0	0	-3.2e-03	-5	-2.1e-03	-3	-1.6e-01	-5.3e-02	0.0
	Σ	-2.5e-04	9.7 e -03	14	-3.2e-03	-5	6.2e-03	9	-9.5e-02	7.1e-02	0.0
24	be	0.0	0.0	0	0.0		0.0	0	2.9e-02	1.0e-01	6.3e-04
Rába III	ki	-8.3e-05	0.0	0	0.0	0	-8.3e-05	0	-1.2e-01	-9.9e-03	0.0
	Σ	-8.3e-05	0.0	0	0.0	0	-8.3e-05	0	-9.6e-02	9.4e-02	6.3e-04
25	be	1.2e-04	0.0	0	0.0		2.0e-05	0	1.8e-01	1.1e-03	0.0
Hanság-	ki	-1.3e-06	0.0	0	-2.0e-02	-21	-2.0e-02	-21	-6.8e-03	-1.5e-01	0.0
főcsatorna	Σ	1.2e-04	0.0	0	-2.0e-02	-21	-2.0e-02	-21	1.7e-01	-1.5e-01	0.0
26	be	4.1e-05	3.4e-02	8	0.0		3.0e-02	7	1.2e-01	0.0	0.0
Hanság I	ki	-4.5e-05	0.0	0	-4.3e-02	-10	-3.8e-02	-9	-1.3e-01	0.0	-1.7e-03
	Σ	-4.6e-06	3.4e-02	8	-4.3e-02	-10	-8.7e-03	-2	-5.9e-03	0.0	-1.7e-03
	-		5 5 2	Ĵ						1 210	

3. táblázat (folytatás) Az alrendszerek vízmérlegei az "eredeti" szcenárió alapján (a táblázat folytatása a következő oldalon)

