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ABSTRACT 25 

 26 

Long polar fimbriae (Lpf) are intestinal adhesins and important virulence factors of 27 

pathogenic Escherichia coli strains. We cloned and sequenced the lpf2-1 operon (lpf2ABCD) 28 

and its flanking regions of an intimin- and Shiga toxin-negative  E. coli O157:H43 strain from 29 

bovine origin, and also sequenced the lpf2-1 operon of 6 additional atypical O157 bovine 30 

Escherichia coli strains of various serotypes Nucleotide sequence comparison of these lpf 31 

operons showed sequence conservation as they contain only four polymorphic nucleotide 32 

positions. Investigation of these O157 strains as well as 13 Escherichia coli Reference 33 

Collection (ECOR) strains carrying the lpf2-1 allele revealed high degree of sequence 34 

conservation in the lpf2 flanking regions. The lpf2-1 allele is also present in a bovine Shiga 35 

toxin-producing E. coli STEC O136:H12 strain and in vitro adherence assays revealed that the 36 

absence of lpf2-1 in this strain did not affect its host cell-binding properties. Our data indicate 37 

that lpf2 loci is highly conserved in E. coli isolates, but its role in adherence might be masked 38 

by other uncharacterized adhesins. 39 

  40 

 41 
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INTRODUCTION 42 

 43 

Escherichia coli is an important member of the commensal intestinal microflora in mammals, 44 

but there are a large number of isolates, which have acquired a variety of virulence factors and 45 

are capable of causing serious diseases in humans and animals, including those classified as 46 

enterohemorrhagic E. coli (EHEC; Kaper et al., 2004). The frequent emergence of new 47 

isolates with new combinations of virulence genes is exemplified by the appearance of the 48 

strain responsible for the recent outbreak of  hemolytic uremic syndrome (HUS) in Germany 49 

(Mellmann et al., 2011), and underlines the importance of the various possible lateral gene 50 

transfer mechanisms in the spread of virulence genes. Typical EHEC O157:H7/NM strains 51 

carry stx genes encoding Shiga-toxin and also harbour a pathogenicity island (PAI) known as 52 

the locus of enterocyte effacement (LEE), encoding the intimin adhesin, among other 53 

virulence factors (Kaper et al., 2004). 54 

In addition to several extensively studied virulence factors carried by pathogenic E. 55 

coli, there are several additional factors such as the long polar fimbriae (Lpf), which represent 56 

a relatively recently described adhesin and virulence determinant in EHEC (Doughty et al., 57 

2002). The exact mechanism by which Lpf contributes to the virulence of each pathogenic E. 58 

coli strain is currently under investigation, but there is well-documented evidence that Lpf 59 

promote adhesion of EHEC strains to the intestinal epithelium (Jordan et al., 2004; Fitzhenry 60 

et al., 2006; Torres et al., 2008) as well as showing that Lpf interacts with extracellular matrix 61 

proteins (Farfan et al., 2011). 62 

Initially, two genetic variants of Lpf (Lpf1 and Lpf2) were identified in E. coli, and 63 

with the availability of additional sequence data, more variants have been discovered, some of 64 

which show a degree of association with certain serotypes and/or pathogroups (Torres et al., 65 

2009). All known lpf1 and lpf2 operons are encoded on genomic islands, termed O islands, 66 
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integrated in specific chromosomal locations (Fitzhenry et al., 2006; Mellmann et al., 2011). 67 

The Lpf variant encoded by the operon first named lpfAO113 (Ideses et al., 2005) and later 68 

termed as allele 1 of lpf2 (lpf2-1) (Torres et al., 2009) is the most prevalent genetic variant of 69 

Lpf according to our present knowledge, as it has been detected in several strains from 70 

various serotypes (Toma C, 2004; Toma et al., 2006; Torres et al., 2009; Galli et al., 2010; 71 

Monaghan et al., 2011). In comparison, the integration site of the lpf2 operon is found 72 

between the genes coding for the L-glutamine:D-fructose-6-phosphate aminotransferase 73 

(glmS) and that of phosphate-binding periplasmic protein (pstS). Recently, seven E. coli 74 

strains of the O157 serogroup (including strain T22), isolated from healthy cattle and without 75 

key EHEC virulence factors were found to harbour the Lpf2 variant (Sváb & Tóth, 2012). 76 

