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Abstract. For a given probability distribution λ1, . . . , λm we deter-
mine the structure of all such maps defined on a dense subset of density
operators which leave the Holevo bound invariant i.e. which satisfy

S(

m∑
k=1

λkφ(ρk)) −
m∑

k=1

λkS(φ(ρk)) = S(

m∑
k=1

λkρk) −
m∑

k=1

λkS(ρk)

for all possible collections ρ1, . . . , ρm of density operators.

The Holevo bound (or Holevo information) plays a distinguished role in
quantum information theory. It provides an upper limit (which can be
achieved in certain cases) of the accessible information in a quantum mea-
surement, it gives an upper bound on how well we can infer the value of
an unknown random variable based on the knowledge of another one. The
definition of this quantity is as follows.

Given a probability distribution λ1, . . . , λm, for any collection ρ1, . . . , ρm
of quantum states, the corresponding Holevo bound is

χ(ρ1, . . . , ρm) = S(
m∑
k=1

λkρk)−
m∑
k=1

λkS(ρk),

where S(.) stands for the usual von Neumann entropy, i.e., S(ρ) = − tr ρ log ρ
for any state ρ. Observe that by the concavity of the von Neumann entropy,
χ is always nonnegative. We recall that the Holevo bound is the keystone in
the proof of many results of quantum information theory, more details can
be found in any book on quantum information science, here we refer only to
the classic monograph [5].

Motivated by Wigner’s fundamental theorem on quantum mechanical
symmetry transformations which describes the structure of all maps on the
space of pure states that preserve the quantity of transition probability, in
this paper we determine those state-transformations which leave the Holevo
bound invariant. We recall that in the paper [4] Molnár and Timmermann
determined those bijective maps of the space S(H) of all density operators
on a finite dimensional Hilbert space H which preserve the Jensen-Shannon
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divergence DJS(.||.). Originally, that quantity was defined as a symmetrized
version of the relative entropy but in the present setting we prefer writing
it in the form

DJS(ρ||σ) = S

(
ρ+ σ

2

)
− 1

2
S(ρ)− 1

2
S(σ).

It is apparent that DJS can be viewed as a particular Holevo bound. We
point out that

√
DJS is conjectured to be a true metric on the space of all

density operators. That would be a really remarkable property, unfortu-
nately proof is given only in the 2-dimensional case [1].

Below we describe the structure of all transformations defined on a ”large
part” of the space of density operators which preserve the Holevo bound,
i.e. we determine all those ”symmetries” of the state-space which leave the
important quantity of the Holevo bound invariant. Observe that this result
significantly generalizes the former theorem [4] in different directions: The
quantity that we consider here reduces to the Jensen-Shannon divergence in
a particular case, the transformations under consideration are not assumed
to be surjective and not assumed to be defined on the whole space S(H)
either. This latter generalization is important since in particular it allows us
to consider transformations defined only on the set of all non-singular density
operators, a subset of S(H) that plays an important role when differential
geometrical tools are to be used in quantum information theory or quantum
statistics.

Turning to our result, it is apparent that for any unitary or antiunitary
operator U : H → H, the transformation ρ 7→ UρU∗ on S(H) preserves the
Holevo bound i.e. we have

χ(Uρ1U
∗, . . . , UρmU

∗) = χ(ρ1, . . . , ρm)

for any collection ρ1, . . . , ρm of quantum states. The theorem below asserts
that the converse statement is also true, every state-transformation that
leaves the Holevo bound invariant is induced by a unitary or antiunitary
operator.

More precisely, we have the following result. We point out that whenever
we use topological or metrical notions they always refer to the topology or
the metric induced by the trace norm ‖.‖1.