				l. réteg			2. réteg				
		Q _h [m ³ /s]	<i>B</i> [m ³ /s]	B [mm/év]	E _{/v} [m ³ /s]	E _{tv} [mm/év]	Q_ [m ^{3/} s]	Q _z [mm/év]	Q _h [m ³ /s]	B _{foly} [m ³ /s]	Q _{kút} [m³/s]
27	be	4.4e-05	6.9e-03	2	0.0		4.6e-03	1	6.2e-02	0.0	0.0
Rábaköz	ki	-3.0e-05	0.0	0	-3.1e-02	8	-2.8e-02	-8	-4.3e-02	0.0	0.0
1	Σ	1.4e-05	6.9e-03	2	-3.1e-02	-8	-2.4e-02	-6	1.9 e -02	0.0	0.0
28	be	3.6e-04	5.3e-03	1	0.0		5.3e-04	0	5.6e-01	0.0	0.0
Rábaköz	ki	-2.1e-04	0.0	0	-3.0e-01	-56	-2.9e-01	-55	-2.8e-01	0.0	-4.9e-03
11	Σ	1.5e-04	5.3e-03	1	-3.0e-01	-56	-2.9e-01	-55	2.8e-01	0.0	-4.9e-03
29	be	4.3e-04	5.1e-02	10	0.0		2.8e-02	6	3.6e-01	0.0	0.0
Rábaköz	ki	-1.1e-04	0.0	0	-2.3e-01	-45	-2.0e-01	-40	-2.1e-01	0.0	-3.0e-02
111	Σ	3.2e-04	5.1e-02	10	-2.3e-01	-45	-1.8e-01	-35	1.6e-01	0.0	-3.0e-02
30	be	4.5e-04	7.1e-03	3	0.0		7.3e-03	3	4.0e-01	0.0	0.0
Rábaköz	ki	-1.9e-04	0.0	0	-6.6e-02	-29	-6.5e-02	-29	-3.6e-01	0.0	0.0
IV	Σ	2.6e-04	7.1e-03	3	-6.6e-02	-29	-5.8e-02	-26	3.7e-02	0.0	0.0
31	be	1.1e-04	4.9e-03	1	0.0		3.3e-03	1	5.6 e -01	9.2e-03	0.0
Mosoni-	ki	-1.8e-04	0.0	0	-6.1e-03	-1	-4.5e-03	-1	-7.6e-01	-2.4e-03	0.0
síkság IV	Σ	-7.4e-05	4.9e-03	1	-6.1e-03	-1	-1.3e-03	0	-2.1 e- 01	6.8e-03	0.0
32	be	1.7e-04	1.6e-03	1	0.0		9.6e-04	0	2.2e+00	0.0	0.0
Mosoni-	ki	-5.2e-05	0.0	0	-1.9e-03	-1	-1.1e-03	0	-2.2e+00	0.0	0.0
síkság III	Σ	1.1e-04	1.6e-03	1	-1.9e-03	-1	-1.6e-04	0	-1.1e-02	0.0	0.0
33	be	2.1e-05	3.0e-03	0	0.0		3.2e-03	Ō	6.0e-01	0.0	0.0
Mosoni-	ki	-3.4e-04	0.0	0	-5.1e-02	-6	-5.2e-02	-6	-4.3e-01	0.0	-1.6e-01
síkság II	Σ	-3.2e-04	3.0e-03	0	-5.1e-02	-6	-4.9e-02	-6	1.7e-01	0.0	-1.6e-01
34	be	3.3e-04	3.2e-04	0	0.0		1.6e-05	0	4.8e-01	0.0	0.0
Hanság	ki	-6.0e-05	0.0	0	-2.5e-01	-84	-2.5e-01	-84	-2.3e-01	0.0	0.0
111	Σ	2.7e-04	3.2e-04	0	-2.5e-01	-84	-2.5e-01	-84	2.5e-01	0.0	0.0
35	be	3.9e-04	7.0e-03	2	0.0		4.6e-03	2	4.2e-01	5.2e-03	0.0
Hanság	ki	-2.4e-04	0.0	0	-9.4e-02	-33	-9.1e-02	-32	-3.3e-01	0.0	0.0
н	Σ	1.5e-04	7.0e-03	2	-9.4e-02	-33	-8.6e-02	-30	8.1e-02	5.2e-03	0.0
36	be	5.1e-03	1. 4e-0 3	1	0.0		2.5e-03	1	6.5e+00	1.4e-02	0.0
Szigetköz	ki	-3.5e-03	0.0	0	-3.9e-02	-16	-3.9e-02	-16	-6.5e+00	0.0	-2.3e-03
111	Σ	1.6e-03	1. 4e-0 3	1	-3.9e-02	-16	-3.6e-02	-15	1.4e-02	1.4e-02	-2.3e-03
37	be	1.3e-03	0.0	0	0.0		6.2e-05	0	4.7e+00	0.0	0.0
Szigetköz	ki	-1.3e-03	0.0	0	-1.5e-01	-60	-1.5e-01	-60	-4.6e+00	0.0	-1.3e-03
11	Σ	5.1e-05	0.0	0	-1.5e-01	-60	-1.5e-01	-60	1.4e-01	0.0	-1.3e-03
38	be	3.9e-04	8.1e-03	2	0.0		4.6e-03	1	6.5e-01	0.0	0.0
Szigetköz	ki	-3.6e-04	0.0	0	-2.0e-01	-60	-1.9e-01	-59	-4.1e-01	0.0	-5.6e-02
1	Σ	3.6e-05	8.1e-03	2	-2.0e-01	-60	-1.9e-01	-58	2.4e-01	0.0	-5.6e-02
39	be	1.9e-04	3.7e-03	1	0.0		1.7e-03	0	9.5e-01	0.0	0.0
Rábaköz	ki	-3.9e-04	0.0	0	-2.0e-02	-6	-1.8e-02	-5	-1.0e+00	0.0	0.0
V	Σ	-2.1e-04	3.7e-03	1	-2.0e-02	-6	-1.7e-02	-5	-6.2e-02	0.0	0.0

3. táblázat (folytatás) Az alrendszerek vízmérlegei az "eredeti" szcenárió alapján (a táblázat folytatása a következő oldalon)