Three isolates were from the serotype O157:H43 (Tóth et al., 2009), and some of these 77 

members have been the focus of a recent study dealing with the evolution of the O157 78 

serogroup (Iguchi et al., 2011). 79 

In the current study, we report the sequence of the lpf2 operon and its flanking regions 80 

in strain T22, a non-sorbitol-fermenting (NSF) O157:H43 with an atypical pathotype (stx-, 81 

eae), monitor the presence of the operon and its flanking regions in a collection of E. coli 82 

strains of various serotypes carrying the lpf2-1 allele, and investigate the possible function of 83 

Lpf2 in adherence in vitro of a STEC O136:H12, that does not possess intimin or other known 84 

adhesins found in bovine STEC strains. 85 
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MATERIAL AND METHODS 86 

 87 

Bacterial strains. E. coli strains used in this study are listed in Table 1. The ECOR strains 88 

were provided by Mónika Kerényi (Department of Medical Microbiology and Immunology, 89 

Medical School, University of Pécs, Hungary). Strains were grown in lysogeny broth (LB), as 90 

well as on LB and bromothymol-blue agar plates. For isolation of genomic and cosmid DNA, 91 

strains were grown in tryptic soy broth (TSB). 92 

 93 

 94 

Cosmid clone library construction. Genomic DNA was isolated from strain T22 with the 95 

phenol-chlorophorm method (Sambrook et al., 1982) after growing overnight in TSB. The 96 

preparation of the cosmid clone library was performed with pWEB-TNC Cosmid Cloning Kit 97 

(Epicentre, Madison, WI, USA) according to the manufacturer’s instructions, with the 98 

modification that instead of mechanical shearing, genomic DNA was subjected to a partial 99 

digestion with restriction endonuclease MboI (Fermentas, Vilnius, Lithuania). Altogether, 100 

1000 transformant colonies were kept as cosmid library.  101 

 102 

PCR screening for the presence of lpf2 flanking regions. The cosmid library was screened 103 

by PCR for the presence of lpf2. The primers and annealing temperatures used in the reactions 104 

are listed in Table 2. The strains listed in Table 1 were screened for the presence of flanking 105 

regions. 106 

 107 

Reverse Transcriptase PCR for lpfA of E. coli T22. RNA was isolated from cells of a 48 h 108 

culture of E. coli strain T22 with RNEasy mini kit (Qiagen, Hilden, Germany) according to 109 

the manufacturer’s instructions, with the modification that cells were collected with 110 
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centrifugation at 13,000 xg for 1 minute. After discarding the supernatant, the bacterial pellet 111 

was processed according to the manufacturers’ instructions. RNA samples were treated with 112 

Sigma DNase I Amplification Grade (Sigma-Aldrich, St. Louis, MO, USA). The DNAse 113 

treated samples were used as template for reverse transcription with Fermentas Maxima 114 

Reverse Transcriptase (Fermentas, Vilnius, Lithuania) according to the manufacturer’s 115 

protocol. The product of this reaction was used as template in a regular PCR with the primers 116 

defined in Table 2. 117 

 118 

Sequencing.  A cosmid carrying the whole lpf operon was identified. DNA was isolated with 119 

the Sigma GenElute BAC DNA kit (Sigma-Aldrich, St. Louis, MO, USA), and was 120 

sequenced at Baygen Institute (Szeged, Hungary) using the combination of Life Tech's 121 

SOLiD 4, IonTorrent sequencing and the dideoxynucleotide methods. The products of the 122 

RT-PCR were also sequenced with the dideoxynucleotide method. Nucleotide sequence 123 

analysis and searches for open reading frames (ORFs) and homologous DNA sequences in the 124 

EMBL and GenBank database libraries were performed with the tools available from the 125 

National Center for Biotechnology Information (www.ncbi.nlm.nih.gov), with Vector NTI 126 

and the CLC Bio DNA Workbench.  127 

 128 

Construction of an lpfA2-1 deletion mutant of STEC O136:H12. To generate an lpfA2-1 129 

deletion mutant of strain 187/06 (22), the lpfA2-1 gene was replaced by a gene encoding 130 

kanamycin resistance using the lambda red recombinase system (Datsenko & Wanner, 2000). 131 

The long oligonucleotide primers used for introducing the mutation were those described by 132 

(Doughty et al., 2002). Each primer included 20 bp of sequence homologous to the 133 

kanamycin resistance gene, and 40 bp of sequence homologous to regions flanking the lpfA2-134 

