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Abstract. For an arbitrary strictly convex function f defined on the
non-negative real line we determine the structure of all transformations
on the set of density operators which preserve the quantum f -divergence.

1. Introduction and statement of the result

Relative entropy is one of the most important numerical quantities ap-
pearing in quantum information theory. It is used as a measure of distin-
guishability between quantum states, or their mathematical representatives,
the density operators. In fact, there are several concepts of relative entropy,
among which the most common one is due to Umegaki. In [7] Molnár de-
scribed the general form of all bijective transformations on the set of density
operators which preserve that kind of relative entropy. The motivation to
explore the structure of those transformations came from the fundamental
theorem of Wigner concerning quantum mechanical symmetry transforma-
tions which are bijective maps on pure states (rank-one projections on a
Hilbert space) preserving the quantity of transition probability. Roughly
speaking, Wigner’s theorem states that any such transformation is imple-
mented by either a unitary or an antiunitary operator on the underlying
Hilbert space. In [7] the author showed that the same conclusion holds for
those bijective transformations on the set of density operators which pre-
serve the relative entropy. Later, in [8] Molnár and Szokol have significantly
extended this result by removing the bijectivity condition. We remark that
recently there has been considerable interest in investigations relating to
”preserver” transformations on different kinds of mathematical structures.
Those are maps which preserve a given numerical quantity, or a given re-
lation, or a given operation, etc. relevant for the underlying structure. In
physics such transformations are usually viewed as sorts of symmetries. For
one of the nicest recent results in that area of research we refer to the paper
[14] by Šemrl.
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The aim of this paper is to give a far-reaching generalization of the re-
sults in [7, 8]. Namely, here we describe all transformations on the set of
density operators which preserve the quantum f -divergence with respect to
an arbitrary strictly convex function f defined on the non-negative real line.

Classical f -divergences between probability distributions were introduced
by Csiszár [2], and by Ali and Silvey [1] independently. They are widely used
in information theory and statistics as distinguishability measures among
probability distributions (see, e.g., [5]). Their quantum theoretical ana-
logues, quantum f -divergences which play a similar role in quantum infor-
mation theory and quantum statistics (see, e.g., [13]) were defined by Petz
[10], [11]. This concept is an essential common generalization and exten-
sion of several notions of quantum relative entropy including Umegaki’s and
Tsallis’ relative entropies. Sometimes quantum f -divergences are also called
quasi-entropies [12].

We define that concept following the approach given in [4]. We begin with
some necessary notation. Let H be a finite dimensional complex Hilbert
space. We denote by B(H) the algebra of all linear operators on H and by
B(H)+ the cone of all positive semi-definite operators on H. Next, S(H)
stands for the set of all density operators which are the elements of B(H)+

having unit trace. We recall that B(H) is a complex Hilbert space with the
Hilbert-Schmidt inner product 〈., .〉HS : B(H)×B(H)→ C defined by

〈A,B〉HS = TrAB∗ (A,B ∈ B(H)), 1

where Tr denotes the usual trace functional on B(H). For any A ∈ B(H),
let LA, RA : B(H)→ B(H) be the left and the right multiplication operators
defined as

LAT = AT, RAT = TA (T ∈ B(H)).

We remark that LARB = RBLA holds for every A,B ∈ B(H). If A,B ∈
B(H)+, then LA and RB are positive Hilbert space operators, hence so is
LARB.

Let now f : [0,∞[→ R be a function which is continuous on ]0,∞[ and
the limit

α := lim
x→∞

f(x)

x
exists in [−∞,∞]. Following [4, 2.1 Definition], for A,B ∈ B(H)+ with
suppA ⊂ suppB (supp denoting the orthogonal complement of the kernel
of an operator) the f -divergence Sf (A‖B) of A with respect to B is defined
by

Sf (A‖B) =
〈√

B, f(LARB−1)
√
B
〉

HS
.