				l. réteg					2. réteg			
		Q _{/r} [m ³ /s]	<i>В</i> [m ³ /s]	B [mm/év]	E _{tv} [m ³ /s]	E _{tv} [mm/év]	Q_ [m ^{3/} s]	Q _z [mm/év]	Q _h [m ³ /s]	B _{foly} [m ³ /s]	Q _{kút} [m³/s]	
40	be	5.8e-05	7.9e-03	7	0.0		2.8e-03	3	7.3e-02	0.0	2.5e-03	
Répce	ki	-1.1e-04	0.0	0	-1.5e-02	-14	-9.8e-03	-9	-8.0e-02	0.0	0.0	
völgye	Σ	-4.9e-05	7.9 e -03	7	-1.5e-02	-14	-7.1e-03	-7	-6.8e-03	0,0	2.5e-03	
41	be	1.5e-05	0.0	0	0.0		4.3e-07	0	1.7 e -01	0.0	0.0	
Rábca	ki	-3.4e-05	0.0	0	-7.3e-03	-6	-7.3e-03	-6	-1.7e-01	0.0	0.0	
völgye	Σ	-1.9e-05	0.0	0	-7.3e-03	-6	-7.3e-03	-6	7.3e-03	0.0	0.0	
42	be	4.5e-04	0.0	0	0.0		6.5 e -05	0	1.5e+00	0.0	0.0	
Mosoni-	ki	-4.9e-04	0.0	0	-6.5e-02	-16	-6.6e-02	-16	-1.4e+00	0.0	-1.2e-02	
síkság l	Σ	-3.2e-05	0.0	0	-6.5e-02	-16	-6.6 e -02	-16	7.8 e -02	0.0	-1.2e-02	
43	be	6.9e-06	1.6e-03	1	0.0		1.7e-03	1	5.3e-02	0.0	0.0	
Fertőzug	ki	-1.4e-05	0.0	0	0.0	0	-1.1e-05	0	-6.4e-02	-1.3e-03	0.0	
I	Σ	-7.0e-06	1.6e-03	1	0.0	0	1.6 e -03	1	-1.2 e- 02	-1.3e-03	0.0	
44	be	0.0	1.4 e -02	2	0.0		1.2e-02	2	5.6e-03	0.0	0.0	
Fertőzug	ki	-2.8e-06	0.0	0	-4.8e-03	-1	-2.5 e -03	0	-6.5e-02	0.0	0.0	
11	Σ	-2.8e-06	1.4e-02	2	-4.8e-03	-1	9.6 e -03	1	-6.0 e- 02	0.0	0.0	
45	be	6.7e-03	5.7 e -03	6	0.0		6.4e-03	7	4.3e+00	5.2e-01	0.0	
Duna-	ki	-4.5e-03	0.0	0	-7.7e-02	-81	-7.6e-02	-80	-4.7e+00	0.0	0.0	
ártér III	Σ	2.2e-03	5.7e-03	6	-7.7e-02	-81	-7.0e-02	-73	-4.5e-01	5.2e-01	0.0	
46	be	2.6e-03	0.0	0	0.0		0.0	0	2.1e+00	8.2e-02	0.0	
Duna-	ki	-1.1e-03	0.0	0	-7.2e-02	-142	-7.1e-02	-139	-2.1e+00	-9.2e-03	0.0	
ártér II	Σ	1.5e-03	0.0	0	-7.2e-02	-142	-7.1e-02	-139	-2.3e-03	7.3 e- 02	0.0	
47	be	2.1e-04	0.0	0	0.0		0.0	0	3.2e-01	1.9e-03	0.0	
Duna-	ki	-1.2e-04	0.0	0	-2.7e-02	-169	-2.7e-02	-168	-2.9e-01	-3.6e-03	0.0	
ártér I	Σ	8.5e-05	0.0	0	-2.7e-02	-169	-2.7e-02	-168	2.8e-02	-1.7e-03	0.0	

3. táblázat (folytatás) Az alrendszerek vízmérlegei az "eredeti" szcenárió alapján