1 gene. The kanamycin resistance gene was amplified from pKD4 by PCR. The purified PCR 135 
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product (1 µg DNA) was electroporated into 187/06 (22) strain which had previously been 136 

transformed with the lambda red recombinase expression vector, pKM201. Following 137 

electroporation, transformants of 187/06 (22) were recovered at 30ºC for 2 h in LB broth and 138 

plated onto LB agar with kanamycin for overnight growth at 37ºC to induce the loss of 139 

pKM201. Kanamycin-resistant colonies were then confirmed by PCR for replacement of 140 

lpfA2-1. The lpfA2-1 deletion mutant of 187/06 (22) was complemented in trans by 141 

introduction of the entire lpf2 operon on pWSK:lpf (kindly provided by Dr. E. Hartland). 142 

 143 

Bacterial adhesion. The potential adherence capacity of strain T22 was investigated on 144 

primary bovine kidney and testis cells, which were kindly provided by Emília Szállás 145 

(Veterinary Diagnostic Directorate, National Food Chain Safety Office, Budapest, Hungary). 146 

The cells were grown to semi-confluency at 37ºC in 5% CO2 in 24 well plates in Roswell 147 

Park Memorial Institute 1640 (RPMI 1640) medium without supplements. Prior to use, cells 148 

were washed once with PBS. Strain T22 was grown for 48 hours with shaking at 200 rpm, 149 

and the cell monolayers were incubated for 5 hours with ca. 10
10

 bacteria per well. The 150 

infected monolayers were washed two times with PBS, fixed with methanol and stained with 151 

Giemsa reagent. 152 

The ability of E. coli O136:H12 lpfA2-1
+
 strain and its deletion mutant to adhere to 153 

Hep-2, Caco-2 and T84 cell lines was assessed as previously described (Doughty et al., 2002), 154 

with minor modifications. The cells were grown to semi-confluency at 37ºC in 5% CO2 in 24 155 

well plates (Falcon
TM

 BD) in Dulbecco´s minimal essential medium (DMEM), DMEM/F12 156 

(Gibco, Carlsbad, CA, USA) or MEM, depending of the cell line, with 10% or 20% (vol/vol) 157 

heat-inactivated fetal bovine serum, 2 mM L-glutamine, and 1% (vol/vol) of a mixture of 158 

antibiotics/antimycotics (Gibco). Before use, the cells were washed twice with phosphate-159 

buffered saline (PBS, Gibco) and replenished with the corresponding medium with no 160 
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supplements, as it was observed previously that mannose could inhibit Lpf mediated 161 

adherence (Farfan et al., 2011). The strains were grown static in LB broth overnight at 37ºC, 162 

tissue culture cells were incubated with ca. 10
7
 bacteria per well for 3 h at 37ºC and 5% CO2. 163 

To quantify adherence, the infected monolayers were washed two times with PBS, and the 164 

adherent bacteria were recovered with 200 µl of 0.1% Triton X-100 in PBS and plated on LB 165 

agar plates containing the proper antibiotic. Data were expressed as the percentage of the 166 

bacterial inoculum recovered from triplicate wells and are the mean of at least two separate 167 

experiments. Statistical difference was expressed as the P value determined by a t test 168 

analysis. The in vitro competition assays were performed as described above except that cells 169 

were inoculated with 5 x 10
6
 cells each of mutant and wild type bacteria (total number of 170 

bacteria/well 10
7
 cells) and competition index (CI) was calculated. 171 

 172 

Nucleotide sequence accession number. The sequence of the E. coli T22 lpf2 operon and its 173 

neighbouring regions has been deposited in the GenBank database under accession number 174 

AHZD01000104. The sequences of the lpf2 operons of E. coli O157 strains B47, B54, T16, 175 

T34, T49 and T50 (see Table 1) were deposited under accession numbers KC207119, 176 

KC207120, KC207121, KC207122, KC207123 and KC207124, respectively. 177 
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RESULTS AND DISCUSSION 178 

 179 

Sequence characteristics of the lpf2 operon in the atypical bovine O157 strains.  We 180 

cloned and sequenced a 15.3 kb region from the genome of E. coli O157:H43 strain T22, 181 

including the lpf2 operon. The sequence is deposited in GenBank under the accession number 182 

AHZD01000104. The schematic representation of the sequenced region is shown in Figure 1. 183 

According to our knowledge, this is the first time that the allelic variant lpf2-1 operon and its 184 

flanking regions were sequenced in a non-sorbitol fermenting (NSF) strain of the serotype 185 