1We mention that, as one of the referees pointed out, opposed to the conventions in
mathematics, in physics the inner product is usually assumed to be conjugate-linear in its
first variable and linear in the second. Accordingly, 〈A,B〉HS would be defined as TrA∗B.
However, in this paper we follow the common mathematical convention which is going to
cause no confusion.
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In the general case we set

Sf (A‖B) = lim
ε→0+

Sf (A‖B + εI),

where I is the identity operator on H. By [4, 2.2 Proposition] the limit
above exists in [−∞,∞]. We next recall a useful formula which will play
an important role in our arguments. Let A,B ∈ B(H)+ and for any λ ∈ R
denote by Pλ, respectively by Qλ the projection on H projecting onto the
kernel of A − λI, respectively onto the kernel of B − λI. According to [4,
2.3 Corollary] we have

(1) Sf (A||B) =
∑

a∈σ(A)

 ∑
b∈σ(B)\{0}

bf
(a
b

)
TrPaQb + αaTrPaQ0

 ,

where σ(.) stands for the spectrum of elements in B(H) and the convention
0 · (−∞) = 0 · ∞ = 0 is used.

A few important examples of quantum f -divergences between density
operators follow. Let A,B ∈ S(H).

(i) If

f(x) =

{
x log x, x > 0
0, x = 0,

then

Sf (A‖B) =

{
TrA(logA− logB), suppA ⊂ suppB
∞, otherwise

which is just the usual Umegaki relative entropy of A with respect
to B.

(ii) Let q ∈]0, 1[ and define the function fq : [0,∞[→ R by fq(x) = (1−
xq)/(1− q) (x ≥ 0). Then

Sfq(A‖B) =
1− TrAqB1−q

1− q
which is the quantum Tsallis relative entropy (see, e.g., [3]) of A
with respect to B.

(iii) If f(x) = (
√
x−1)2 (x ≥ 0), then Sf (A‖B) =

∥∥√A−√B∥∥2

HS
, where

‖.‖HS stands for the Hilbert-Schmidt norm.

We can now formulate the main result of the paper which describes
the structure of all transformations on S(H) leaving a given quantum f -
divergence invariant. First observe that for any unitary or antiunitary op-
erator U on H the transformation A 7→ UAU∗ preserves the f -divergence
on S(H), i.e., we have Sf (UAU∗‖UBU∗) = Sf (A‖B) for any A,B ∈ S(H)
(here the function f is as above). The theorem below states that for a
strictly convex function f the reverse statement is also true: All transfor-
mations on S(H) which leave the f -divergence invariant are of the preced-
ing form, i.e., they are all implemented by unitary or antiunitary operators.
Apparently, this is a Wigner-type result concerning transformations of the
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space S(H) of density operators. Let us point out the fact that any convex
function f : [0,∞[→ R satisfies the requirements given in the definition of
f -divergence: it is continuous on the open interval ]0,∞[ and since the dif-
ference quotient (f(x)−f(0))/(x−0) is increasing, the limit limx→∞ f(x)/x
exists and is finite or equal to ∞. The precise formulation of our result is
as follows.

Theorem. Assume that f : [0,∞[→ R is a strictly convex function and
φ : S(H)→ S(H) is a transformation satisfying

Sf (φ(A)||φ(B)) = Sf (A||B) (A,B ∈ S(H)).

Then there is either a unitary or an antiunitary operator U on H such that
φ is of the form

φ(A) = UAU∗ (A ∈ S(H)).

We emphasize that the bijectivity or the surjectivity of the transformation
φ is not assumed in the theorem and we do not require any sort of linearity
either. Let us make a remark also on the convexity assumption above.
When they consider f -divergence in the classical setting, it is practically
always assumed that the function f is convex. The main reason is that
this condition guarantees the joint convexity and information monotonicity
of the f -divergence which are significant properties. As for quantum f -
divergence, to obtain similar important properties one needs to assume that
f is operator convex (see, e.g., [4]). Therefore, our condition that f is a
convex function is very natural and not restrictive. As for strict convexity,
it is easy to see that if f is affine then Sf (.‖.) is constant. Hence in that
case every selfmap of S(H) preserves the f -divergence which is obviously out
of interest. Observe that the functions appearing in (i)-(iii) are all strictly
convex.

