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Abstract. We establish the algebraic reflexivity of three isometry groups of operator structures: The

group of all surjective isometries on the unitary group, the group of all surjective isometries on the set

of all positive invertible operators equipped with the Thompson metric, and the group of all surjective
isometries on the general linear group of B(H), the operator algebra over a complex infinite dimensional

separable Hilbert space H. We show that those isometry groups coincide with certain groups of auto-

morphisms of corresponding structures and hence we also obtain the reflexivity of some automorphism
groups.

1. Introduction and statement of the main result

In the past few decades considerable work has been done related to local maps on operator algebras.
The main problem in this area of research is to answer the question whether the local actions of important
classes of transformations (e.g., derivations, or automorphisms, or isometries, etc.) on a given operator
algebra completely determines the class under consideration.

The originators of investigations of this kind are Kadison, Larson and Sourour [16], [17], [18]. Motivated
by certain problems concerning the Hochschild cohomology of operator algebras, in [16] Kadison studied
local derivations on a von Neumann algebra R. A linear map δ : R → R is called a local derivation if at
each point in the algebra δ coincides with a derivation (that may vary from point to point). More precisely,
the assumption is that for every a ∈ R there exists a derivation δa : R → R such that δ(a) = δa(a).
It was proved in [16] that in the above setting, every continuous local derivation is a (global) derivation
(in fact, the result in [16] was deduced in a more general context). Larson and Sourour proved in [18]
that similar conclusion holds for local derivations of the full operator algebra B(X ) on a Banach space X
(even without assuming continuity).

Beside derivations, there are other important classes of transformations on operator algebras which
also deserve attention from the point of view described above. We mention automorphism groups and
isometry groups. The former groups reflect the algebraic properties of the underlying algebras while
the latter ones reflect their geometrical features. In [17, Some concluding remarks (5), p. 298] Larson
initiated the study of local automorphisms of Banach algebras. The definition is straightforward: a local
automorphism is a linear map φ on a given Banach algebra A with the property that for every x ∈ A there
exists an (algebra) automorphism φx of A such that φ(x) = φx(x). In the paper [18], Larson and Sourour
proved that if X is an infinite dimensional Banach space, then every surjective local automorphism of
the algebra B(X ) is an automorphism. In [6], Brešar and Šemrl showed that in the case of an infinite
dimensional separable Hilbert space H the assumption of surjectivity can be relaxed, i.e. every local
automorphism of B(H) is an automorphism.
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The above mentioned results concern local maps on linear structures and can be put into a general
common frame as follows. Given a linear algebraic structure V (e.g., an operator algebra) and a collection
E of its linear transformations, the local maps φ above are transformations on V which are linear and
belong locally to E . This means that for every x ∈ V there exists a transformation φx ∈ E such that
φ(x) = φx(x). The presented results show that in some important cases, for several particular classes of
transformations the corresponding local maps are all ’global’, i.e. they in fact belong to the given class
of transformations. A number of related papers on this area of research are listed on page 23 in [21].

It has been a natural question how those investigations could be extended to non-linear structures.
Probably the most useful idea is due to Šemrl [25] and it is connected to the concepts of 2-locality and
2-local maps. Let A be any mathematical structure and E a given class of transformations on A. We say
that a map φ : A → A belongs 2-locally to E if for any pair x, y ∈ A there is an element φ(x,y) of E for
which φ(x) = φ(x,y)(x) and φ(y) = φ(x,y)(y). Adopting the notion of algebraic reflexivity for the present
setting that has previously been used in the literature in relation with linear (1-)local maps, we call the
class E algebraically reflexive if for every map φ that belongs 2-locally to E we necessarily have φ ∈ E .
Observe that here we do not assume any sort of linearity.

If, for example, E is the group of certain automorphisms of A, the maps which belong 2-locally to
E are naturally termed as 2-local automorphisms. In a similar way one can speak of 2-local isometries,
2-local derivations, etc. The main result in [25] says that if H is an infinite dimensional separable Hilbert
space, then every 2-local automorphism of B(H) (more precisely, every map which belongs 2-locally to
the group of all algebra automorphisms of B(H)) is an (algebra) automorphism. This nice and surprising
observation has motivated further investigations. One can find corresponding results and references in
the book [21] (Sections 3.4, 3.5 and see also p. 24 in the Introduction). For more recent results we
refer to the papers [1], [4], [9], [11]. In fact, although one of the main advantages of the concept of
2-locality is that the reflexivity of classes of transformations can be investigated in non-linear settings, in
all the latter four papers the authors considered 2-local isometries, 2-local automorphisms, etc. on linear
structures. Unlike those investigations, in the present paper we study reflexivity problems on structures
of linear operators which are definitely non-linear. These structures are groups or certain substructures
of groups of operators acting on a Hilbert space. Our main aim is to explore the reflexivity of isometry
and automorphism groups of those structures.

Given a metric space G, by an isometry of G we mean a distance preserving self-map of G. The set
of all surjective isometries of G forms a group, it is called the isometry group of G and is denoted by
I(G). A 2-local isometry on G is a mapping φ : G → G such that for every pair a, b ∈ G there exists a
surjective isometry Φ(a,b) : G→ G such that

φ(a) = Φ(a,b)(a) and φ(b) = Φ(a,b)(b).

The algebraic reflexivity question for the isometry group I(G) that we are considering in this paper asks
whether every 2-local isometry on G is a surjective isometry, i.e. if every map that belongs 2-locally to
I(G) necessarily belongs (globally) to I(G).

Let H be a complex infinite dimensional separable Hilbert space and B(H) the algebra of all bounded
operators on H. Below we establish the algebraic reflexivity of the isometry groups of three important
substructures of B(H):

(a) The unitary group U(H) of B(H) with the metric induced by the operator norm;

(b) The set B(H)−1
+ of all positive invertible operators on H with the Thompson metric; and

(c) The general linear group GL(H) of B(H) with the metric induced by the operator norm.

(Observe that by the polar decomposition theorem, the last group is in a sense generated by the pre-
vious two structures.) The first and the third metric groups are widely studied in detail, they need no
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further explanation. As for the second one, we note that the importance of the Thompson metric on
B(H)−1

+ arises from the fact that it coincides with the geodesic distance induced by the natural Finsler
geometrical structure on B(H)−1

+ . In this metric the distance between the elements A,B ∈ B(H)−1
+ is

equal to ‖ log
√
A
−1
B
√
A
−1‖. The Thompson metric has a wide range of applications in different areas

of mathematics (for more information we refer the reader to [22] and the references therein).
Our main theorem can be formulated in short as follows.

Theorem 1.1. Let H be a complex infinite dimensional separable Hilbert space and let G be either U(H),
B(H)−1

+ , or GL(H). The isometry group of G is algebraically reflexive.

A fundamental requirement for addressing the algebraic reflexivity of those isometry groups is the
following characterization of the surjective isometries supported on each setting.

Theorem 1.2. (see [13, Theorem 8], [22, Theorem 1] and [14, Corollary 2.3]) Let H be a complex Hilbert
space.

(a) A map Φ : U(H)→ U(H) is a surjective isometry if and only if there exist V and W both unitary
operators or both anti-unitary operators on H such that

(?) Φ(A) = V AW, ∀A ∈ U(H) or Φ(A) = V A∗W, ∀A ∈ U(H).

(b) A map Φ : B(H)−1
+ → B(H)−1

+ is a surjective (Thompson) isometry if and only if there exists T
a linear or conjugate linear bounded and invertible operator on H such that

(??) Φ(A) = TAT ∗, ∀A ∈ B(H)−1
+ or Φ(A) = TA−1T ∗, ∀A ∈ B(H)−1

+ .

(c) A map Φ : GL(H) → GL(H) is a surjective isometry if and only if there exist V and W both
unitary operators or both anti-unitary operators on H such that

(? ? ?) Φ(A) = V AW, ∀A ∈ GL(H) or Φ(A) = V A∗W, ∀A ∈ GL(H).

It is obviously true that any 2-local isometry of a metric space is an isometry, so one may think that
in order to show the algebraic reflexivity of the isometry group we only need to check the surjectivity of
all 2-local isometries. However, a short consideration can justify that this is not the proper way to prove
such results. First, we remark that the isometry group need not to be reflexive even in such particular
cases as represented by general C∗-algebras. In [12] Györy showed that for a non-countable discrete
topological space X, the commutative C∗-algebra C0(X) of all continuous complex functions on X that
vanish at infinity has an even linear 2-local isometry which is not a surjective isometry. As we shall see
below, the real content of the reflexivity result in Theorem 1.1 is that if a map belongs 2-locally to any
of the above described collections (?), or (??), or (? ? ?) of transformations, then it necessarily belongs
globally to that collection. Let us go a bit further in explanation. We show that the above collections of
transformations (hence also the corresponding isometry groups) are in fact groups of automorphisms of
certain topological algebraic structures. To see this, first observe that the assignment (A,B) 7→ AB−1A
defines an operation both on U(H) and on B(H)−1

+ and the correspondence (A,B) 7→ AB∗A makes GL(H)
an algebraic structure. The next result shows that the groups of all continuous, resp. uniformly continuous
automorphisms, coincide with the considered isometry groups of U(H), B(H)−1

+ , resp. GL(H). Observe
that it is not true in general that 2-local morphisms of a (binary) algebraic structure are all morphisms.

Theorem 1.3. Let H be a complex infinite dimensional separable Hilbert space.
Let Φ : U(H)→ U(H) be a transformation. Then Φ is a continuous bijective map satisfying

(i) Φ(AB−1A) = Φ(A)Φ(B)−1Φ(A), ∀A,B ∈ U(H)

if and only if there exist V and W both unitary operators or both anti-unitary operators on H
such that

Φ(A) = V AW, ∀A ∈ U(H) or Φ(A) = V A−1W, ∀A ∈ U(H).
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The transformation Ψ : B(H)−1
+ → B(H)−1

+ is a continuous (in the operator norm) bijection for
which

(ii) Ψ(AB−1A) = Ψ(A)Ψ(B)−1Ψ(A), ∀A,B ∈ B(H)−1
+

if and only if there exists T a linear or conjugate linear bounded and invertible operator on H
such that

Ψ(A) = TAT ∗, ∀A ∈ B(H)−1
+ or Ψ(A) = TA−1T ∗, ∀A ∈ B(H)−1

+ .