O157:H43. The lpf2-1 operon itself has been detected earlier by PCR in other E. coli strains 186 

(Torres et al., 2009; Farfan et al., 2011). 187 

In the lpf2-1 operons of T22 and six other atypical O157 strains, there are only 4 188 

positions that show polymorphism. One of them is a synonymous point mutation in the gene 189 

lpfC of strain T49, the others produce amino acid switches in the respective genes. The lpf2A 190 

gene is uniformly conserved in the investigated strains, and this is also true for the majority of 191 

the strains with whole genomes available in GenBank, an exception is the lpf2A gene of strain 192 

55989 (Table 3.), which contains an isoleucine instead of a leucine in position 116. The lpf2B 193 

has an alanine instead of serine in position 99 in all the atypical O157 strains as opposed to 194 

the strains from GenBank listed in Table 3.  195 

The lpf2C gene proved to be uniform in all the sequenced strains with the exception of 196 

T49, which has a cysteine in position 809 instead of tryptophane – the second polymorphism 197 

within the lpf operons of the atypical O157 strains. The only strain with an amino acid switch 198 

in lpf2C available in GenBank is E24377A, which has a leucine instead of proline in position 199 

122. In the case of lpf2D gene, strain T22 has serine instead of alanine in position 341, this 200 

switch is shared with strains SE11, 55989 and 11368, and is the third polymorphism within 201 

the sequenced atypical strains. The fourth polymorphism can be observed in strains T49 and 202 
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T50, which encode a leucine instead of a methionine in position 313. The nucleotide sequence 203 

comparison of the lpf genes of the atypical O157 bovine strains is shown in Figure S1 204 

(Supporting Material). 205 

The existence of these polymorphisms indicate a similar level of variation in the 206 

otherwise conserved lpf2 sequences. However, currently there is no data available on the 207 

potential or actual effect of these differences on the expression and/or function of Lpf2. 208 

The GC content of the sequenced lpf operons was 44%, while that of the flanking regions in 209 

T22 was 52%, close to the average GC content in the E. coli genome (McLean et al., 1998). 210 

This fact, together with the generally conserved sequence of lpf2 in strains of various sero- 211 

and pathotypes (Table 3) suggests that these lpf variants might be located in genomic islands. 212 

   213 

Dissemination and characteristics of the flanking regions of lpf2. The results of the PCR 214 

scanning of previously characterized strains carrying allele lpf2-1 are listed in Table 1. The 215 

fact that the lpf2-1 operon is flanked by the same set of genes in the majority of the strains 216 

sequenced so far (Table 3) is further demonstrated by the results of our PCR scanning. This 217 

uniformity indicates that the site between the pstS and glmS genes served as an integration 218 

hotspot at some point during the evolution of these strains. The genetic analysis of this region 219 

was performed in an earlier study, in which the authors designed primers specific for the 220 

flanking regions, and investigated whether the site between pstS and glmS is intact or 221 

interrupted by the lpf2 operon (Toma et al., 2006). It must be noted however, that in the case 222 

of prototypic enteroaggregative strain E. coli (EAEC) strain 042 (O44:H18), a Tn21 223 

transposon sequence is inserted between lpfA and glmS genes. This transposon element 224 

contains among other features transposases and genes encoding antibiotic resistance 225 

(Chaudhuri et al., 2010). Interestingly, four out of five strains which have the closest 226 

homologues to the lpf2-1 operon of strain T22, are commensal isolates (Table 3).  227 
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 228 

Expression of Lpf2. The RT-PCR specific for the lpfA genes from T22 yielded positive 229 

results, confirming transcription of Lpf2 in 48-hour cultures. In an earlier study with EHEC 230 

strain EDL933, one of the authors of the current manuscript found that the H-NS protein has a 231 

silencer role, while the regulatory protein Ler acts as an anti-silencer during the expression of 232 

Lpf1 (Torres et al., 2008). Our findings, as well as the lack of LEE (which includes the ler 233 

gene) in strain T22 suggests a different regulatory mechanism controlling Lpf2 expression 234 

relative to Lpf1.  235 

 236 

Contribution of LpfA2-1 to adherence of STEC O136:H12 in vitro. The wide distribution 237 

of this particular allele of Lpf in pathogenic E. coli strains, especially in LEE-negative strains 238 