2. Proof

In this section we present the proof of our result. First we recall the notion
of orthogonality of operators. The self-adjoint operators A,B ∈ B(H) are
said to be orthogonal if and only if AB = 0, which is equivalent to the
fact that A and B have mutually orthogonal ranges. In what follows let
n = dimH and denote by P1(H) the set of all rank-one projections on H.

Proof. Observe that for any real number a and operators A,B ∈ S(H) we
have Sf+a(A‖B) = Sf (A‖B) + a. Therefore without any loss of generality
we may and do assume that f(0) = 0. According to the value of α, we divide
the proof into two cases.

CASE I. We assume that α is finite. First we show that φ preserves the
orthogonality in both directions, i.e. it satisfies

φ(A)φ(B) = 0⇐⇒ AB = 0
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for any A,B ∈ S(H). To see this we need the following characterization of
orthogonality. For any A,B ∈ S(H) we have

(2) AB = 0 ⇐⇒ Sf (A||B) = α.

Indeed, if AB = 0, then a straightforward calculation using the formula (1)
shows that Sf (A||B) = α. Suppose now that the right-hand side of (2)
holds. On the one hand, we have

Sf (A||B) =
∑

a∈σ(A)\{0}

∑
b∈σ(B)\{0}

bf
(a
b

)
TrPaQb +

∑
a∈σ(A)\{0}

αaTrPaQ0.

On the other hand, we have

α = αTrA = α
∑

a∈σ(A)\{0}

aTrPa.

Since the left-hand sides of the previous two equalities are equal, using the
fact that ∑

b∈σ(B)

Qb = I

we easily infer that∑
a∈σ(A)\{0}

∑
b∈σ(B)\{0}

bf
(a
b

)
TrPaQb = α

∑
a∈σ(A)\{0}

∑
b∈σ(B)\{0}

aTrPaQb.

This yields that

(3)
∑

a∈σ(A)\{0}

∑
b∈σ(B)\{0}

(
αa− bf

(a
b

))
TrPaQb = 0.

Let a ∈ σ(A)\{0} and b ∈ σ(B)\{0} and consider the quantity

(4) αa− bf
(a
b

)
= b

(
α
a

b
− f

(a
b

))
.

It follows from the strict convexity of f that the function f1 : ]0,∞[→ R
defined by

(5) f1(x) =
f(x)− f(0)

x− 0
=
f(x)

x
(x > 0)

is strictly increasing. Therefore, for any x > 0 we have

(6) f(x)/x < lim
s→∞

f1(s) = α

and hence

(7) f(x) < αx

which implies that the quantity in (4) is positive. On the other hand, since
Pa, Qb ∈ B(H)+ we have TrPaQb ≥ 0. It follows that the terms of the sum
on the left-hand side of (3) are nonnegative. We conclude that TrPaQb = 0
holds for all a ∈ σ(A)\{0} and b ∈ σ(B)\{0} which implies that AB =
0. This completes the proof of the equivalence in (2). Since φ preserves
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the f -divergence, it then follows that φ preserves the orthogonality in both
directions.

Apparently, we can characterize the elements of P1(H) as those operators
in S(H) which belong to a set of n pairwise orthogonal density operators
on H. By the orthogonality preserving property of φ, we infer that it maps
P1(H) into itself. We claim that φ preserves the transition probability (the
trace of products) on P1(H). To prove this, let P,Q ∈ P1(H) be arbitrary.
A straightforward calculation gives that

Sf (P ||Q) = (f(1)− α) TrPQ+ α

and similarly

Sf (φ(P )||φ(Q)) = (f(1)− α) Trφ(P )φ(Q) + α.