The map Φ : GL(H)→ GL(H) is a uniformly continuous bijection satisfying

(iii) Φ(AB∗A) = Φ(A)Φ(B)∗Φ(A), ∀A,B ∈ GL(H)

if and only if there exist V and W both unitary operators or both anti-unitary operators on H
such that

Φ(A) = V AW, ∀A ∈ GL(H) or Φ(A) = V A∗W, ∀A ∈ GL(H).

It is now obvious that our reflexivity results in Theorem 1.1 originally stated for isometry groups can
also be viewed as statements on the algebraic reflexivity of the above described isomorphism groups.

The following sections are devoted to the proofs of our results. Before going into the details we present
the notation, some concepts and basic observations we shall use in the rest of the paper. An anti-unitary
operator on a Hilbert space H is a surjective conjugate linear isometry. By a projection on H we mean a
self-adjoint idempotent operator P ∈ B(H). We denote by P(H) the set of all projections on H and by
P1(H) the set of all rank-1 elements of P(H). For any pair x, y ∈ H of vectors the symbol x⊗ y stands
for the rank at most one operator defined by (x ⊗ y)z = 〈z, y〉x, z ∈ H. The self-adjoint elements of
U(H) are called symmetries. We denote this collection by S(H), i.e. S(H) = {T ∈ U(H) : T ∗ = T}. It is
clear that a unitary operator U is a symmetry if and only if it can be written as U = I − 2P with some
projection P ∈ P(H). The spectrum of any operator A ∈ B(H) is denoted by σ(A) and tr stands for the
usual trace functional.

Observe that the composition of a 2-local isometry with a surjective isometry is also a 2-local isometry.
Therefore, without loss of generality, one may assume that a 2-local isometry φ fixes any two given
elements of the underlying space.

2. The algebraic reflexivity of the isometry group of U(H)

In this section we prove the following statement.

Theorem 2.1. Let H be a complex infinite dimensional separable Hilbert space. The isometry group of
U(H) is algebraically reflexive.

According to the basic observation given above, a 2-local isometry of U(H) can be assumed to fix any
two given elements of U(H). Throughout this section, φ represents a 2-local isometry on U(H)
such that φ(I) = I.

We first claim that φ preservers symmetries.

Lemma 2.2. We have φ(S(H)) ⊆ S(H).

Proof. Let T be a symmetry. The 2-local condition on φ applied to the pair (I, T ) implies the existence
of a surjective isometry Φ(I,T ) such that Φ(I,T )(I) = φ(I) = I and Φ(I,T )(T ) = φ(T ). An application of
Theorem 1.2-(a) assures the existence of a unitary or an anti-unitary operator V such that φ(T ) = V TV ∗.
Therefore φ(T ) ∈ S(H). �

It follows from the Lemma 2.2 that φ induces a natural map Ψ : P(H)→ P(H) given by

Ψ(P ) =
I − φ(I − 2P )

2
, ∀P ∈ P(H).
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The next lemma states some properties of Ψ that will be employed in forthcoming steps. In particular,
it asserts that the restriction ψ of Ψ onto P1(H) is a Wigner transformation meaning that ψ : P1(H)→
P1(H) and tr(PQ) = tr(ψ(P )ψ(Q)) for any P,Q ∈ P1(H).

By a variant of Wigner’s famous theorem on quantum mechanical symmetry transformations (see, e.g.,
[21, Theorem 2.1.4]) we have the following result.

Theorem 2.3. Every Wigner transformation ϕ : P1(H)→ P1(H) is of the form

ϕ(P ) = UPU∗, ∀P ∈ P1(H)

with some linear or conjugate linear isometry U on H.

We now have the following

Lemma 2.4. If P ∈ P(H) is a projection of finite rank, then Ψ(P ) is a projection of equal rank. If P and
Q are projections of rank one, then tr(PQ) = tr(ψ(P )ψ(Q)). Therefore, ψ is a Wigner transformation
and hence there exists a linear or conjugate linear isometry U on H such that

ψ(P ) = UPU∗, ∀P ∈ P1(H).

Proof. If P is a projection then the 2-local condition on φ applied to the pair (I, I − 2P ) implies the
existence of a unitary or an anti-unitary operator V such that φ(I − 2P ) = V (I − 2P )V ∗. Therefore
Ψ(P ) = V PV ∗ which has the same rank as P . It clearly follows that ψ : P1(H)→ P1(H).

Since φ is a 2-local isometry, it is an isometry. This easily implies that both Ψ and ψ are isometries
(with respect to the operator norm). We refer the reader to an argument in [21] p. 127 that shows that
‖P − Q‖ =

√
1− tr(PQ), where P and Q are arbitrary projections of rank one. This implies that ψ

preserves the quantity tr(PQ) between projections of rank one, i.e. we have tr(PQ) = tr(ψ(P )ψ(Q)).
Hence ψ is a Wigner transformation and the last statement follows from the above mentioned variant of
Wigner’s theorem. �

We shall make use of the following simple auxiliary result concerning rank-1 projections.

Lemma 2.5. Let P0, P1 and P2 be projections on H of rank one, and let α, β, γ, and η be complex
numbers such that α · β 6= 0. If

(1) αP0 + βP1 + γP0P1 = ηP2,

then P0 = P1.

Proof. There exist unit vectors u, v and w in H such that P0 = u ⊗ u, P1 = v ⊗ v and P2 = w ⊗ w.
We observe that if u and v are linearly dependent then P0 = P1. If u and v are linearly independent we
choose z, a vector orthogonal to v and not orthogonal to u. Then the equation displayed in (1), applied
to z, yields

α〈z, u〉u = η〈z, w〉w.
Since α 6= 0 we conclude that u is in the range of P2 and then P0 = P2. Therefore (1) reduces to

βP1 + γP0P1 = (η − α)P0.

If α 6= η, every nonzero vector z orthogonal to the range of P1 is also orthogonal to the range of P0. This
implies that P0 = P1, since P0 and P1 are projections of rank one. If α = η then βP1 + γP0P1 = 0 and
β · γ 6= 0. Hence every vector in the range of P1 is also in the range of P0 implying P0 = P1 again. This
completes the proof. �

For an easier exposition we shall need the following notation. For any operator A we write A(∗) to
denote either A or A∗. Similarly, for an invertible A we write A(−1) to denote either A or A−1. We
use similar notation for complex numbers, λ(∗) represents either λ or λ, likewise, if λ 6= 0, then λ(−1)

represents either λ or 1
λ .

The next lemma establishes the form of the 2-local isometry φ on the most simple elements of U(H).
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Lemma 2.6. If P is a projection of rank one and λ is a modulus one complex number, then

φ(P⊥ + λP ) = I + (λ− 1)(∗)ψ(P ).

Proof. The statement is clearly true for λ = 1 since φ(I) = I. Assume λ 6= 1. The 2-local condition on φ
applied to the pairs (P⊥ + λP, P⊥ − P ) and (P⊥ + λP, I) of unitary operators implies the existence of:

V0 and W0 both unitary operators or both anti-unitary operators on H such that

(2) φ(P⊥ + λP ) = V0(P⊥ + λP )(∗)W0 and φ(P⊥ − P ) = V0(P⊥ − P )W0;

V1 unitary or anti-unitary operator on H such that

(3) φ(P⊥ + λP ) = V1(P⊥ + λP )(∗)V ∗1 .

Thus, from the equations displayed in (2) we get

φ(P⊥ + λP )φ(P⊥ − P )∗ = V0(P⊥ + λ(∗)P )(P⊥ − P )V ∗0
= V0(P⊥ − λ(∗)P )V ∗0
= V0(I − (λ(∗) + 1)P )V ∗0
= I − (λ(∗) + 1)P2,

with P2 = V0PV
∗
0 . On the other hand, since P⊥ − P is a symmetry, from (3) we get

φ(P⊥ + λP )φ(P⊥ − P )∗ =
[
V1(P⊥ + λP )(∗)V ∗1

]
[I − 2ψ(P )]

=
[
I + (λ− 1)(∗)V1PV

∗
1

]
[I − 2ψ(P )]

= I − 2ψ(P ) + (λ− 1)(∗)V1PV
∗
1 − 2(λ− 1)(∗)V1PV

∗
1 ψ(P )

= I − 2P1 + (λ− 1)(∗)P0 − 2(λ− 1)(∗)P0 P1,

with P1 = ψ(P ) and P0 = V1PV
∗
1 . Therefore

2P1 − (λ− 1)(∗)P0 + 2(λ− 1)(∗)P0 P1 = (λ(∗) + 1)P2.

Lemma 2.5 implies that P0 = P1 and we have

φ(P⊥ + λP ) = V1(P⊥ + λP )(∗)V ∗1 = I + (λ− 1)(∗)V1PV
∗
1 = I + (λ− 1)(∗)ψ(P ).

This completes the proof. �

The following lemma will be employed in the proofs of forthcoming statements.

Lemma 2.7. Let X be an invertible operator in B(H) and let u, v be vectors in H. Then Y = X +u⊗ v
is invertible if and only if 〈X−1u, v〉+ 1 6= 0.

Proof. In the first version of the manuscript the assertion was borrowed from [10] (see Lemma 2.7 there).
The referee has kindly pointed out that the above statement can be deduced very easily as follows. The
operator Y is invertible if and only if I +X−1u⊗ v is invertible. This is equivalent to −1 /∈ σ(X−1u⊗ v)
which is the case if and only if −1 6= 〈X−1u, v〉. �

In the sequel we shall need a particular class of unitary operators with diagonal structure relative to a
family of pairwise orthogonal projections of rank one with sum equal to I. The construction of this class
is as follows.