Theorem 1. Let H be a complex Hilbert space with n = dimH <∞. Let a
probability distribution λ1, . . . , λm be given, all λk’s are positive real numbers
and their sum is 1. Assume that φ :M→ S(H) is a transformation defined
on a dense subset M of S(H) with the property that

S(
m∑
k=1

λkφ(ρk))−
m∑
k=1

λkS(φ(ρk)) = S(
m∑
k=1

λkρk)−
m∑
k=1

λkS(ρk)

holds for all collections ρ1, . . . , ρm of density operators in M. Then there is
a unitary or antiunitary operator U on H such that

φ(ρ) = UρU∗ (ρ ∈M).
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Proof. We assume that

S(
m∑
k=1

λkφ(ρk))−
m∑
k=1

λkS(φ(ρk)) = S(
m∑
k=1

λkρk)−
m∑
k=1

λkS(ρk)

holds for all possible collections ρ1, . . . , ρm of density operators. Choosing
ρ2 = ρ3 = . . . = ρm and defining ρ0 = ρ2 = ρ3 = . . . = ρm and λ0 =
λ2 + . . .+ λm = 1− λ1 we see that φ satisfies

S(

1∑
k=0

λkφ(ρk)))−
1∑

k=0

λkS(φ(ρk)) = S(

1∑
k=0

λkρk)−
1∑

k=0

λkS(ρk).

Hence the original problem where we consider a given probability distribu-
tion and collections of density operators all consisting of m members can be
reduced to the question relating to collections with only two elements.

Accordingly, for a given number λ ∈]0, 1[ and for any pair ρ, σ ∈ S(H) of
density operators we define

χλ(ρ, σ) = S(λρ+ (1− λ)σ)− λS(ρ)− (1− λ)S(σ)

and we assume that φ :M→ S(H) is a map which satisfies

χλ(φ(ρ), φ(σ)) = χλ(ρ, σ)

for all ρ, σ ∈M.
The first important step of the proof follows where we extend φ onto the

whole set S(H). To do this we need a lower and an upper bound for χλ(., .)
in terms of the trace norm ‖.‖1. To obtain the upper bound, let η : [0, 1]→ R
be the function defined by

η(x) =

{
−x log x, x ∈]0, 1]
0, x = 0.

Pick operators ρ, σ ∈ S(H) satisfying ‖ρ−σ‖1 ≤ 1/e. By Fannes’ inequality
(cf., e.g. [5, Theorem 11.6]) we have

|S(ρ)− S(σ)| ≤ ‖ρ− σ‖1 log n+ η(‖ρ− σ‖1)

and this yields that
(1)

χλ(ρ, σ) ≤
≤ λ|S(λρ+ (1− λ)σ)− S(ρ)|+ (1− λ)|S(λρ+ (1− λ)σ)− S(σ)|

≤ (2λ(1− λ) log n)‖ρ− σ‖1 + λη((1− λ)‖ρ− σ‖1) + (1− λ)η(λ‖ρ− σ‖1).

As for the lower bound, let ρ, σ ∈ S(H). We denote by S(.||.) the quantum
relative entropy (cf., [5]). On the one hand, we learn from [2, Theorem III.1]
that

S(ρ‖σ) ≥ ‖ρ− σ‖
2
1 log e

2
.

On the other hand, according to [1], simple computation shows that

χλ(ρ, σ) = λS(ρ‖λρ+ (1− λ)σ) + (1− λ)S(σ‖λρ+ (1− λ)σ).
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Therefore we derive

(2) λ(1− λ) log e‖ρ− σ‖21 ≤ χλ(ρ, σ).

Now, observe that the inequality (1) implies that for small enough ‖ρ−σ‖1,
the quantity χλ(φ(ρ), φ(σ)) = χλ(ρ, σ) is small and next, (2) applied for
φ(ρ) and φ(σ) tells us that then ‖φ(ρ)−φ(σ)‖1 is also small. It follows that
φ is uniformly continuous with respect to the metric induced by ‖.‖1. We
have assumed that M is dense in S(H) which is a complete metric space
and hence using an elementary result from classical analysis we deduce that
φ has a unique uniformly continuous extension φ̃ : S(H)→ S(H).

In what follows we show that φ̃ is of the form stated in the theorem. To
this end, first we claim that φ̃ also preserves χλ(., .). Indeed, as φ̃ preserves
this quantity on the dense setM and χλ(., .) is easily seen to be a continuous

function of its variables, by the continuity of φ̃ it follows that

(3) χλ(φ̃(ρ), φ̃(σ)) = χλ(ρ, σ)

holds for all ρ, σ ∈ S(H). We next show that φ̃ preserves the orthogonality
meaning that for any ρ, σ ∈ S(H) we have

φ̃(ρ)φ̃(σ) = 0 ⇐⇒ ρσ = 0.