By (7) one has f(1)− α 6= 0 and it follows that

Trφ(P )φ(Q) = TrPQ.

This means that the restriction of φ to P1(H) preserves the transition proba-
bility. The non-surjective version of Wigner’s theorem (see, e.g., [6, Theorem
2.1.4]) describes the structure of all such maps. Since H is finite dimensional,
we obtain that there exists either a unitary or an antiunitary operator U on
H such that

φ(P ) = UPU∗ (P ∈ P1(H)).

Consider the transformation ψ : S(H) → S(H) defined by ψ(A) =
U∗φ(A)U (A ∈ S(H)). It is clear that this map preserves the quantum
f -divergence and has the additional property that it acts as the identity on
P1(H). Define the function f2 : [0,∞[→ R by

f2(x) =

{
xf
(

1
x

)
, x > 0

α, x = 0.

Let A ∈ S(H) be fixed and Q ∈ P1(H) be arbitrary. Using (1), we easily
have

Sf (Q||A) = TrQf2(A)

and similarly

Sf (Q||ψ(A)) = TrQf2(ψ(A)).

By the properties of ψ, the left-hand sides of the above equalities coincide,
therefore

Tr f2(ψ(A))Q = Tr f2(A)Q

holds for every rank-one projectionQ onH. It easily follows that f2(ψ(A)) =
f2(A). Observe that f2(x) = f1(1/x) (x > 0). Since f1 is clearly injective,
so is f2 on ]0,∞[. Moreover, by (6) we have f1(x) < α (x > 0) and then we
obtain that f2 is injective on the whole interval [0,∞[. It then follows that

A = ψ(A) = U∗φ(A)U (A ∈ S(H))

and this completes the proof in CASE I.
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CASE II. We now assume that α is infinite. The basic strategy of the
argument below is close to that of the proof of [8, Theorem]. However, due
to the fact that here we consider general divergences, we necessarily face
many problems which are of different levels of difficulties. Although at some
parts in our argument we may directly refer to parts of the proof of [8,
Theorem], for the sake of understandability, readability and completeness
we present practically all necessary details.

As mentioned before the formulation of Theorem, the possibility α = −∞
is ruled out by the convexity of the function f . Therefore, α =∞. We show
that φ preserves the rank, i.e. for any A ∈ S(H) the rank of φ(A) equals
the rank of A. In order to see it, let A,B ∈ S(H) be arbitrary. Using (1) it
is easy to check that Sf (A||B) < ∞ holds if and only if suppA ⊂ suppB.
It follows that

suppφ(A) ⊂ suppφ(B)⇐⇒ suppA ⊂ suppB

and next that

(8) suppφ(A) ( suppφ(B)⇐⇒ suppA ( suppB.

Observe that the rank of A is k if and only if there is a strictly increasing
chain (with respect to inclusion) of supports of n density operators on H
such that its kth element is suppA. Using this characterization and (8) we
see that φ leaves the rank of operators invariant. In particular

(9) φ(P1(H)) ⊂ P1(H).

We next verify that φ is injective. Indeed, it is an immediate consequence
of the following assertion. For any A,B ∈ S(H) we have f(1) ≤ Sf (A‖B)
and equality appears if and only if A = B. For the proof, it is clear that if
the support of A is not contained in that of B, then this inequality holds
and it is strict. Otherwise we have

Sf (A‖B) =
∑

a∈σ(A)

∑
b∈σ(B)\{0}

(bTrPaQb)f
(a
b

)
.