We first observe that the spectral theorem implies that the set Uf of all finite spectrum operators
in U(H) is uniformly dense. Let us now consider the set of all elements W of Uf with the property
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that λ ∈ σ(W ) implies λ /∈ σ(W ) (this set is obviously dense in Uf ). For any such W we can write
σ(W ) = {c1, c2, · · · , ck} where 0 < |1− c1| < |1− c2| < · · · < |1− ck|. Clearly, W has the form

W =
k∑
i=1

ci Pi

with {Pi}i=1, ..., k representing a family of pairwise orthogonal projections with sum equal to the identity,
i.e.

∑k
i=1 Pi = I. The range of each Pi is a closed subspace of H, hence it has an orthonormal basis.

We associate with each basis vector the rank-one projection onto the one-dimensional subspace it spans
in H. We enumerate these projections via an index set Ni with cardinality equal to the rank of Pi and
obtain

∑
j∈Ni

P ij = Pi. We now attach to each P ij a modulus one complex number λij (close enough to
cj) in the following way: For every i < i′, and k1, k2 ∈ Ni with k1 < k2 and l1, l2 ∈ Ni′ with l1 < l2 we
have

0 < |1− λik1 | < |1− λ
i
k2 | < |1− ci| < |1− λ

i′

l1 | < |1− λ
i′

l2 | < |1− ci′ |.
Finally, we define the operator A ∈ U(H) by

A =
k∑
i=1

∑
j∈Ni

λijP
i
j

 .

We denote the class of all unitary operators A obtained in that way by D(H). It is apparent that D(H)
is dense in U(H).

In the main step that follows we describe the action of φ on the collection D(H).

Lemma 2.8. The linear or conjugate linear isometry U that appears in Lemma 2.4 is either a unitary
or an anti-unitary operator on H and φ(A) = UA(∗)U∗, for every A in D(H).

Proof. Select an operator A from D(H) which is of the form

A =
k∑
i=1

∑
j∈Ni

λijP
i
j

 ,

where {P ij} and {λij} are as described above.
For the sake of simplicity assume k = 2 and index sets N1 and N2 are countably infinite. The general

case would follow similar steps. So we can write

A =
∞∑
n=1

λnPn +
∞∑
n=1

µnQn,

where {Pn, Qm}(n,m)∈N×N is a family of pairwise orthogonal rank one projections with sum equal to I,
{λn}n and {µn}n are sequences of scalars of modulus 1 close enough to certain c1 and c2, respectively.
In addition, the following inequalities also hold:

0 < |λ1 − 1| < |λ2 − 1| < · · · < |c1 − 1| < |µ1 − 1| < |µ2 − 1| < · · · < |c2 − 1|.
We represent Pn by en ⊗ en and Qn by e′n ⊗ e′n, with en and e′n denoting unit vectors in the range of Pn
and in the range of Qn, respectively.

We set A1 = I + (λ1 − 1)P1. Lemma 2.6 says that

φ(A1) = I + (λ1 − 1)(∗)ψ(P1).

The 2-local condition on φ applied to the pair (A,A1) implies the existence of V1 and W1, both unitary
or both anti-unitary operators, such that

φ(A) = V1A
(∗)W1 and φ(A1) = V1A

(∗)
1 W1.
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We recall that the superscript (∗) over an operator represents either the operator or its adjoint. Moreover,
the 2-local condition on φ in the above displayed two formulae implies that either A(∗) = A in both places
or A(∗) = A∗ in both places. We conclude that

φ(A)− φ(A1) = V1[A−A1](∗)W1.

Clearly, A−A1 is not invertible which implies that V1[A−A1](∗)W1 is also not invertible.
We now apply the 2-local property of φ to the pair (A, I) and obtain

(4) φ(A) = V0A
(∗)V ∗0 ,

with V0 a unitary or an anti-unitary operator on H.
From (2) and (4), using Lemma 2.6 we get

V1[A−A1](∗)W1 = φ(A)− φ(A1) = V0[A(∗) − I]V ∗0 − (λ1 − 1)(∗)ψ(P1).

Since V1[A−A1](∗)W1 is not invertible and V0[A(∗) − I]V ∗0 is invertible, Lemma 2.7 implies that

(λ1 − 1)(∗)〈[V0[A(∗) − I]V ∗0 ]−1v1, v1〉 = 1,

with v1 a unit vector such that ψ(P1) = v1 ⊗ v1. Equivalently, we write〈 ∞∑
n=1

1
(λn − 1)(∗)P

′
nv1 +

∞∑
n=1

1
(µn − 1)(∗)Q

′
nv1, v1

〉
=

1
(λ1 − 1)(∗) ,

with P ′n = V0PnV
∗
0 and Q′n = V0QnV

∗
0 . Therefore

(5)
∞∑
n=1

1
(λn − 1)(∗) ‖P

′
n v1‖2 +

∞∑
n=1

1
(µn − 1)(∗) ‖Q

′
nv1‖2 =

1
(λ1 − 1)(∗) .

Since ‖v1‖ = 1,
∑∞
n=1 ‖P ′n v1‖2+

∑∞
n=1 ‖Q′nv1‖2 = 1, |λ1−1| < |λn−1| for all n ≥ 2 and |λ1−1| < |µm−1|

for all m ≥ 1, the equation displayed in (5) implies that P ′nv1 = 0 for all n > 1, Q′nv1 = 0 for all n ≥ 1,
and hence we have P ′1v1 = αv1, with α a scalar of modulus 1. Therefore ψ(P1) = P ′1.

We now consider A2 = I + (λ2 − 1)P2. Lemma 2.6 implies that

φ(A2) = I + (λ2 − 1)(∗)ψ(P2).

We set ψ(P2) = v2 ⊗ v2, with v2 a unit vector in the range of ψ(P2). Lemma 2.4 implies that ψ(P1)
and ψ(P2) are mutually orthogonal and hence ψ(P1)v2 = 0. The proof proceeds as before. The 2-local
condition on φ applied to (A,A2) implies the existence of V2 and W2, both unitary or both anti-unitary
operators, such that

V2[A−A2](∗)W2 = φ(A)− φ(A2) = (φ(A)− I)− (λ2 − 1)(∗)ψ(P2).

Since A−A2 is not invertible and φ(A)− I = V0[A(∗) − I]V ∗0 is invertible, Lemma 2.7 implies

(λ2 − 1)(∗)〈[V0[A(∗) − I]V ∗0 ]−1v2, v2〉 = 1,

equivalently 〈 ∞∑
n=1

1
(λn − 1)(∗)P

′
nv2 +

∞∑
n=1

1
(µn − 1)(∗)Q

′
nv2, v2

〉
=

1
(λ2 − 1)(∗) .

Since P ′1v2 = ψ(P1)v2 = 0, the same reasoning applied in the previous step shows that we necessarily
have ψ(P2) = P ′2 .

Inductively we prove that ψ(Pn) = P ′n, for all n ∈ N. Next, let B1 = I+(µ1−1)Q1 and ψ(Q1) = u1⊗u1.
Lemma 2.4 implies that ψ(Pn)u1 = 0, for all n, and from Lemma 2.6 we get φ(B1) = I+(µ1−1)(∗)ψ(Q1).
As before we conclude that ψ(Q1) = Q′1 and inductively we prove that ψ(Qn) = Q′n holds for all n ≥ 1.
By its definition the family {P ′n, Q′m} of pairwise orthogonal rank-one projections is complete, i.e., its
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sum is equal to I. Therefore {ψ(Pn), ψ(Qm)} = {UPnU∗, UQmU∗} is also complete implying that U is
a unitary or an anti-unitary operator on H.

Finally, since A =
∑∞
n=1 λnPn +

∑∞
n=1 µnQn, the equation displayed in (4) becomes

φ(A) =
∞∑
n=1

λ(∗)
n V0PnV

∗
0 +

∞∑
n=1

µ(∗)
n V0QnV

∗
0

=
∞∑
n=1

λ(∗)
n P ′n +

∞∑
n=1

µ(∗)
n Q′n

=
∞∑
n=1

λ(∗)
n ψ(Pn) +

∞∑
n=1

µ(∗)
n ψ(Qn)

=
∞∑
n=1

λ(∗)
n UPnU

∗ +
∞∑
n=1

µ(∗)
n UQnU

∗

= U

( ∞∑
n=1

λnPn +
∞∑
n=1

µnQn

)(∗)

U∗.

Then φ(A) = UA(∗)U∗, which completes the proof. �

We can now easily complete the proof of the theorem in this section.