				l. réteg			2. réteg				
		Q _h [m ³ /s]	B [m ³ /s]	B [mm/év]	<i>E_{tv}</i> [m ³ /s]	E _{tv} [mm/év]	Q _z [m ³ /s]	Q _z [mm/év]	Q _h [m ³ /s]	B _{foly} [m ³ /s]	Q _{kút} [m ³ /s]
1	be	1.7e-05	9.3e-03	12			9.6e-03	13	2.1e-01	1.3e+00	0.0
Duna V	ki	-7.6e-05	0.0	0	0.0	0	-1.0e-04	0	-1.5e+00	-6.1e-03	0.0
	Σ	-5.9e-05	9.3e-03	12	0.0	0	9.3e-03	12	-1.3e+00	1.3e+00	0.0
2	be	1.8e-07	0.0	0			5.9e-06	0	8.5e-01	1.8e-01	0.0
Duna IV	ki	0.0	0.0	0	0.0	0	-5.6e-06	0	-7.4e-01	-3.0e-01	0.0
	Σ	1.8e-07	0.0	0	0.0	0	1.8e-07	0	1.2e-01	-1.2e-01	0.0
3	be	8.1e-04	0.0	0			1.1e-05	0	1.5e+00	1.9e-01	0.0
Duna III	ki	-1.4e-03	0.0	0	-5.1e-03	-11	-5.7e-03	-12	-1.7e+00	-1.5e-02	0.0
	Σ	-6.3e-04	0.0	0	-5.1e-03	-11	-5.7e-03	-12	-1.7e-01	1.8e-01	0.0
4	be	3.8e-04	0.0	0			6.8e-05	0	8.9e-01	1.8e-01	0.0
Duna II	ki	-4.4e-04	0.0	0	-6.9e-02	-109	-6.9e-02	-109	-1.0e+00	-5.0e-03	0.0
	Σ	-5.8e-05	0.0	0	-6.9e-02	-109	-6.9e-02	-109	-1.1e-01	1.8e-01	0.0
5	be	9.0e-05	0.0	Ó			2.6e-06	0	1.3e-01	1.7e-01	0.0
Duna I	ki	-2.7e-04	0.0	0	-6.4e-02	-144	-6.4e-02	-145	-2.4e-01	-2.5e-03	0.0
	Σ	-1.8e-04	0.0	0	-6.4e-02	-144	-6.4e-02	-145	-1.1e-01	1.7e-01	0.0
6	be	4.4e-05	0.0	0			2.8e-05	0	3.9e+00	1.1e+00	0.0
Mosoni-	ki	-1.7e-05	0.0	0	0.0	0	0.0	0	-5.1e+00	0.0	0.0
Duna III	Σ	2.7e-05	0.0	0	0.0	0	2.7e-05	0	-1.1e+00	1.1e+00	0.0
7	be	5.0e-04	1.6e-03	1	0.0		1.9e-03	1	3.8e+00	2.3e-01	0.0
Mosoni-	ki	-2.6e-04	0.0	0	-2.1e-02	-8	-2.1e-02	-8	-1.8e+00	-2.0e+00	-1.8e-01
Duna II	Σ	2.5e-04	1.6e-03	1	-2.1e-02	-8	-1.9e-02	-7	2.0e+00	-1.8e+00	-1.8e-01
8	be	2.5e-05	4.9e-03	10	0.0		3.4e-03	7	6.4e-03	5.2e-03	0.0
Mosoni-	ki	-5.1e-06	0.0	0	-1.5e-03	-3	-6.0e-06	0	-5.0e-03	-1.8e-02	0.0
Duna I	Σ	2.0e-05	4.9e-03	10	-1.5e-03	-3	3.3e-03	7	1.4e-03	-1.3e-02	0.0
9	be	0.0	0.0	0	0.0		0.0	0	1.6e-03	4.3e-02	0.0
Lajta II	ki	0.0	0.0	0	0.0	0	0.0	0	-5.6e-02	0.0	0.0
	Σ	0.0	0.0	0	0.0	Ō	0.0	0	-5.4e-02	4.3e-02	0.0
10	be	0.0	3.2e-03	5	0.0		4.7e-04	1	5.1e-01	1.3e-01	0.0
Lajta I	ki	-9.6e-06	0.0	0	-2.8e-03	-5	0.0	0	-6.4e-01	0.0	0.0
	Σ	-9.6e-06	3.2e-03	5	-2.8e-03	-5	4.6e-04	1	-1.3e-01	1.3e-01	0.0
11	be	7.3e-05	0.0	0	0.0		2.0e-05	0	3.2e-01	4.0e-03	0.0
	ki	-1.6e-05	0.0	0	-7.6e-03	-8	-7.6e-03	-8	-1.9e-02	-3.1e-01	0.0
Rábca I	Σ	5.8e-05	0.0	0	-7.6 e- 03	-8	-7.5e-03	-8	3.0e-01	-3.0e-01	0.0
12	be	5.9e-05	2.5e-03	5	0.0		1.3e-03	3	4.7e-02	3.9e-02	0.0
Rábca II	ki	-1.2e-04	0.0	0	-1.8e-02	-36	-1.7e-02	-34	-6.2e-02	-8.5e-03	0.0
	Σ	-6.4e-05	2.5e-03	5	-1.8e-02	-36	-1.6e-02	-31	-1.5e-02	3.1 e- 02	0.0
13	be	5.0e-06	0.0	0	0.0		4.9e-07	0	6.7e-04	2.1e-02	0.0
Dánce I	ki	-6.6e-05	0.0	0	-1.4e-02	-39	-1.4e-02	-40	-7.9 e -03	0.0	0.0
Répce I	Σ	-6.1e-05	0.0	0	-1. 4e- 02	-39	-1.4e-02	-40	-7.2e-03	2.1e-02	0.0