Observe that the numbers bTrPaQb (a ∈ σ(A), b ∈ σ(B)\{0}) are non-
negative and their sum is 1. Thus, by the convexity of f it follows easily
that

(10) f(1) = f

 ∑
a∈σ(A)

∑
b∈σ(B)\{0}

b
a

b
TrPaQb

 ≤ Sf (A‖B)

and this yields the desired inequality. Moreover, since f is strictly convex,
in the above inequality we have equality exactly when for any a ∈ σ(A)
and b ∈ σ(B)\{0} satisfying bTrPaQb > 0, the value a/b is constant. Since
the sum of the numbers b(a/b) TrPaQb over such values of a and b equals
1, we get that this constant is 1. By the previous observations we easily
obtain that for any a ∈ σ(A) and b ∈ σ(B)\{0} at least one of the relations
a = b, PaQb = 0 must hold. One can simply check that under the condition
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suppA ⊂ suppB which we have supposed above, the latter property is
equivalent to the equality A = B. We conclude that φ is injective.

We derive a formula which will be used several times in the rest of the
proof. Define the function f3 : ]0,∞[→ R by

f3(x) = xf

(
1

x

)
= f1

(
1

x

)
(x > 0),

where f1 is the function that has appeared in (5). Easy computation shows
that for any A ∈ S(H) and P ∈ P1(H) with suppP ⊂ suppA we have

(11) Sf (P ||A) = TrP |suppAf3(A|suppA).

In the next part of our argument H is assumed to be 2-dimensional. We
claim that for any A ∈ S(H) we have

[minσ(A),maxσ(A)] ⊂ [minσ(φ(A)),maxσ(φ(A))]

meaning that φ can only enlarge the convex hull of the spectrum of the
elements of S(H). To verify this property, first observe that by (9) the
inclusion above holds for all A ∈ P1(H). Now pick a rank-two operator
A ∈ S(H) and set λ = maxσ(A) ∈ [1/2, 1[. Then there are mutually
orthogonal projections P,Q ∈ P1(H) such that A = λP+(1−λ)Q. Applying
(11) we easily get that for any R ∈ P1(H)

(12) Sf (R||A) = f3(λ) TrRP + f3(1− λ) TrRQ.

We have seen that f1 is strictly increasing, so f3 is strictly decreasing and
thus f3(λ) ≤ f3(1−λ). It follows that as R runs through the set P1(H), the
quantity Sf (R||A) runs through [f3(λ), f3(1 − λ)]. Similarly, we infer that
for any R ∈ P1(H) the number Sf (φ(R)‖φ(A)) belongs to [f3(µ), f3(1−µ)],
where µ = maxσ(φ(A)). Since φ preserves f -divergence, we obtain that

f3(µ) ≤ f3(λ) ≤ f3(1− λ) ≤ f3(1− µ).

Due to the fact that f3 is strictly decreasing this implies

minσ(φ(A)) ≤ minσ(A) ≤ maxσ(A) ≤ maxσ(φ(A))

which verifies our claim.
In the most crucial part of the proof that follows we show that φ

(
1
2I
)

=
1
2I. Assume on the contrary that there is a number λ1 ∈]1/2, 1[ and mutually
orthogonal projections P1, Q1 ∈ P1(H) such that

(13) φ

(
1

2
I

)
= λ1P1 + (1− λ1)Q1.

By (12) for any R ∈ P1(H) one has Sf
(
R
∥∥1

2I
)

= f3

(
1
2

)
and then we deduce

that

(14)
f3

(
1

2

)
= Sf

(
φ(R)

∥∥∥∥φ(1

2
I

))
= f3(λ1) Trφ(R)P1

+f3(1− λ1) Trφ(R)Q1.
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Because 1 = Trφ(R) = Trφ(R)P1 + Trφ(R)Q1, this gives us that f3

(
1
2

)
is a convex combination of f3(λ1) and f3(1 − λ1). Since these two latter
numbers are different (f3 is strictly decreasing), we infer that Trφ(R)P1 has
the same value for any R ∈ P1(H) and the same holds for Trφ(R)Q1, too.
We next prove that

(15) Trφ(R)P1 > Trφ(R)Q1.

To this end, we first show that f3 is strictly convex. According to [9, Lemma
1.3.2], a real-valued function g defined on an interval J is strictly convex if
and only if for any elements x1 < x2 < x3 in J we have

det

 1 x1 g(x1)
1 x2 g(x2)
1 x3 g(x3)

 > 0.