Proof of the Theorem 2.1. Since φ is an isometry and D(H) is dense in U(H), it easily follows from
Lemma 2.8 that for every B ∈ U(H), we have either φ(B) = UBU∗ or φ(B) = UB∗U∗. It remains
to show that the appearance of the adjoint does not depend on B. To see this first observe that by
the 2-local condition on φ, for every T ∈ U(H) we have φ(iT ) = ±iφ(T ). The connectedness of the
metric space U(H) implies that either φ(iT ) = iφ(T ) for every T ∈ U(H), or φ(iT ) = −iφ(T ) for every
T ∈ U(H). We claim that for every B ∈ U(H) we have φ(B) = UBU∗ or, for every B ∈ U(H) we have
φ(B) = UB∗U∗. The proof would consist of several cases. We present the details for U unitary and
φ(iT ) = iφ(T ), for every T ∈ U(H). Given B ∈ U(H) which is non skew-symmetric (B∗ 6= −B) we
show that φ(B) = UBU∗. To see this, we recall that φ(iB) = U(iB)(∗)U∗, and also that φ(iB) = iφ(B).
If φ(iB) = U(iB)∗U∗ = −iUB∗U∗ then φ(B) = −UB∗U∗ which contradicts both of the possibilities
φ(B) = UBU∗ and φ(B) = UB∗U∗. Therefore φ(iB) = U(iB)U∗, and hence φ(B) = UBU∗. Since the
set of all non skew-symmetric B’s is dense in U(H) and φ is an isometry, we are done in the present case.
The remaining cases are: U is unitary and φ(iT ) = −iφ(T ) for every T ∈ U(H); U is anti-unitary and
φ(iT ) = iφ(T ) for every T ∈ U(H); and U is anti-unitary and φ(iT ) = −iφ(T ) for every T ∈ U(H). A
similar analysis leads to φ(B) = UB∗U∗, for every B ∈ U(H) in the first two cases and φ(B) = UBU∗,
for every B ∈ U(H) in the last case. �

3. The algebraic reflexivity of the Thompson isometry group

In this section we establish the algebraic reflexivity of the group of all Thompson isometries of the
space B(H)−1

+ of invertible positive operators on the complex infinite dimensional separable Hilbert space
H. The Thompson metric (also called Thompson part metric) can be defined in a rather general setting
involving normed linear spaces and certain closed cones, see [26]. This metric has a wide range of
applications from non-linear integral equations, linear operator equations, ordinary differential equations
to optimal filtering and beyond. Following that general approach, the definition of the Thompson metric
dT for the cone B(H)−1

+ would read

dT (A,B) = log max{M(A/B),M(B/A)}, A,B ∈ B(H)−1
+ ,
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where M(X/Y ) = inf{t > 0 : X ≤ tY } for any X,Y ∈ B(H)−1
+ . It is not difficult to see that dT (A,B)

can be rewritten as
dT (A,B) =

∥∥∥log
(√

A
−1
B
√
A
−1
)∥∥∥ , A,B ∈ B(H)−1

+

(see, e.g., [22]).
In the case of B(H)−1

+ , the Thompson metric has important differential geometrical connections. To
see this, observe that B(H)−1

+ is an open subset of the Banach space B(H)s of all self-adjoint operators
H. Therefore it is a differentiable manifold that carries a natural Finsler geometrical structure as follows
(for more details and for further reading, see e.g., [2]). At any point A ∈ B(H)−1

+ , the tangent space is

identified with the linear space B(H)s in which the norm of a vector X is defined as ‖
√
A
−1
X
√
A
−1‖. It

turns out that in the so-obtained Finsler space the geodesic distance d(A,B) between A and B ∈ B(H)−1
+

can be computed as

d(A,B) =
∥∥∥log

(√
A
−1
B
√
A
−1
)∥∥∥

which clearly coincides with the Thompson distance dT (A,B).
We point out that the differential geometry of the positive cone in operator algebras is an active research

area with many applications. Indeed, even in the finite dimensional case, the differential geometry of
the space of n× n positive definite matrices has important applications among others in linear systems,
statistics, filters, Lagrangian geometry and quantum systems (see, e.g., [8]).

In this section we prove the following statement.

Theorem 3.1. Let H be a complex infinite dimensional separable Hilbert space. The Thompson isometry
group of B(H)−1

+ is algebraically reflexive.

Recall that the composition of a 2-local isometry with a surjective isometry is a 2-local isometry.
Hence without loss of generality we may assume that it fixes any two given elements of the underlying
space. Throughout this section φ denotes a 2-local isometry on B(H)−1

+ such that φ(I) = I and
φ(2I) = 2I.

We now proceed with the details for the proof of Theorem 3.1.

Lemma 3.2. If A is an operator in B(H)−1
+ , then one of the following holds:

(a) φ(B) ≥ φ(A), ∀B ∈ B(H)−1
+ s.t. B ≥ A or

(b) φ(B) ≤ φ(A), ∀ B ∈ B(H)−1
+ s.t. B ≥ A.

Proof. Let B be an operator in B(H)−1
+ such that B ≥ A. The 2-local condition of φ applied to the pair

(A,B) implies the existence of a surjective Thompson isometry Φ(A,B) such that

Φ(A,B)(A) = φ(A) and Φ(A,B)(B) = φ(B).

The form for the surjective isometries described in Theorem 1.2-(b) leads to the following two cases:
1. Φ(A,B)(A) = TAT ∗ and Φ(A,B)(B) = TBT ∗ which implies φ(A) ≤ φ(B), and
2. Φ(A,B)(A) = TA−1T ∗ and Φ(A,B)(B) = TB−1T ∗ which implies φ(A) ≥ φ(B).
Here T is either linear or conjugate linear bounded and invertible operator on H and we use the well
known fact that A ≤ B implies B−1 ≤ A−1. (On referee’s request here is a simple proof: A ≤ B implies
B−1/2AB−1/2 ≤ I which gives us that I ≤ (B−1/2AB−1/2)−1 = B1/2A−1B1/2 resulting in B−1 ≤ A−1.)

This shows that for every B ≥ A we have either φ(B) ≥ φ(A) or φ(B) ≤ φ(A). Let B0, B1 be in
B(H)−1

+ such that Bi ≥ A and Bi 6= A, for i = 0, 1, and φ(B0) ≥ φ(A) and φ(B1) ≤ φ(A). For t ∈ [0, 1]
we define Bt = tB1 + (1 − t)B0. It is easy to see that Bt ∈ B(H)−1

+ , Bt ≥ A and Bt 6= A. We clearly
have φ(Bt) 6= φ(A). The sets

{t ∈ [0, 1] : φ(Bt) ≥ φ(A)} and {t ∈ [0, 1] : φ(Bt) ≤ φ(A)}
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are nonempty, disjoint and their union is [0, 1]. Moreover, φ is an isometry with respect to the Thompson
metric. This metric is known to generate the same topology on B(H)−1

+ as the operator norm (cf. p.
3854 in [22]), hence φ is continuous relative to both metrics. It follows that the above sets are closed too.
But this contradicts the connectedness of the interval [0, 1] and proves the lemma. �

Lemma 3.3. For any A ∈ B(H)−1
+ we have σ(φ(A)) = σ(A). This means that φ is spectrum preserving.

Proof. To see this, apply the 2-local property of φ to the pairs (A, I) and (A, 2I). We have linear or
conjugate linear bounded and invertible operators T, S on H such that

(6) φ(A) = TA(−1)T ∗, I = φ(I) = TI(−1)T ∗

and

(7) φ(A) = SA(−1)S∗, 2I = φ(2I) = S(2I)(−1)S∗.

If the inverse does not appear in the equalities displayed in (6), then we are done since T is a unitary
or anti-unitary operator. The case is similar if the inverse does not appear in the equalities displayed in
(7). Then we assume that φ(A) = TA−1T ∗, I = TT ∗, φ(A) = SA−1S∗, and 2I = S(2I)−1S∗. From the
last equality we infer that 1

2S is a unitary or anti-unitary operator and then the first and third equalities
imply σ(φ(A)) = σ(A−1), σ(φ(A)) = 4σ(A−1) which is an obvious contradiction. Therefore φ preserves
the spectrum of operators in B(H)−1

+ . �

Lemma 3.4. The transformation φ is monotone increasing, i.e., for any A,B ∈ B(H)−1
+ with A ≤ B

we have φ(A) ≤ φ(B). It follows that φ is positive homogeneous, too.

Proof. Pick A,B ∈ B(H)−1
+ with A ≤ B. Referring to Lemma 3.2, assume that we have case (b), i.e.

φ(C) ≤ φ(A) holds for every C ∈ B(H)−1
+ with A ≤ C. Choosing any positive scalar operator C, by the

spectrum preserving property of φ we have φ(C) = C. Therefore, we obtain C ≤ φ(A) for every positive
scalar operator C for which A ≤ C. This is an obvious contradiction, so by Lemma 3.2 we conclude that
φ(A) ≤ φ(B).

Let A ∈ B(H)−1
+ and λ a positive number different from 1. Clearly, by the 2-local condition on φ we

have either φ(λA) = λφ(A) or φ(λA) = 1
λφ(A). For λ > 1, using the monotonicity of φ, in the latter case

we would have
φ(A) ≤ φ(λA) =

1
λ
φ(A),

a clear contradiction. If λ < 1 the proof is similar. Therefore we have φ(λA) = λφ(A) and the proof is
complete. �

As previously stated we are assuming that φ(I) = I (and also that φ(2I) = 2I). Given a nontrivial
projection P ∈ P(H), the 2-local property of φ applied to (I, I + P ) implies the existence of T a unitary
or anti-unitary operator such that either φ(I + P ) = T (I + P )T ∗ or φ(I + P ) = T (I + P )−1T ∗. By the
spectrum preserving property of φ this latter possibility is ruled out. So we have φ(I+P ) = T (I+P )T ∗ =
I + TPT ∗. Therefore φ induces a map on P(H) given by:

Ψ : P(H) → P(H)
P → φ(I + P )− I.

We observe that Ψ preserves the rank of projections. We denote by ψ : P1(H) → P1(H) the restriction
of Ψ to the set P1(H) of all rank-1 projections on H.

Lemma 3.5. The map ψ : P1(H) → P1(H) defined by ψ(P ) = φ(I + P ) − I, P ∈ P1(H) is a Wigner
transformation and hence there exists a linear or conjugate linear isometry U on H such that

ψ(P ) = UPU∗,

for every P ∈ P1(H).
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Proof. We show that for every P and Q in P1(H), we have tr(ψ(P )ψ(Q)) = tr(PQ). We consider the
pair (I + P, I + Q), Theorem 1.2-(b) implies the existence of a linear or conjugate linear bounded and
invertible operator T on H such that

φ(I + P ) = T (I + P )(−1)T ∗ and φ(I +Q) = T (I +Q)(−1)T ∗.

Here in the two appearances of (−1) we either both have −1 or both have 1. In the case where φ(I+P ) =
T (I + P )T ∗ and φ(I +Q) = T (I +Q)T ∗ we compute

φ(I + P )φ(I +Q)−1 = T (I + P )(I +Q)−1T−1

= T (I + P )(I − 1
2
Q)T−1

= T

(
I + P − 1

2
Q− 1

2
PQ

)
T−1

= I + TPT−1 − 1
2
TQT−1 − 1

2
TPQT−1.

If φ(I + P ) = T (I + P )−1T ∗ and φ(I +Q) = T (I +Q)−1T ∗ we similarly have

φ(I + P )φ(I +Q)−1 = I − 1
2
TPT−1 + TQT−1 − 1

2
TPQT−1.

On the other hand, we also have

φ(I + P )φ(I +Q)−1 = (I + ψ(P ))(I − 1
2
ψ(Q))

= I + ψ(P )− 1
2
ψ(Q)− 1

2
ψ(P )ψ(Q).