Let ρ, σ ∈ S(H). Hopefully it causes no serious confusion if, as usual, we
denote by H(.) the classical Shannon entropy of probability distributions.
The statement [5, Theorem 11.10] tells us that

S(λρ+ (1− λ)σ) ≤ λS(ρ) + (1− λ)S(σ) +H({λ, 1− λ})

and here equality occurs if and only if ρσ = 0. Therefore we obtain that
ρσ = 0 holds exactly when χλ(ρ, σ) = H({λ, 1 − λ}). Referring to (3) this

yields immediately that φ̃ preserves the orthogonality. Denote by P1(H) the
set of all rank-one projections on H. Observe that the elements of P1(H) can
be characterized as those operators in S(H) which are in a set of n pairwise
orthogonal density operators on H. Now we get that φ(P1(H)) ⊂ P1(H).

Let p, q ∈ P1(H) be different projections. We are going to derive a formula
for χλ(p, q). In order to do this, first observe that the von Neumann entropy
of any element of P1(H) is 0, thus we have χλ(p, q) = S(λp + (1 − λ)q).
Now let x, resp. y be a unit vector in the range of p, resp. q. If we restrict
λp+ (1− λ)q to its range, then the matrix of the restriction with respect to
the basis {x, y} is (

λ λ〈y, x〉
(1− λ)〈x, y〉 1− λ

)
.

Using the formula tr pq = |〈x, y〉|2, we deduce that the spectrum of this
matrix is{

1 +
√

1 + 4λ(1− λ)(tr pq − 1)

2
,
1−

√
1 + 4λ(1− λ)(tr pq − 1)

2

}
.
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Since the nonzero eigenvalues of λp+ (1− λ)q are the elements of the latter
set, this implies

(4) χλ(p, q) = 1− (1 + a) log(1 + a) + (1− a) log(1− a)

2
,

where a =
√

1 + 4λ(1− λ)(tr pq − 1). Consider the function f : [0, 1[→ R
defined by

f(t) = 1− (1 + t) log(1 + t) + (1− t) log(1− t)
2

(t ∈ [0, 1[).

By differentiation we obtain that f is strictly monotone and hence injective.
Therefore, it follows that the function g : [0, 1[→ R given by

g(t) = f(
√

1 + 4λ(1− λ)(t− 1)) (t ∈ [0, 1[)

is also injective. Now we can rewrite (4) in the form

χλ(p, q) = g(tr pq).

By (3) we have g(tr φ̃(p)φ̃(q)) = g(tr pq) which yields that

tr φ̃(p)φ̃(q) = tr pq.

Since this equality holds also for equal projections p, q we have that the map
φ̃|P1(H) : P1(H) → P1(H) preserves the transition probability (the trace of
the product) between the elements of P1(H). Applying a version of Wigner’s
theorem (cf., [3, Theorem 2.1.4.]), we conclude that there is a unitary or
antiunitary operator U on H such that

(5) φ̃(p) = UpU∗ (p ∈ P1(H)).

What remains to verify is that the above equality holds not only for rank-
one projections but for all density operators, too. As already mentioned,
in [4] Molnár and Timmermann have described the structure of those bijec-
tive transformations on S(H) which preserve the Jensen-Shannon divergence
DJS(.‖.). As appeared in the introduction we have

DJS(ρ||σ) = S

(
ρ+ σ

2

)
− 1

2
S(ρ)− 1

2
S(σ) = χ 1

2
(ρ, σ) (ρ, σ ∈ S(H)).

In the proof in [4] a several page long and very non-trivial argument was
presented to show that given a transformation that preserves the Jensen-
Shannon divergence and implemented by a unitary or antiunitary operator
on the set of all rank-one projections (meaning that it is of a form similar
to (5)) is necessarily implemented by that unitary or antiunitary operator
on the whole space S(H). With some work one can check that, with slight
modifications, the argument presented in [4] works in our present case as

well. In that way one can achieve the same conclusion and verify that φ̃(ρ) =
UρU∗ holds for all ρ ∈ S(H). This completes the proof of Theorem 1. �
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