4. táblázat Az alrendszerek vízmérlegei az "elterelt Duna" szcenárió alapján (a táblázat folytatása a következő oldalon)

				l. réteg					2. réteg		
		Q _h [m ³ /s]	<i>B</i> [m ³ /s]	B [mm/év]	<i>E_{tv}</i> [m ³ /s]	E _{tv} [mm/év]	Q_ {m ^{3/} s]	Q _z [mm/év]	Q _h [m ³ /s]	В _{toly} [m ³ /s]	Q _{kút} [m ³ /s]
14	be	1.3e-05	0.0	0	0.0		2.6e-06	0	1.2e-02	8.6e-03	2.5e-03
Répce II	ki	-3.3e-05	0.0	0	-4.4e-03	-13	-4.4e-03	-13	-9.8e-03	-5.6e-03	-6.8e-03
	Σ	-1.9e-05	0.0	0	-4.4e-03	-13	-4.4e-03	-13	2.6e-03	3.0e-03	-4.3e-03
15	be	1.3e-05	3.0e-03	8	0.0		1.7e-0	4	1.2e-02	2.1e-02	6.3e-03
Répce III	ki	-1.3e-05	0.0	0	-3.8e-03	-10	-2.4e-0	-6	-3.6e-02	-1.6e-02	0.0
	Σ	-2.9e-07	3.0e-03	8	-3.8e-03	-10	-7.9e-0	-2	-2.4e-02	5.5 e -03	6.3e-03
16	be	0.0	0.0	0	0.0		0.0	0	2.8e-03	1.2e-04	0.0
lkva	ki	0.0	0.0	0	0.0	0	0.0	0	-3.0e-04	-2.6e-03	0.0
	Σ	0.0	0.0	0	0.0	0	0.0	0	2.5e-03	-2.5e-03	0.0
17	be	3.4e-07	0.0	0	0.0		5.3e-08	0	3.1e-03	1.2e-03	8.2e-03
Kardos-ér	ki	-9.8e-06	0.0	0	-6.8e-05	0	-7.7e-05	0	-6.5e-03	-1.4e-02	0.0
	Σ	-9.5e-06	0.0	0	-6.8e-05	0	-7.7e-05	0	-3.4e-03	-1.2e-02	8.2e-03
18	be	9.3e-05	0.0	0	0.0		2.2e-06	0	5.9e-03	3.0e-02	0.0
Kis-Rába II	ki	-6.2e-05	0.0	0	-1.3e-02	-27	-1.3e-02	-27	-2.2e-02	0.0	0.0
	Σ	3.1e-05	0.0	0	-1.3e-02	-27	-1.3e-02	-27	-1.6e-02	3.0e-02	0.0
19	be	2.1e-05	0.0	0	0.0		3.1e-07	0	8.4e-02	1.8e-01	1.9e-03
Kis-Rába I	ki	-1.7e-04	0.0	0	-5.8e-03	-8	-5.9 e- 03	-8	-2.6e-01	0.0	0.0
	Σ	-1.5e-04	0.0	0	-5.8e-03	-8	-5.9e-03	-8	-1.8e-01	1.8e-01	1.9e-03
20	be	2.5e-04	1.6 e- 03	2	0.0		1.7e-03	2	6.0e-01	2.3e-01	0.0
Keszeg-ér	ki	-2.7e-04	0.0	0	-2.0e-02	-23	-2.0e-02	-23	-8.1e-01	0.0	0.0
\$1	Σ	-1.9e-05	1.6e-03	2	-2.0e-02	-23	-1.8e-02	-21	-2.1e-01	2.3e-01	0.0
21	be	5.3e-05	1.6e-03	3	0.0		1.7e-03	3	1.3e-01	3.5e-03	0.0
Keszeg-ér I	ki	-3.5e-05	0.0	0	-1.4e-02	-24	-1. 4e-0 2	-24	-1.0e-01	-1.5e-02	-7.4e-03
	Σ	1.9e-05	1.6e-03	3	-1.4e-02	-24	-1.2e-02	-21	3.1e-02	-1.1e-02	-7.4e-03
22	be	2.5e-05	3.0e-03	3	0.0		3.1e-03	3	7.9e-02	6.6e-03	0.0
Rába I	ki	-9.9e-06	0.0	0	-5.0e-03	-5	-5.0e-03	-5	-7.3e-03	-8.3e-02	0.0
	Σ	1.5e-05	3.0e-03	3	-5.0e-03	-5	-2.0e-03	-2	7.2e-02	-7.6e-02	0.0
23	be	3.2e-05	9.7e-03	14	0.0		8.5e-03	12	6.9e-02	1.2e-01	0.0
Rába II	ki	-2.8e-04	0.0	0	-3.2e-03	-5	-2.1e-03	-3	-1.6e-01	-5.3e-02	0.0
	Σ	-2.5e-04	9.7e-03	14	-3.2e-03	-5	6.2e-03	9	-9.5 e- 02	7.1e-02	0.0
24	be	0.0	0.0	0	0.0		0.0	0	2.9e-02	1.0e-01	6.3e-04
Rába III	ki	-8.3e-05	0.0	0	0.0	0	-8.3 e- 05	0	-1.2e-01	-9.9e-03	0.0
	Σ	-8.3e-05	0.0	0	0.0	0	-8.3e-05	0	-9.6e-02	9.4e-02	6.3e-04
25	be	1.1e-04	0.0	0	0.0		1.7e-05	0	1.6e-01	1.3e-03	0.0
Hanság-	ki	-1.3e-06	0.0	0	-2.0e-02	-21	-2.0e-02	-21	-6.9e-03	-1.4e-01	0.0
főcsatorna	Σ	1.1e-04	0.0	0	-2.0e-02	-21	-2.0e-02	-21	1.5e-01	-1.4e-01	0.0
26	be	4.0e-05	3.4e-02	8	0.0		3.0e-02	7	1.2e-01	0.0	0.0
Hanság I	ki	-4.5e-05	0.0	0	-4.2e-02	-10	-3.7e-02	-9	-1.3e-01	0.0	-1.7e-03
	Σ	-4.6e-06	3.4e-02	8	-4.2e-02	-10	-7.7e-03	-2	-6.9e-03	0.0	-1.7e-03