It is easy to check that for any positive reals x1 < x2 < x3 we have

1

x1x2x3
det

 1 x1 f3(x1)
1 x2 f3(x2)
1 x3 f3(x3)

 = det

 1 1/x3 f(1/x3)
1 1/x2 f(1/x2)
1 1/x1 f(1/x1)


and the latter number is positive due to the strict convexity of f . This
proves that f3 is also strictly convex. Using that property and the fact
that f3 is strictly decreasing, referring to (14) one can verify in turn that
Trφ(R)P1 6= 1

2 and then that Trφ(R)P1 > 1
2 . Therefore, we obtain

Trφ(R)P1 > Trφ(R)Q1. In fact, in any representation of f3

(
1
2

)
as a convex

combination of f3(t) and f3(1− t) (t ∈]1/2, 1[), the coefficient of the former
term is greater than the coefficient of the latter one.

Now choose unit vectors u and v from the ranges of P1 and Q1. It is easy
to check that the matrix of an element of P1(H) with respect to the basis
{u, v} is of the form (

a ε
√
a(1− a)

ε
√
a(1− a) 1− a

)
,

where a ∈ [0, 1] and ε ∈ C with |ε| = 1. It follows from what we have
observed above that when R runs through the set P1(H), the number a =
Trφ(R)P1 in the matrix representation of φ(R) remains constant, and since
f3 is clearly injective, a is different from the numbers 0, 1. Now we can
rewrite (14) in the form

(16) af3(λ1) + (1− a)f3(1− λ1) = f3

(
1

2

)
.

Next let us consider φ
(
φ
(

1
2I
))

. We have

φ

(
φ

(
1

2
I

))
= λ2P2 + (1− λ2)Q2,

for some 1
2 ≤ λ2 < 1 and mutually orthogonal elements P2, Q2 of P1(H). In

fact, as φ can only enlarge the convex hull of the spectrum and λ1 >
1
2 , it
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follows that λ2 >
1
2 . Pick an arbitrary rank-one projection R on H and set

R2 = φ(φ(R)). Since φ preserves Sf (.‖.), by (14) we have
(17)

f3

(
1

2

)
= Sf

(
φ(φ(R))

∥∥∥∥φ(φ(1

2
I

)))
= Sf (R2‖λ2P2 + (1− λ2)Q2) = f3(λ2) TrR2P2 + f3(1− λ2) TrR2Q2.

Here λ2 >
1
2 is fixed. Since we have TrR2P2 + TrR2Q2 = 1, it follows just

as above that the numbers TrR2P2 and TrR2Q2 are also fixed, they do not
change when R varies. Moreover, we necessarily have

(18) TrR2P2 > TrR2Q2.

Consider a unit vector from the range of P2. Let x, y be its coordinates with
respect to the basis {u, v} appearing in the previous paragraph. It is easy
to see that the representing matrix of P2 is(

x
y

)(
x
y

)t
,

where t denotes the transposition. Moreover, since R2 is a rank-one pro-
jection which is the image (under φ) of a rank-one projection, its matrix
representation is of the form(

a ε
√
a(1− a)

ε
√
a(1− a) 1− a

)
,

where a is the same as in (16), and ε ∈ C with |ε| = 1 may vary. We have

TrR2P2 = Tr

[(
a

√
a(1− a)ε√

a(1− a)ε 1− a

)(
x
y

)(
x
y

)t]
.

Elementary computations show that the latter quantity equals

axx+
√
a(1− a)εxy +

√
a(1− a)εxy + (1− a)yy =

a|x|2 + (1− a)|y|2 + 2
√
a(1− a)<(εxy).