Hence
ψ(P )− 1

2
ψ(Q)− 1

2
ψ(P )ψ(Q) = TPT−1 − 1

2
TQT−1 − 1

2
TPQT−1

or
ψ(P )− 1

2
ψ(Q)− 1

2
ψ(P )ψ(Q) = −1

2
TPT−1 + TQT−1 − 1

2
TPQT−1

holds. In either case, taking trace we have tr(ψ(P )ψ(Q)) = tr(PQ). The existence of a linear or conjugate
linear isometry U onH such that ψ(P ) = UPU∗ holds for every P ∈ P1(H) follows from Theorem 2.3. �

Lemma 3.6. If λ > 0 and P is a projection of rank one, then φ(I + λP ) = I + λψ(P ).

Proof. The statement is trivial for λ = 1. We assume λ 6= 1, 3 and we apply the 2-local condition on φ
to the pair (I + λP, 2I). We have two cases. Either there exists T , a unitary or anti-unitary operator on
H, such that

φ(I + λP ) = T (I + λP )T ∗ = I + λTPT ∗

or there exists a linear or conjugate linear bounded and invertible operator S on H such that

φ(I + λP ) = S(I + λP )−1S∗, 2I = φ(2I) = S(2I)−1S∗

In the latter case it follows that 1
2S is a unitary or anti-unitary operator on H and we obtain

σ(φ(I + λP )) = 4
{

1,
1

1 + λ

}
.

On the other hand, by the spectrum preserving property of φ we have σ(φ(I + λP )) = {1, 1 + λ} and we
arrive at λ = 3, a contradiction. So the first case remains to go on with. Since λP and P are comparable,
it follows from Lemma 3.2 that φ(I + λP ) = I + λTPT ∗ and φ(I + P ) = I + ψ(P ) are also comparable.
This implies that λTPT ∗ and ψ(P ) are comparable from which we deduce TPT ∗ = ψ(P ) and hence
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φ(I + λP ) = I + λψ(P ). This completes the proof for λ 6= 3. To obtain the conclusion for λ = 3 one can
simply refer to the continuity of φ. �

Lemma 3.7. If 0 < ε < λ and P is a projection of rank one, then φ(εP⊥ + λP ) = εψ(P )⊥ + λψ(P ).

Proof. Lemmas 3.4 and 3.6 imply that

φ(εP⊥ + λP ) = εφ

(
I +

λ− ε
ε

P

)
= ε

[
I +

λ− ε
ε

ψ(P )
]

= εψ(P )⊥ + λψ(P ).

This completes the proof. �

Similarly to the previous section we now describe a class of positive invertible operators with a diagonal
structure relative to a family of pairwise orthogonal projections of rank one with sum equal to I.

The spectral theorem implies that the set Pf of finite spectrum operators in B(H)−1
+ is dense in

B(H)−1
+ relative to the metric induced by the operator norm. Select any element C ∈ Pf and write

σ(C) = {c1, · · · , ck} where c1 > · · · > ck. Then C has the representation

C =
k∑
i=1

ci Pi

with {Pi}i=1, ..., k a family of pairwise orthogonal projections such that
∑k
i=1 Pi = I. The range of each

Pi is a closed subspace of H, hence it has an orthonormal basis. We associate with each basis vector the
orthogonal projection onto its linear span. We denote the so-obtained projections by {P ij}j∈Ni

, the index
set Ni has cardinality equal to the rank of Pi. We now attach to each P ij a positive number λij (close
enough to ci) in the following way: If i < i′, and k1, k2 ∈ Ni with k1 < k2 and l1, l2 ∈ Ni′ with l1 < l2,
then

λik1 > λik2 > ci > λi
′

l1 > λi
′

l2 > ci′ > 0.
We define the positive invertible operator A by

A =
k∑
i=1

∑
j∈Ni

λijP
i
j

 .

Denote by D(H)+
−1 the class of all operators A obtained in that way. It follows from the construction

that D(H)+
−1 is dense in B(H)−1

+ relative to the operator norm topology. As we have already referred to
it at the end of the proof of Lemma 3.2, that topology on B(H)−1

+ coincides with the Thompson topology.
Therefore, the set D(H)+

−1 is dense in B(H)−1
+ with respect to Thompson metric.

In the main step we describe the action of φ on the set D(H)+
−1.

Lemma 3.8. The operator U in Lemma 3.5 is a unitary or anti-unitary operator on H and we have
φ(A) = UAU∗ for every A in D(H)+

−1.

Proof. Let A be an operator in D(H)+
−1 of the above displayed form with scalars λij and projections P ij

having all properties listed above.
We continue the proof assuming that k = 2 and that the corresponding index sets N1 and N2 are

countably infinite. The general case follows similar steps. So let

A =
∞∑
n=1

λnPn +
∞∑
n=1

µnQn,
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where {Pn, Qm}(n,m)∈N×N is a family of pairwise orthogonal projections with sum equal to I, and for
k < l we have

λk > λl > c1 > µk > µl > c2 > 1,
where c1, c2 are some given positive numbers. By the homogeneity of φ we may further suppose that
c2 > 1 and can choose ε such that c2 > ε > 1. The 2-local condition on φ applied to the pair (A, I) implies
the existence of a unitary or anti-unitary operator T such that φ(A) = TAT ∗ or φ(A) = TA−1T ∗. Since
A ≥ εI and φ preserves the spectrum of A, this second possibility cannot occur. So we have φ(A) = TAT ∗

and

(8) φ(A) = T

[ ∞∑
n=1

λnPn +
∞∑
n=1

µnQn

]
T ∗ =

∞∑
n=1

λnP
′
n +

∞∑
n=1

µnQ
′
n,

where P ′n = TPnT
∗ and Q′n = TQnT

∗. We observe that {P ′n, Q′m}(n,m)∈N×N is a family of pairwise
orthogonal rank-1 projections with sum equal to I.

We now apply the 2-local condition on φ to the pair (A, εP⊥1 +λ1P1). Theorem 1.2 implies the existence
of a linear or conjugate linear and invertible operator T1 such that

φ(A) = T1A
(−1)T ∗1 and φ(εP⊥1 + λ1P1) = T1(εP⊥1 + λ1P1)(−1)T ∗1 .

Since εP⊥1 + λ1P1 ≤ A, these two operators are different and φ preserves the order, it follows that we
necessarily have φ(A) = T1AT

∗
1 and φ(εP⊥1 + λ1P1) = T1(εP⊥1 + λ1P1)T ∗1 .

We observe that A− (εP⊥1 + λ1P1) has nontrivial kernel, hence

φ(A)− φ(εP⊥1 + λ1P1) = T1

[
A− (εP⊥1 + λ1P1)

]
T ∗1

is not invertible. From Lemma 3.7 and the equation displayed in (8) we have

φ(A)− φ(εP⊥1 + λ1P1) =
∞∑
n=1

λnP
′
n +

∞∑
n=1

µnQ
′
n − εψ(P1)⊥ − λ1ψ(P1)

=
∞∑
n=1

(λn − ε)P ′n +
∞∑
n=1

(µn − ε)Q′n − (λ1 − ε)ψ(P1).

Since ψ(P1) is a projection of rank one, we write ψ(P1) = u1 ⊗ u1 with u1 a unit vector in the range of
ψ(P1). Lemma 2.7 yields

(λ1 − ε)〈X−1u1, u1〉 = 1,
with X =

∑∞
n=1(λn − ε)P ′n +

∑∞
n=1(µn − ε)Q′n. Therefore

1 = (λ1 − ε)〈X−1u1, u1〉 = (λ1 − ε)

[ ∞∑
n=1

1
λn − ε

〈P ′nu1, u1〉+
n∑
n=1

1
µn − ε

〈Q′nu1, u1〉

]

= (λ1 − ε)

[ ∞∑
n=1

1
λn − ε

‖P ′nu1‖2 +
n∑
n=1

1
µn − ε

‖Q′nu1‖2
]
.

Since
∑∞
n=1 ‖P ′nu1‖2 +

∑∞
n=1 ‖Q′nu1‖2 = 1 and λ1 − ε > λk − ε > c1 − ε > µl − ε > c2 − ε > 0 for all

k > 1 and l ≥ 1, we must have P ′nu1 = 0 for all n > 1 and Q′nu1 = 0 for all n ≥ 1. Therefore we obtain
ψ(P1) = P ′1 and

φ(A) = λ1ψ(P1) +
∞∑
n=2

λnP
′
n +

∞∑
n=1

µnQ
′
n.

We now apply the same analysis to A and εP⊥2 +λ2P2. Write ψ(P2) = u2⊗u2 with u2 a unit vector in
the range of ψ(P2). It follows from Lemma 3.5 that ψ(P1) and ψ(P2) are orthogonal projections. Thus
ψ(P1)u2 = 0. The same reasoning as followed before implies that ψ(P2) = P ′2. Inductively we derive that
ψ(Pn) = P ′n holds for every n and then that ψ(Qn) = Q′n holds for every n.



ALGEBRAIC REFLEXIVITY OF ISOMETRY GROUPS AND AUTOMORPHISM GROUPS 15

By Lemma 3.5 we have ψ(Pn) = UPnU
∗ and ψ(Qn) = UQnU

∗ for all n, where U represents a linear
or conjugate linear isometry on H. Therefore {P ′n, Q′m} = {UPnU∗, UQmU∗} is a family of pairwise
orthogonal projections of rank one with sum equal to I. This entails that U is either a unitary or an
anti-unitary operator on H. We derive the form of φ(A) as follows:

φ(A) =
∞∑
n=1

λnP
′
n +

∞∑
n=1

µnQ
′
n

=
∞∑
n=1

λnψ(Pn) +
∞∑
n=1

µnψ(Qn)

=
∞∑
n=1

λnUPnU
∗ +

∞∑
n=1

µnUQnU
∗

= UAU∗.