4. táblázat (folytatás) Az alrendszerek vízmérlegei az "elterelt Duna" szcenárió alapján (a táblázat folytatása a következő oldalon)

				l. réteg			2. réteg				
		Q _h [m ³ /s]	<i>B</i> [m ³ /s]	B [mm/év]	<i>E₁,</i> [m ³ /s]	E _{tv} [mm/év]	Q _z [m ^{3/} s]	Q _z [mm/év]	Q _h [m ³ /s]	B _{toly} [m ³ /s]	Q _{kút} [m³/s]
27	be	4.4e-05	6.9 e -03	2	0.0		4.6e-03	1	6.2e-02	0.0	0.0
Rábaköz	ki	-3.0e-05	0.0	0	-3.0e-02	-8	-2.8e-02	-7	-4.4e-02	0.0	0.0
	Σ	1.4e-05	6.9e-03	2	-3.0e-02	-8	-2.3e-02	-6	1.9e-02	0.0	0.0
28	be	3.6e-04	5.3e-03	1	0.0		5.3e-04	0	5.6e-01	0.0	0.0
Rábaköz II	ki	-2.1e-04	0.0	0	-3.0e-01	-56	-2.9e-01	-55	-2.8e-01	0.0	-4.9e-03
"	Σ	1.5e-04	5.3e-03	1	-3.0e-01	-56	-2.9 e -01	-55	2.8e-01	0.0	-4.9e-03
29	be	4.3e-04	5.1e-02	10	0.0		2.8e-02	6	3.6e-01	0.0	0.0
Rábaköz	ki	-1.1e-04	0.0	0	-2.3e-01	-45	-2.0e-01	-40	-2.1e-01	0.0	-3.0e-02
111	Σ	3.2e-04	5.1e-02	10	-2.3e-01	-45	-1.8e-01	-35	1.6e-01	0.0	-3.0e-02
30	be	4.5e-04	7.1e-03	3	0.0		7.3e-03	3	4.0e-01	0.0	0.0
Rábaköz	ki	-1.9e-04	0.0	0	-6.6e-02	-29	-6.5e-02	-29	-3.6e-01	0.0	0.0
IV	Σ	2.6e-04	7.1 e -03	3	-6.6e-02	-29	-5.8e-02	-26	3.7e-02	0.0	0.0
31	be	1.0e-04	1.6e-03	0	0.0		3.7e-05	0	8.6e-01	2.6e-02	0.0
Mosoni-	ki	-1.2e-04	0.0	0	-5.1e-03	-1	-3.6e-03	-1	-1.1e+00	0.0	0.0
síkság IV	Σ	-2.1e-05	1.6e-03	0	-5.1e-03	-1	-3.5e-03	-1	-2.3e-01	2.6e-02	0.0
32	be	9.6e-06	1.6e-03	1	0.0		1.7e-03	1	2.2e+00	0.0	0.0
Mosoni-	ki	0.0	0.0	0	0.0	0	0.0	0	-2.2e+00	0.0	0.0
síkság III	Σ	9.6e-06	1.6e-03	1	0.0	0	1.6e-03	1	-1.3e-02	0.0	0.0