As we have already noted, the value of TrR2P2 does not change when R
varies and a is also constant. Therefore, we obtain that the value of

a|x|2 + (1− a)|y|2 + 2
√
a(1− a)<(εxy)

is constant for infinitely many values of ε (by the injectivity of φ we see
that R2 runs through a set of continuum cardinality, so there is such a large
set for the values of ε, too). It follows that <(εxy) is constant for infinitely
many values of ε which clearly implies that xy = 0. Therefore, the column
vector (

x
y

)
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is a scalar multiple of (
1
0

)
or

(
0
1

)
.

Obviously, this can happen only when P2 = P1 or P2 = Q1. Using the fact
that R2 is the image of a rank-one projection under φ, it follows from (15)
that

(19) TrR2P1 > TrR2Q1.

Therefore the equality P2 = Q1 is excluded due to (18). Consequently,
P2 = P1 and Q2 = Q1 and hence we obtain

(20) φ

(
φ

(
1

2
I

))
= λ2P1 + (1− λ2)Q1.

From (17) we have

f3(λ2) TrR2P1 + f3(1− λ2) TrR2Q1 = f3

(
1

2

)
.

On the other hand, referring to the preceding paragraph we see that
TrR2P1 = a and TrR2Q1 = 1− a, thus it follows that

(21) af3(λ2) + (1− a)f3(1− λ2) = f3

(
1

2

)
.

We assert that the equation

(22) af3(λ) + (1− a)f3(1− λ) = f3

(
1

2

)
has at most two solutions in ]0, 1[. Indeed, consider the function

λ 7→ af3(λ) + (1− a)f3(1− λ) (λ ∈]0, 1[).

Since f3 is strictly convex, the same holds for this function, too. Therefore
it is obvious that it cannot take the same values at three different places.
Hence (22) does not have three different solutions in ]0, 1[. But by (16) and
(21) λ1, λ2 and clearly 1

2 too are solutions. Since λ2 ≥ λ1 >
1
2 , it then follows

that λ2 = λ1 and referring to (13) and (20) we see that φ
(
φ
(

1
2I
))

= φ
(

1
2I
)
.

Since φ is injective, this gives us that φ
(

1
2I
)

= 1
2I. Therefore, φ sends 1

2I
to itself.

Now let 1
2I 6= A ∈ S(H) be a rank-two operator and denote by λ ∈]1/2, 1[

its maximal eigenvalue. We assert that σ(φ(A)) = σ(A). Let f4 : ]0, 1[→ R
be the function defined by

f4(x) =
f(2x) + f(2(1− x))

2
(x ∈]0, 1[).

Using the formula (1) we obtain Sf
(
A
∥∥1

2I
)

= f4(λ) and, similarly,

Sf
(
φ(A)

∥∥1
2I
)

= f4(λ′), where λ′ = maxσ(φ(A)) > 1
2 . Since φ preserves

the f -divergence and sends 1
2I to itself, it follows that Sf

(
φ(A)

∥∥1
2I
)

=
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Sf
(
A
∥∥1

2I
)
, and hence that f4(λ) = f4(λ′). We have that f4 is strictly con-

vex and symmetric with respect to the middle point 1
2 of its domain. By

elementary properties of convex functions this implies that the restriction
of f4 to ]1/2, 1[ is strictly increasing. We necessarily obtain that λ = λ′ and
this yields that the spectrum of A coincides with that of φ(A). Therefore,
φ is spectrum preserving.

Select mutually orthogonal projections P,Q ∈ P1(H) and pick a number
λ ∈]1/2, 1[. Consider the operator B = λP + (1 − λ)Q. By the spectrum
preserving property of φ we can choose another pair P ′, Q′ ∈ P1(H) of
mutually orthogonal projections such that φ(B) = λP ′+(1−λ)Q′. We have
learnt before that when R runs through the set of all rank-one projections,
the quantity Sf (R||B) runs through the interval [f3(λ), f3(1−λ)]. Using the
equation (12) we easily see that Sf (R‖B) = f3(λ) if and only if TrRP = 1
which holds exactly when R = P . Therefore, we obtain

R = P ⇐⇒ Sf (R‖B) = f3(λ)⇐⇒ Sf (φ(R)‖φ(B)) = f3(λ)

⇐⇒ Sf (φ(R)‖λP ′ + (1− λ)Q′) = f3(λ)⇐⇒ φ(R) = P ′.