This completes the proof. �

Now, the proof of Theorem 3.1 follows easily.

Proof of the Theorem 3.1. Since φ is a Thompson isometry and, as we have already remarked in the
preamble before Lemma 3.8, D(H)+

−1 is dense in B(H)−1
+ with respect to the Thompson metric, it follows

that φ(A) = UAU∗ holds for every A ∈ B(H)−1
+ . This shows that the group of all surjective Thompson

isometries of B(H)−1
+ is algebraically reflexive. �

4. Algebraic reflexivity of the isometry group of the general linear group

We now consider the general linear group GL(H) onH, the group that consists of all bounded invertible
operators on H. In this section we address the algebraic reflexivity question for the isometry group on
GL(H). We prove the following theorem.

Theorem 4.1. Let H be a complex infinite dimensional separable Hilbert space. The group of isometries
on GL(H) is algebraically reflexive.

Let φ : GL(H) → GL(H) be a 2-local isometry, i.e. a mapping such that given a pair (A,B) of
operators in GL(H) there exists a surjective isometry Φ(A,B) on GL(H) such that

φ(A) = Φ(A,B)(A) and φ(B) = Φ(A,B)(B).

As already mentioned, we can assume that φ fixes any given pair of elements of the underlying metric
space GL(H). So let us suppose that φ(I) = I.

The structure of all surjective isometries of GL(H) is described in Theorem 1.2-(c). Therefore the
2-local condition on φ applied to (A, I) implies the existence of a unitary or anti-unitary operator V on
H such that

φ(A) = V A(∗)V ∗.

Thus if A is a unitary operator then φ(A) is also unitary. Consequently, the restriction of φ to the unitary
group is a 2-local isometry of U(H). Theorem 2.1 implies that it is necessarily a surjective isometry and
hence there is a unitary or anti-unitary operator U on H such that

φ(A) = UAU∗, ∀A ∈ U(H) or φ(A) = UA∗U∗, ∀A ∈ U(H).

In the first case considering the map U∗φ(.)U on GL(H) while in the second case considering the trans-
formation U∗φ(.)∗U , we have a 2-local isometry of GL(H) that acts as the identity on U(H).

Therefore without loss of generality we may and do assume throughout this section that φ represents
a 2-local isometry on GL(H) such that φ(A) = A for every A ∈ U(H). In what follows we prove
that φ is the identity on the whole group GL(H).
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We first establish some useful properties of φ.

Lemma 4.2. Let λ be a nonzero real number and A an operator in GL(H). Then φ(λA) = λφ(A).

Proof. Given λ a real number, we apply the 2-local condition to the pair (A, λA). There exist V and
W both unitary operators or both anti-unitary operators on H such that φ(λA) = V (λA)(∗)W and
φ(A) = V A(∗)W. Therefore φ(λA) = λφ(A). �

Lemma 4.3. Let P be a projection of rank one and let λ and ε be nonzero real numbers. Then φ(εP⊥+
λP ) = εP⊥ + λP.

Proof. By the real homogeneity of φ we can clearly assume that ε = 1. Let λ 6= 1. We apply the 2-local
condition on φ to the pair (I, P⊥+λP ). This implies the existence of V0 a unitary operator or anti-unitary
operator on H such that

φ(P⊥ + λP ) = V0(P⊥ + λP )V ∗0 .

Thus

(9) φ(P⊥ + λP ) = I + (λ− 1)P1,

with P1 = V0PV
∗
0 . Since P⊥ − P is unitary we have that

(10) φ(P⊥ − P ) = P⊥ − P.

The 2-local condition on φ applied to the pair (P⊥ + λP, P⊥ − P ) implies the existence of V1 and W1

both unitary operators or both anti-unitary operators on H such that

φ(P⊥ + λP ) = V1(P⊥ + λP )W1 and φ(P⊥ − P ) = V1(P⊥ − P )W1.

Therefore

φ(P⊥ + λP )φ(P⊥ − P )∗ = V1(P⊥ + λP )(P⊥ − P )V ∗1
= V1(P⊥ − λP )V ∗1 = I − (λ+ 1)P2,

with P2 = V1PV
∗
1 . The equations displayed in (9) and (10) now lead to [I + (λ − 1)P1][P⊥ − P ] =

I − (λ+ 1)P2. A straightforward computation yields

2P − (λ− 1)P1 + 2(λ− 1)P1P = (λ+ 1)P2.

Lemma 2.5 implies that P = P1. Therefore, by (9) we have φ(P⊥ + λP ) = P⊥ + λP. An application of
Lemma 4.2 completes the proof. �

We next show that φ fixes every operator in D+
−1(H) (definition is given in Section 3), the proof follows

a similar approach to the proof provided for the Lemma 3.8.

Lemma 4.4. For every A ∈ D(H)+
−1 we have φ(A) = A. It follows that φ is the identity on B(H)−1

+ .

Proof. We present the proof for an operator of the form A =
∑∞
n=1 λnPn+

∑∞
n=1 µnQn, where {Pn, Qm}

is a family of pairwise orthogonal projections of rank one with sum equal to the identity and such that for
any k < l we have λk > λl > λ > µk > µl > µ > 0, where λ, µ are given positive real numbers. We choose
ε such that 0 < ε < µ and set A1 = εP⊥1 + λ1P1. The 2-local condition on φ applied to (A,A1) implies
the existence of V,W unitary or anti-unitary operators such that φ(A) = V AW and φ(A1) = V A1W .
Hence φ(A)−φ(A1) = V [A−A1]W is not invertible since A−A1 is not invertible. The 2-local condition
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on φ applied to the pair (A, I) implies the existence of a unitary or anti-unitary operator V0 such that
φ(A) = V0AV

∗
0 and thus, using Lemma 4.3,

φ(A)− φ(A1) = V0AV
∗
0 − εP⊥1 − λ1P1

= V0[A− εI]V ∗0 − (λ1 − ε)P1

=
∞∑
n=1

(λn − ε)V0PnV
∗
0 +

∞∑
n=1

(µn − ε)V0QnV
∗
0 − (λ1 − ε)P1.

Let u1 be a unit vector such that P1 = u1 ⊗ u1. We set P ′n = V0PnV
∗
0 and Q′n = V0QnV

∗
0 . Since

V0[A− εI]V ∗0 is invertible, an application of Lemma 2.7 yields

(λ1 − ε)

[∑
n

1
λn − ε

〈P ′nu1, u1〉+
∑
n

1
µn − ε

〈Q′nu1, u1〉

]
= 1.

A similar reasoning as presented for the proof of Lemma 3.8 implies that P ′1 = P1. Then φ(A) =
λ1P1 +

∑∞
n=2 λnP

′
n +

∑
n µnQ

′
n. Now, let A2 = εP⊥2 + λ2P2. A similar reasoning gives that P ′2 = P2.

Inductively we prove that φ(A) = A.
Since φ is an isometry and, as we have seen already, D(H)+

−1 is dense in B(H)−1
+ , it follows that φ fixes

all positive invertible operators. �

In the next step we show that φ also fixes the self-adjoint elements of GL(H).

Lemma 4.5. For every self-adjoint invertible operator H on H we have φ(H) = H.

Proof. Let H be a self-adjoint invertible operator and let B be a positive invertible operator. The 2-
local property of φ applied to the pair (H,B) implies the existence of V and W unitary or anti-unitary
operators on H such that φ(H) = V HW and φ(B) = V BW . Thus φ(H)B = φ(H)φ(B)∗ = V HBV ∗.
Observe that the spectrum of HB is real. Indeed, since the spectrum of the product of invertible elements
is independent of the order of the product, we have σ(HB) = σ(

√
BH
√
B) and this latter spectrum is

clearly real since
√
BH
√
B is self-adjoint. Therefore σ(V HBV ∗) = σ(HB) holds even if V is anti-unitary.

We conclude σ(φ(H)B) = σ(HB) or equivalently

(11) σ(
√
Bφ(H)

√
B) = σ(

√
BH
√
B).

Since a rank one projection can be uniformly approximated by positive invertible operators and the
spectrum for normal operators is a continuous set-valued function relative to the Hausdorff distance on
the compact subsets of C (cf. [3, Theorem 6.2.1]), it follows from (11) that σ(Pφ(H)P ) = σ(PHP ) holds
for every rank-1 projection P . This easily implies that

〈φ(H)x, x〉 = 〈Hx, x〉, ∀x ∈ H.

Therefore φ(H) = H as claimed in the lemma. �

Lemma 4.6. If u and v are vectors in H such that 〈u, v〉 6= −1, then φ(I + u⊗ v) = I + u⊗ v.

Proof. Observe that I + u ⊗ v is an element of GL(H). We first assume that u and v are such that
〈u, v〉 /∈ R. We apply the 2-local condition on φ to the pair (I, I + u⊗ v), then there exists V0 a unitary
or an anti-unitary operator such that

φ(I + u⊗ v) = V0(I + u⊗ v)(∗)V ∗0 .

We have two cases to consider: φ(I + u ⊗ v) = I + V0(u ⊗ v)V ∗0 and φ(I + u ⊗ v) = I + V0(v ⊗ u)V ∗0 .
For simplicity of notation we use I + a ⊗ b representing either case. In what follows we show that
a⊗ b = (u⊗ v)(∗).
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We choose a finite rank self-adjoint operator H such that −1 /∈ σ(H) (i.e. I + H is invertible). We
apply the 2-local condition on φ to the pair (I + u⊗ v, I +H). There exist V1 and W1, both unitary or
anti-unitary operators, such that

φ(I + u⊗ v) = V1(I + u⊗ v)(∗)W1 and φ(I +H) = V1(I +H)W1.