33	be	1.8e-05	0.0	0	0.0		1.1e-05	0	5.0e-01	0.0	0.0
Mosoni-	ki	-2.5e-04	0.0	0	-3.2e-02	-4	-3.2e-02	-4	-3.6e-01	0.0	-1.6e-01
síkság II	Σ	-2.3e-04	0.0	0	-3.2e-02	-4	-3.2e-02	-4	1.5e-01	0.0	-1.6e-01
34	be	2.3e-04	3.2e-04	0	0.0		2.2e-05	0	4.1e-01	0.0	0.0
Hanság	ki	-4.3e-05	0.0	0	-2.2e-01	-74	-2.2e-01	-74	-1.9e-01	0.0	0.0
111	Σ	1.9e-04	3.2e-04	0	-2.2e-01	-74	-2.2e-01	-74	2.2e-01	0.0	0.0
35	be	2.8e-04	3.8e-03	1	0.0		1.3e-03	0	8.0e-01	5.2e-03	0.0
Hanság	ki	-1.6e-04	0.0	0	-8.5e-02	-30	-8.2e-02	-29	-7.3e-01	0.0	0.0
11	Σ	1.2e-04	3.8e-03	1	-8.5e-02	-30	-8.1e-02	-28	7.2e-02	5.2e-03	0.0
36	be	5.7e-04	0.0	0	0.0		8.5e-05	0	5.4e+00	0.0	0.0
Szigetköz	ki	-7.2e-04	0.0	0	-3.2e-03	-1	-3.5e-03	-1	-5.4e+00	3.5e-02	-2.3e-03
111	Σ	-1.5e-04	0.0	Ō	-3.2e-03	-1	-3.4e-03	-1	3.0e-02	-3.5e-02	-2.3e-03
37	be	2.4e-04	0.0	0	0.0		1.3e-04	0	3.3e+00	0.0	0.0
Szigetköz	ki	-3.4e-04	0.0	0	-2.1e-02	-8	-2.1e-02	-8	-3.3e+00	0.0	-1.3e-03
11	Σ	-1.0e-04	0.0	0	-2.1e-02	-8	-2.1e-02	-8	1.2e-02	0.0	-1.3e-03
38	be	3.5e-04	8.1e-03	2	0.0		4.6e-03	1	5.7e-01	0.0	0.0
Szigetköz	ki	-2.7e-04	0.0	0	-1.8e-01	-54	-1.7e-01	-53	-3.4e-01	0.0	-5.6e-02
1	Σ	8.1e-05	8.1e-03	2	-1.8e-01	-54	-1.7e-01	-51	2.2e-01	0.0	-5.6e-02
39	be	1.9e-04	3.7e-03	1	0.0		1.7e-03	0	9.5e-01	0.0	0.0
Rábaköz	ki	-3.9e-04	0.0	0	-2.0e-02	-6	-1.8e-02	-5	-1.0e+00	0.0	0.0
V	Σ	-2.1e-04	3.7e-03	1	-2.0e-02	-6	-1.7e-02	-5	-6.2e-02	0.0	0.0

4. táblázat (folytatás) Az alrendszerek vízmérlegei az "elterelt Duna" szcenárió alapján (a táblázat folytatása a következő oldalon)