This gives us that φ(P ) = P ′ and then we also obtain φ(Q) = Q′. Conse-
quently, φ preserves the orthogonality between rank-one projections. More-
over, we have

(23) φ(B) = φ(λP + (1− λ)Q) = λφ(P ) + (1− λ)φ(Q).

Next, we show that φ preserves also the nonzero transition probability
between rank-one projections. Let P and R be different rank-one projections
which are not orthogonal to each other. Choose a rank-one projection Q
which is orthogonal to P . Pick λ ∈]1/2, 1[. On the one hand, we have

Sf (R‖λP + (1− λ)Q) = f3(λ) TrRP + f3(1− λ) · TrRQ

and on the other hand, by (23), we compute

Sf (R‖λP + (1− λ)Q) = Sf (φ(R)‖λφ(P ) + (1− λ)φ(Q))

= f3(λ) Trφ(R)φ(P ) + f3(1− λ) Trφ(R)φ(Q).

Comparing the right-hand sides, we infer

TrRP = Trφ(R)φ(P ).

Consequently, φ preserves the transition probability between rank-one pro-
jections.

Above we have supposed that H is two-dimensional. Assume now that H
is an arbitrary finite dimensional Hilbert space and φ : S(H) → S(H) is a
transformation which preserves the f -divergence. We show that φ preserves
the transition probability between rank-one projections in this case too. In
fact, we can reduce the general case to the previous one. To see this, first
let H2 be a two-dimensional subspace of H and A0 ∈ S(H) be such that
suppA0 = H2. Set H ′2 = suppφ(A0). Since φ preserves the rank, H ′2 is also
two-dimensional. By what we have learnt at the beginning of the proof in
CASE II, φ maps any element of S(H) whose support is included in H2 to an
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element of S(H) whose support is included in H ′2. In that way φ gives rise
to a transformation φ0 : S(H2)→ S(H ′2) which preserves the f -divergence.
Consider a unitary operator V : H ′2 → H2. The transformation V φ0(.)V ∗

maps S(H2) into itself and preserves the f -divergence. We have already seen
that such a transformation necessarily preserves the transition probability
between rank-one projections which implies that the same holds for φ0 as
well. Since for any two rank-one projections P,Q there exists a rank-two
element A0 ∈ S(H) such that suppP, suppQ ⊂ suppA0, it follows that we
have

TrPQ = Trφ(P )φ(Q).

By the non-surjective version of Wigner’s theorem we infer that there is
either a unitary or an antiunitary operator U on H such that

φ(P ) = UPU∗ (P ∈ P1(H)).

Define the map ψ : S(H) → S(H) by ψ(A) = U∗φ(A)U (A ∈ S(H)). It
is clear that ψ preserves Sf (.‖.) and it acts as the identity on P1(H). Let
A ∈ S(H). Since ψ leaves the quantum f -divergence invariant, it preserves
the inclusion between the supports of elements of S(H) (see the first part
of the proof in CASE II). This implies that for every rank-one projection P
on H we have

suppP ⊂ suppA⇐⇒ suppP ⊂ suppψ(A).

We easily obtain that suppA = suppψ(A). Let P be an arbitrary rank-one
projection which satisfies suppP ⊂ suppA = suppψ(A). Using (11) and
the equality Sf (P ||ψ(A)) = Sf (P ||A) we deduce that

TrPf3(ψ(A)) = TrPf3(A).

It follows that f3(ψ(A)) equals f3(A) on suppA. Using the injectivity of f3

we can infer that ψ(A) = A and next that φ(A) = UAU∗. This completes
the proof of the theorem. �
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