(Doughty et al., 2002) underlines its potential role as an important adhesin. There is both in 239 

vitro (Doughty et al., 2002; Newton et al., 2004; Torres et al., 2008; Farfan et al., 2011) and in 240 

vivo (Jordan et al., 2004) experimental evidence that Lpf enhances the adherence of intimin-241 

positive and negative strains. Construction of an lpf2 mutant in strain T22 resulted more 242 

challenging than expected; therefore, we created an lpf2-1 mutant in STEC O136:H12 strain 243 

187/06 (22), a bovine isolate that possesses the same lpf2-1 allele as strain T22 (data not 244 

shown) and flanked with the same genes (Table 3). The role of Lpf2 in adherence of strain 245 

187/06 (22) was evaluated using different tissue cultured cells lines; however, no clear 246 

differences could be observed in the quantitative adherence assays between O136:H12 and its 247 

corresponding lpfA2-1 mutant. The strain 187/06 (22) did not show a significant reduction in 248 

the adherence neither to Hep-2 (P=0.10), nor to Caco-2 (P=0.42) cell lines when was 249 

compared to its deletion mutant, but exhibited a significant reduction in adherence to T84 cell 250 

line (P<0.0002) (Figure 2). However, when competition adhesion assays were performed 251 

using the wild type and its corresponding lpfA2-1 deletion mutant, the mean CI (3.27 ± 1.35) 252 
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was significantly greater than 1 (P=0.043). This finding, where the mutant strain is adhering 253 

more than the wild type suggested that the strain lacking Lpf might produce additional 254 

adhesion factors that provided a subtle advantage in the in vitro adherence assay. 255 

 In the case of strain T22, no specific adhesion could be observed in bovine testis and 256 

kidney cell cultures (data not shown), which is in harmony with the finding that strains 257 

possesing Lpf2 are not defective in adhesion but further analysis is needed to define the role 258 

of this fimbriae or other adhesion factors in these subset of strains. 259 

 In summary, we cloned and sequenced for the first time the long polar fimbriae-260 

encoding operon and its flanking regions in an atypical, NSF O157:H43 E. coli strain. The 261 

Lpf operon itself is nearly identical to those of several other pathogenic and non-pathogenic 262 

strains from various serotypes and pathogroups, and represents the genetic variant termed 263 

allele 1 of lpf2. The integration site of the operon also shows high similarity to that on the 264 

aforementioned strains. Characteristic flanking regions were also found in other O157 non H7 265 

strains carrying the same operon. Given the experimental evidence for the role of Lpf in 266 

adherence of E. coli O157:H7 and other pathogenic E. coli strains, it is plausible to propose 267 

that the Lpf2-1 fimbriae are important factors mediating adherence of our bovine E. coli 268 

strains. However, we did not observe any difference in the adherence profile of STEC 187/06 269 

(22) or STEC O136:H12 strains. Based on recent published report, we speculate that in 270 

absence of an adhesin such as Lpf, the strains synthesized alternate surface structure as a 271 

compensatory mechanism for colonization (Lloyd et al., 2012). Further, the complete 272 

regulatory mechanisms of lpf2 still need to be fully elucidated. Finally, the highly conserved 273 

sequence and integration site of the lpf2 operon suggests that lpf2 loci belongs to a conserved 274 

genomic island, and an interesting future task will be to elucidate the mechanism of genetic 275 

acquisition of this operon in pathogenic and commensal E. coli strains. 276 

 277 
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Table 1. List of strains used in this study and results of the PCR scanning of the flanking regions of the lpf2 operon. 412 

Strain Serotype 

Phylogenetic 

group 

bgIG-

phoU 

phoU-

pstB 

pstB-

pstA 

pstA-

pstC 

pstC-

pstS 

pstS-

lpfD 

lpfA-

glmS 

glmS-

glmU 

glmU-

atpC Reference 

T16 O157:H43 B1
c
 + + + + + + + + + (Tóth et al., 2009) 

T22 O157:H43 B1
c
 + + + + + + + + + (Tóth et al., 2009) 

T34 O157:H43 B1
c
 + + + + + + + + + (Tóth et al., 2009) 

T49 O157(rough):H9 B1
c
 + + + + + + + + + (Tóth et al., 2009) 

T50 O157(rough):H37r B1
c
 + + + + + + + + + (Tóth et al., 2009) 

B47 O157:NM B1
c
 + + + + + + + + + (Tóth et al., 2009) 

B54 O157(rough):H12 A
c
 -

a
 + -

a 
+ + + + + + (Tóth et al., 2009) 

ECOR7 O85:HN A + + + + + + + + + (Ochman & Selander, 1984) 