				I. réteg					2. réteg		
		Q _h [m ³ /s]	<i>В</i> [m ³ /s]	B [mm/év]	<i>E_{tv}</i> [m ³ /s]	E _{tv} [mm/év]	Q _z [m ³ /s]	Q _z [mm/év]	Q _{/r} [m ³ /s]	B _{toly} [m ³ /s]	Q _{kút} [m ³ /s]
40	be	5.8e-05	7. 9e -03	7	0.0		2.8e-03	3	7.3e-02	0.0	2.5e-03
Répce	ki	-1.1e-04	0.0	0	-1.5e-02	-14	-9.8e-03	-9	-8.0e-02	0.0	0.0
völgye	Σ	-4.9e-05	7.9e-03	7	-1.5e-02	-14	-7.1e-03	-7	-6.8e-03	0.0	2.5e-03
41	be	1.1e-05	0.0	0	0.0		0.0	0	1.5e-01	0.0	0.0
Rábca	ki	-2.7e-05	0.0	0	-6.6e-03	-5	-6.6e-03	-5	-1.4e-01	0.0	0.0
völgye	Σ	-1.6e-05	0.0	0	-6.6e-03	-5	-6.6e-03	-5	6.6e-03	0.0	0.0
42	be	1.8e-04	0.0	0	0.0		7.4e-05	0	1.2e+00	0.0	0.0
Mosoni-	ki	-2.6e-04	0.0	0	-2.0e-02	-5	-2.0e-02	5	-1.2e+00	0.0	-1.2e-02
síkság l	Σ	-7.7e-05	0.0	0	-2.0e-02	-5	-2.0e-02	-5	3.2e-02	0.0	-1.2e-02
43	be	1.7e-06	0.0	0	0.0		9.0e-06	0	4.9e-02	0.0	0.0
Fertőzug	ki	-6.4e-06	0.0	0	0.0	0	-1.3e-05	0	-6.1e-02	-1.2e-03	0.0
1	Σ	-4.7e-06	0.0	0	0.0	0	-4.7e-06	0	-1.2e-02	-1.2e-03	0.0
44	be	0.0	9.9e-03	1	0.0		8.0e-03	1	4.4e-03	0.0	0.0
Fertőzug	ki	-1.4e-06	0.0	0	-3.9e-03	-1	-1.9e-03	0	-6.5e-02	0.0	0.0
11	Σ	-1.4e-06	9.9e-03	1	-3.9e-03	-1	6.0e-03	1	-6.1e-02	0.0	0.0
45	be	8.3e-04	0.0	0	0.0		5.9e-04	1	3.5e+00	3.8e-02	0.0
Duna-	ki	-6.6e-04	0.0	0	-9.6e-04	1	-1.4e-03	1	-3.5e+00	-1.0e-01	0.0
ártér III	Σ	1.7e-04	0.0	0	-9.6e-04	-1	-7.9e-04	-1	6.2e-02	-6.7e-02	0.0
46	be	9.3e-04	0.0	0	0.0		5.7e-05	0	1.4e+00	9.3e-03	0.0
Duna-	ki	-3.6e-04	0.0	0	-4.0e-02	-79	-3.9e-02	-78	-1.4e+00	-2.1e-02	0.0
ártér II	Σ	5.7e-04	0.0	0	-4.0e-02	-79	-3.9e-02	-78	5.1e-02	-1.1e-02	0.0
47	be	1.5e-04	0.0	0	0.0		0.0	0	2.4e-01	1.2e-02	0.0
Duna-	ki	-9.0e-05	0.0	0	-2.6e-02	-164	-2.6e-02	-164	-2.3e-01	-2.2e-04	0.0
ártér I	Σ	5.6e-05	0.0	0	-2.6e-02	-164	-2.6e-02	-164	1.4e-02	1.2e-02	0.0

4. táblázat (folytatás) Az alrendszerek vízmérlegei az "elterelt Duna" szcenárió alapján

A talajvízháztartási jelleggörbe különböző módszerekkel számított paraméterei 5. táblázat

	E _{tv, mex} [mm/év]	d _{Etv, max} [m]	<i>d_{Etv, ເ}</i> ສ [m]	R _t [mm/év]
Gyors becslés	277.8	2.18	1.04	16.0
A telítetlen zóna vízforgalmának egydimenziós modellezése	304.1	1.52	1.47	14.0
A negyedidőszaki víztartó háromdimenziós modellezése	177.8	1.02	1.47	9.4

 $E_{tv, max}$ = Maximális talajvízpárolgás $d_{Etv, max}$ = A maximális talajvízpárolgás zónájának vastagsága $d_{Etv, cs}$ = A talajvízpárolgás csökkenési zónájának vastagsága B_t = Tényleges beszivárgás

6. táblázat	A Duna elterelése	ének	hatása a
	talajvízpárolgásra dalékkúpján	a D	una hor-

	E _{tw} [mm/év]		
Vízmérleg-egység	'Eredeti' szcenárió	'Elterelt Duna' szcenárió	Változás
31 Mosoni-síkság IV	1	1	0
32 Mosoni-síkság III	1	0	-1
33 Mosoni-síkság II	6	4	-2
34 Hanság III	84	74	-10
35 Hanság II	33	30	-3
36 Szigetköz III	16	1	-15
37 Szigetköz II	60	8	-52
38 Szigetköz I	60	54	-6
41 Rábca -völgy	6	5	-1
42 Mosoni-síkság l	16	5	-11
43 Fertőzug I	0	0	0
44 Fertőzug II	1	1	0
45 Duna-hullámtér III	81	1	-80
46 Duna-hullámtér il	142	79	-63
47 Duna-hullámtér I	169	164	-5

The data were extracted from Tables VIII.3 and VIII.4