Therefore

φ(I + u⊗ v)φ(I +H)∗ = V1(I + u⊗ v)(∗)(I +H)V ∗1
= V1[I + (u⊗ v)(∗)](I +H)V ∗1
= I + V1[(u⊗ v)(∗) +H + (u⊗ v)(∗)H]V ∗1 .

On the other hand, since φ fixes the self-adjoint elements of GL(H), we also have

φ(I + u⊗ v)φ(I +H)∗ = (I + a⊗ b)(I +H)

= I + a⊗ b+H + (a⊗ b)H.
Therefore

a⊗ b+H + a⊗ bH = V1[(u⊗ v)(∗) +H + (u⊗ v)(∗)H]V ∗1 .
Applying the trace functional we get

tr[a⊗ b+H + a⊗ bH] = tr[V1[(u⊗ v)(∗) +H + (u⊗ v)(∗)H]V ∗1 ].

If V1 is unitary, then we have tr(V1CV
∗
1 ) = tr C for every operator C ∈ B(H), while if V1 is anti-unitary,

then we have tr(V1CV
∗
1 ) = tr C, for every C. Therefore, from the above displayed formula we deduce

either
〈a, b〉+ 〈a,Hb〉 = 〈u, v〉+ 〈u,Hv〉

or
〈a, b〉+ 〈a,Hb〉 = 〈u, v〉+ 〈u,Hv〉.

Therefore

(12) 〈a, b〉+ 〈a,Hb〉 = (〈u, v〉+ 〈u,Hv〉)(∗)

holds for every finite rank self-adjoint operator H such that −1 /∈ σ(H), and the appearance of the
conjugation on the right hand side of the equation (12) may vary as H changes.

We set 〈a, b〉 = s1 + is2, 〈u, v〉 = t1 + it2, and write 〈a,Hb〉 = f1(H) + if2(H) and 〈u,Hv〉 =
g1(H) + ig2(H) where f1, f2, g1, g2 are continuous real valued and real linear functionals on the space
of all finite-rank self-adjoint operators (they are the real and purely complex parts of the functionals
H 7→ 〈a,Hb〉 and H 7→ 〈u,Hv〉, respectively). Then (12) becomes

[s1 + f1(H)] + i[s2 + f2(H)] = [t1 + g1(H)]± i[t2 + g2(H)].

This implies that

(13) s1 + f1(H) = t1 + g1(H) and s2 + f2(H) = ±(t2 + g2(H)),

for every finite rank self-adjoint operator H such that −1 /∈ σ(H) and next, by the continuity of
f1, f2, g1, g2, the same statement also holds for all finite rank self-adjoint operators. In particular for
H = 0, (13) yields s1 = t1 and s2 = ±t2. Furthermore, s1 = t1 implies f1(H) = g1(H), for every
finite rank self-adjoint operator H. There are two cases to consider: s2 = t2 and s2 = −t2. The de-
tails are very similar so we present the analysis for s2 = t2. If f2(H) = 0 then either g2(H) = 0 or
g2(H) = −2s2. Therefore f−1

2 {0} ⊆ g−1
2 {0}

⋃
g−1

2 {−2s2}. The linear subspace and the linear manifold
that appear on the right hand side of this inclusion are either equal or disjoint. Therefore we necessarily
have f−1

2 {0} ⊆ g−1
2 {0}. An elementary linear algebraic result implies that we then have g2 = λf2, for

some λ real number. We claim that λ = ±1. If f2 = 0 then g2 = 0. If f2 6= 0 then there exists H such
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that f2(H) = 1. Therefore s2 + 1 = ±(s2 +λ) and hence we have λ = 1 or λ = −1− 2s2. If λ = −1− 2s2

and s2 6= 0 then let H0 be such that f2(H0) = 2. This leads to s2 + 2 = ±(s2 + 2λ) and λ = 1 or
λ = −1 − s2. The latter equality would contradict λ = −1 − 2s2. Consequently, we obtain λ = ±1 and
hence f2 = ±g2. Similarly, for s2 = −t2 we also conclude that λ = ±1 and f2 = ±g2.

Therefore we either have 〈a, Hb〉 = 〈u,Hv〉 for all finite rank self-adjoint operators H, or we have
〈a, Hb〉 = 〈u,Hv〉 for all finite rank self-adjoint operators H. Inserting any rank-1 projection P in the
place of H, in the first case we deduce a⊗ b = u⊗ v while in the second case we obtain a⊗ b = v ⊗ u =
(u ⊗ v)∗. Let us assume that we have the second case, that is φ(I + u ⊗ v) = I + v ⊗ u. We show that
this leads to a contradiction.

Let ε = − 1
2 + i

√
3

2 , then, since φ is an isometry, we have

‖φ(I + u⊗ v)− φ(I + εu⊗ u)‖ = ‖u⊗ v − εu⊗ u‖.
On the other hand, I + εu⊗ u is unitary and hence φ(I + εu⊗ u) = I + εu⊗ u. This, together with the
assumption φ(I + u⊗ v) = I + v ⊗ u imply that

‖φ(I + u⊗ v)− φ(I + εu⊗ u)‖ = ‖v ⊗ u− εu⊗ u‖.
Therefore, we obtain

‖v ⊗ u− εu⊗ u‖ = ‖u⊗ v − εu⊗ u‖.
This equation can be written as ‖(v − εu) ⊗ u‖ = ‖u ⊗ (v − εu)‖. Therefore ‖v − εu‖ = ‖v − εu‖.
Straightforward computation gives that 2<ε〈u, v〉 = 2<ε〈u, v〉 from which we deduce that 〈u, v〉 = 〈v, u〉.
This contradicts our assumption that 〈u, v〉 /∈ R, consequently we have φ(I + u⊗ v) = I + u⊗ v for any
u, v ∈ H with 〈u, v〉 /∈ R.

If u and v are such that 〈u, v〉 ∈ R, we choose a sequence of vectors {vn} converging to v such that
〈u, vn〉 /∈ R (for example, consider vn = v+ 1

n iu). Since φ is continuous, we conclude φ(I+u⊗v) = I+u⊗v.
This completes the proof. �

We are now in a position to prove the theorem of this section.

Proof of the Theorem 4.1. Let A be an operator in GL(H) such that −1 /∈ σ(A) i.e. I +A ∈ GL(H). We
show that φ(I + A) = I + A. We apply the 2-local condition on φ to the pair (I + A, I) to derive the
following:

φ(I +A) = V (I +A)(∗)V ∗,

with V a unitary or anti-unitary operator on H. This implies that σ(φ(I+A)) = σ(I+A)(∗) = 1+σ(A)(∗)

(we use the notation σ(X)(∗) to represent either the set σ(X) or its complex conjugate). Since A is
invertible, we conclude 1 /∈ σ(φ(I +A)). Therefore φ(I +A)− I ∈ GL(H).

We select u and v in H such that 〈u, v〉 6= −1. Then I + u⊗ v is invertible and the 2-local condition
on φ applied to the pair (I + A, I + u ⊗ v) implies the existence of V and W both either unitary or
anti-unitary operators on H such that

φ(I +A)− φ(I + u⊗ v) = V [A− u⊗ v](∗)W.

Lemma 4.6 applies and we have φ(I + A) − I − u ⊗ v = V [A − u ⊗ v](∗)W. We set B = φ(I + A) − I.
Hence B − u⊗ v is invertible if and only if A− u⊗ v is invertible.

We now consider the following set

R = {(u, v) ∈ H ×H : 〈A−1u, v〉 6= 0}.
Let (u, v) ∈ R then 〈A−1u, v〉 = α 6= 0. This implies that 〈A−1 u

α , v〉 = 1. Lemma 2.7 implies that
A− u

α ⊗ v is not invertible. Therefore B − u
α ⊗ v is also not invertible. Lemma 2.7 yields 〈B−1 u

α , v〉 = 1.
Therefore, we have

(14) 〈A−1u, v〉 = 〈B−1u, v〉, ∀(u, v) ∈ R.
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It is easy to see that the set R is dense in H×H and, by continuity, we have 〈A−1u, v〉 = 〈B−1u, v〉 for
all (u, v) ∈ H × H. Consequently, A = B and we obtain φ(I + A) = I + A, for all A ∈ GL(H) such
that −1 /∈ σ(A). This implies that φ(X) = X holds whenever 1, 0 /∈ σ(X). If X ∈ GL(H) then there
is a nonzero real number λ such that 0, λ /∈ σ(X). Considering the operator (1/λ)X and using the real
homogeneity of φ we plainly obtain φ(X) = X. The proof of the theorem is now complete. �

5. Automorphisms corresponding to isometries

This section is devoted to the proof of Theorem 1.3 which identifies the isometry groups under cons-
ideration with certain groups of automorphisms.

Proof of Theorem 1.3. Observe that the statements in the theorem are all “if and only if” assertions and
in all the cases the “if” part is very simple to check. Therefore, in what follows we deal only with the
necessity parts of the three statements.

The first assertion is proved in [24, Theorem 2.1].
As for the second one, consider the map Ψ′(.) =

√
Ψ(I)

−1
Ψ(.)

√
Ψ(I)

−1
. It is easy to see that this

transformation is a continuous (in the operator norm) bijection of B(H)−1
+ which satisfies the equation

(ii) in Theorem 1.3 and, in addition, it is unital, Ψ′(I) = I. It follows that Ψ′(B−1) = Ψ′(B)−1 and next
that Ψ′(ABA) = Ψ′(A)Ψ′(B)Ψ′(A) holds for all A,B ∈ B(H)−1

+ . The continuous bijections of B(H)−1
+

satisfying this equality have been determined in [23, Theorem 1]. Applying that result to Ψ′ one can
trivially complete the proof of the second statement. It remains to verify the third one.

Let Φ : GL(H) → GL(H) be a uniformly continuous bijection satisfying the equation (iii) in The-
orem 1.3. It is apparent that A ∈ GL(H) is unitary if and only if AA∗A = A. It follows that the restriction
Φ|U(H) : U(H)→ U(H) is a continuous bijective map for which the first statement of the theorem applies.
Therefore, we have V and W both unitary operators or both anti-unitary operators on H such that either
Φ|U(H)(A) = V AW holds for all A ∈ U(H) or Φ|U(H)(A) = V A∗W holds for all A ∈ U(H). In the first
case consider the map V ∗Φ(.)W ∗ while in the second case consider the transformation V ∗Φ(.)∗W ∗. In
either case we have a uniformly continuous bijection of GL(H) that still satisfies the equation (iii) and
acts as the identity on U(H). In what follows let us assume that already Φ has these properties. What
we need to show is that Φ is then the identity on the whole group GL(H). We have Φ(I) = I implying
Φ(B∗) = Φ(B)∗ and also Φ(A2) = Φ(A)2 for all A,B ∈ GL(H). Since the elements of B(H)−1

+ can be
characterized as elements of GL(H) which are of the form B = A2 for some A ∈ GL(H) with A∗ = A, it
follows that the restriction Φ|B(H)−1

+
is a continuous bijection of B(H)−1

+ satisfying

Φ|B(H)−1
+

(ABA) = Φ|B(H)−1
+

(A)Φ|B(H)−1
+

(B)Φ|B(H)−1
+

(A)

for all A,B ∈ B(H)−1
+ . Therefore, [23, Theorem 1] applies again and there exists a unitary or anti-unitary

operator W ′ on H such that either Φ|B(H)−1
+

(A) = W ′AW ′∗ holds for all A ∈ B(H)−1
+ or Φ|B(H)−1

+
(A) =

W ′A−1W ′∗ holds for all A ∈ B(H)−1
+ . However, by the uniform continuity of Φ this second possibility

is ruled out. So, we have Φ(A) = W ′AW ′∗ for every A ∈ B(H)−1
+ . Let S be any symmetry (self-adjoint

unitary) and A an arbitrary element of B(H)−1
+ . Clearly, S,A commute if and only if SAS = A which

is equivalent to Φ(S)Φ(A)Φ(S) = Φ(A). Since Φ acts as the identity on U(H), this is equivalent to
SΦ(A)S = Φ(A), i.e. to SΦ(A) = Φ(A)S. Since the symmetries are exactly the operators of the form
S = I − 2P with P being a projection, it follows that A and Φ(A) = W ′AW ′∗ commute with the same
projections and hence the commutants and then the second commutants of A and Φ(A) = W ′AW ′∗

coincide. Choosing any projection P and considering A = I + P , it follows that the second commutants
of P and W ′PW ′∗ coincide. In particular W ′PW ′∗ belongs to the second commutant of P which consists
of operators of the form λP + µ(I − P ), λ, µ are scalars. If P is of finite rank, we easily deduce that in
the equality λP + µ(I − P ) = W ′PW ′∗ we necessarily have λ = 1, µ = 0. Therefore W ′PW ′∗ = P holds
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for any finite-rank projection P . This easily implies the same equality for all projections and then by
the spectral theorem we obtain that W ′AW ′∗ = A holds also for every A ∈ B(H)−1

+ . Therefore we have
Φ(A) = A for any A ∈ B(H)−1

+ . Consequently, Φ acts as the identity on U(H) and also on B(H)−1
+ . We

need to show that Φ is the identity on the whole group GL(H). If A ∈ GL(H) is normal, then in the
polar decomposition A = U |A| we have that U, |A| are commuting. Hence we infer A =

√
|A|U

√
|A| and

it follows that

Φ(A) = Φ(
√
|A|U∗∗

√
|A|) = Φ(

√
|A|)Φ(U∗)∗Φ(

√
|A|) =

√
|A|U∗∗

√
|A| = A.

Since Φ : GL(H)→ GL(H) is uniformly continuous, it has a unique extension to a uniformly continuous
transformation Φ′ : GL(H) → GL(H) which clearly satisfies the same equation (iii) in the theorem.
Obviously, every projection P belongs to GL(H) (for a nice general characterizations of the elements of
this closure we refer to [5]). Pick an arbitrary element A ∈ GL(H). For any rank-one projection P we
have that PA∗P is a normal operator and using the continuity of Φ′ we obtain Φ′(PA∗P ) = PA∗P ,
Φ′(P ) = P . Therefore

PA∗P = Φ′(PA∗P ) = Φ′(P )Φ(A)∗Φ′(P ) = PΦ(A)∗P

is valid for every rank-one projection P . This easily implies that Φ(A) = A and the proof of the theorem
is complete. �

6. Remarks, further reflexivity results

We conclude the paper with a few remarks. First of all observe that above we considered infinite
dimensional spaces. One may naturally ask what happens in finite dimension. As for our reflexivity
results, they remain true also in that case. This can be verified either following the proofs presented before
(with elementary, rather trivial modifications) or using other techniques. For example, since in finite
dimension the unitary group is compact and we have the strong property that every isometry of a compact
metric space into itself is automatically surjective [7, Excercise 2.4.1], the corresponding reflexivity result
follows immediately. (Observe that that automatic surjectivity result fails trivially in noncompact spaces.)
Concerning Thompson isometries, a similar approach can be followed: Assuming that φ : B(H)−1

+ →
B(H)−1

+ is a 2-local isometry with respect to the Thompson metric and supposing φ(I) = I and φ(2I) =
2I, by Lemma 3.4 we see that φ preserves the order and φ is positive homogeneous. Therefore, for any
λ, µ positive numbers with λ < µ we have that φ is an isometry from the operator interval [λI, µI] into
itself. This interval is compact in the norm metric, so it is compact also in the Thompson metric (recall
that the topologies induced by those two metrics coincide on B(H)−1

+ ). Therefore, we again can apply [7,
Excercise 2.4.1] and deduce that φ maps [λI, µI] onto itself. Since this holds for all scalars 0 < λ < µ,
we easily obtain that φ maps B(H)−1

+ onto itself.
Concerning automorphisms, we do not have the first proposition in Theorem 1.3 for the finite dimensi-

onal case (see [24]). The proof of the third proposition is based on the first one, hence neither we have it
in finite dimension. Nevertheless we conjecture that both statements are true also in that case. Finally,
the second statement in Theorem 1.3 is simply not true in finite dimension since the determinant may
show up (see [23, Theorem 1]).

Finally, we mention that using the reflexivity results above one could obtain some additional ones
relating to other groups of transformations. To demonstrate this, we present the following result on the
algebraic reflexivity of the group of order automorphisms and that of the group of surjective isometries
of the space of all positive semi-definite operators.

Denote by B(H)+ the cone of all positive semi-definite operators onH. In the paper [20] we determined
the structure of its order automorphisms. We proved that a bijective map Φ : B(H)+ → B(H)+ is an
order automorphism, (i.e. for any A,B ∈ B(H)+, A ≤ B ⇔ Φ(A) ≤ Φ(B)) if and only if there exists T
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a linear or conjugate linear bounded and invertible operator on H such that Φ(A) = TAT ∗ holds for all
A ∈ B(H)+.

Concerning the surjective isometries of B(H)+ relative to the metric induced by the operator norm,
we recall a nice result of Mankiewicz, namely, [19, Theorem 5] and the follow-up remark which states
that if we have a surjective isometry between convex sets in normed real linear spaces with nonempty
interiors, then this isometry can be uniquely extended to a surjective affine isometry between the whole
spaces. Clearly, the result applies to B(H)+. Therefore, if Φ : B(H)+ → B(H)+ is a surjective isometry,
then it can be extended to a surjective affine isometry Φ̃ : B(H)s → B(H)s (recall that B(H)s stands for
the space of all self-adjoint operators on H). By affinity, Φ sends the unique extremal point 0 of B(H)+

to itself. It follows that Φ̃ is in fact a real linear isometry and then the result [15, Theorem 2] can be used
to verify that the unique complex linear extension of Φ̃ to B(H) is a Jordan *-isomorphism. This implies
that Φ is of the form Φ(A) = UAU∗, A ∈ B(H)+ with some unitary or anti-unitary operator U on H.

The last result of the paper reads as follows.

Theorem 6.1. Let H be a complex infinite dimensional separable Hilbert space. The group of all order
automorphisms and the group of all surjective isometries of B(H)+ are both algebraically reflexive.

Proof. We begin with the group of order automorphisms.
Let φ : B(H)+ → B(H)+ be a map such that for every pair (A,B) of elements of B(H)+ we have

T(A,B) a linear or conjugate linear bounded and invertible operator on H such that

φ(A) = T(A,B)AT
∗
(A,B) and φ(B) = T(A,B)BT

∗
(A,B).

Clearly (see Theorem 1.2) the restriction φ|B(H)−1
+

is a 2-local Thompson isometry of B(H)−1
+ . By The-

orem 3.1 it is a surjective Thompson isometry and hence there exists T a linear or conjugate linear bounded
and invertible operator on H such that either φ(A) = TAT ∗ for all A ∈ B(H)−1

+ or φ(A) = TA−1T ∗ for all
A ∈ B(H)−1

+ . By the local form of φ, for any A,B ∈ B(H)+ we have φ(A) ≤ φ(B) if and only if A ≤ B.
Therefore the second possibility above is ruled out and we have φ(A) = TAT ∗ for all A ∈ B(H)−1

+ .
Moreover, for any A ∈ B(H)+ and B ∈ B(H)−1

+ we have

T−1φ(A)T ∗−1 ≤ B ⇔ φ(A) ≤ TBT ∗ = φ(B)⇔ A ≤ B.
It is easy to conclude that for every A ∈ B(H)+ this implies T−1φ(A)T ∗−1 = A which yields φ(A) =
TAT ∗. Consequently, φ is an order automorphism of B(H)+.

As for the isometry group, observe that it is a subgroup of the group of order automorphisms. The-
refore, if φ : B(H)+ → B(H)+ is a 2-local isometry, then it is a 2-local order automorphism. It follows
that φ is an order automorphism, in particular, φ is surjective. On the other hand, φ is an isometry, so
φ is a surjective isometry of B(H)+ and this completes the proof. �
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