ECOR23 O86:H43 A + + -
a 

+ - + + + + (Ochman & Selander, 1984) 

ECOR26 O104:H21 B1 + + + + + + - + + (Ochman & Selander, 1984) 

ECOR30 O113:H21 B1 + + + + + + + + + (Ochman & Selander, 1984) 

ECOR32 O7:H21 B1 + + + + + + + + + (Ochman & Selander, 1984) 

ECOR33 O7:H21 B1 + + + + + + + + + (Ochman & Selander, 1984) 

ECOR34 O88:NM B1 + + - + + + + + + (Ochman & Selander, 1984) 

ECOR36 O79:H25 D + + + + + + + + + (Ochman & Selander, 1984) 

ECOR57 ON:NM B2 -
b 

-
b 

+ + -
b 

-
b 

-
b 

-
b 

-
b 

(Ochman & Selander, 1984) 

ECOR58 O112:H8 B1 + + + + + + + + + (Ochman & Selander, 1984) 

ECOR67 O4:H43 B1 + + + + + + + + + (Ochman & Selander, 1984) 

ECOR69 ON:NM B1 + + + + + + + + + (Ochman & Selander, 1984) 

ECOR72 O144:H8 B1 + + + + + + + + + (Ochman & Selander, 1984) 

187/06 (22) O136:H12 B2 + + -
a 

+ + + + + + this study 

C600 K12 A - + + + - + + + + (Appleyard, 1954) 

 413 

a 
These strains yielded consistently longer product with the given primer pair. 414 

b
 Strain ECOR57 yielded unspecific or weak products in all these reactions. 415 
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c
 The phylogenetic group of these strains was determined in Sváb & Tóth, 2012. 416 

Abbreviations: 417 

HN: H antigen non-typeable 418 

NM: non-motile 419 

ON: O antigen non-typeable 420 

 421 
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Table 2. Primers used for the amplification of regions flanking the lpf2 operon. 422 

Primer Sequence (5'->3') Genes 

amplified 

Genbank 

number 

Position 

amplified 

Annealing 

temperature (°C) 

Reference 

bgIGfw CCCAAGCGCTCCTGCGCTAAA bgIG-phoU CU928160.2 3977599-

3978492 

60 this study 

phoUrev TCTGGAGTCGCTGGGCCGTC     this study 

phoUfw CGATCACGCGCTTCGCCAGA phoU-pstB CU928160.2 3978707-

3979162 

59 this study 

pstBrev GGTATCGCCATTCGCCCGGA     this study 

pstBfw GGACGGCCCGATAAACGCCG pstB-pstA CU928160.2 3979526-

3979912 

60 this study 

pstArev CAGCCGATCGCCAACCTGCC     this study 

pstAfw AGCCAGAACAGGCCGAAGGC pstA-pstC CU928160.2 3980508-

3980919 

59 this study 

pstCrev ATCGGCGGCATCATGCTGGG     this study 

pstCfw ACCGTAGATCGGCACCAGCG pstC-pstS CU928160.2 3981370-

3981924 

58 this study 

pstSrev CCAGAAAGGCGAAGATGCATGGC     this study 

pstSfw CAGACAGCGGCGCGTCAGAG pstS-lpfD CU928160.2 3982472-

3983233 

58 this study 

lpfDrev TGCTACCGAACCCAATACGGACAA     this study 

lpfAfw TGTCGACAATTTCACCGACGAAGT

G 

lpfA-glmS CU928160.2 3987849-

3988769 

58 this study 

glmSrev GCTGCCGAGCCGTATTGAGCA     this study 

glmSfw CGTGTGTCGCCCAGCGAGTA glmS-glmU CU928160.2 3989854-

3990519 

58 this study 

glmUrev GGCGATGCGGAAATTGGCGA     this study 

glmUfw AGCAGATCGCCGCCGTGAC glmU-atpC CU928160.2 3991436-

3992119 

59 this study 

atpCrev ACGAAGCGCGAGCCATGGAA     this study 

lpfA F ACCGCTATCGATGCTGAAGG lpfB-lpfA AY057066 678-1349 63 (Ideses et al., 2005) 
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lpfB R GCGCAACATCTTCGGGAATA      

lpfC F2 CGCCGGGTTAGAAATAGATA lpfD-lpfC AY057066 3658-4421 63 (Ideses et al., 2005) 

lpfD R2 TGCCTGGTTTATTTTTGACGTA      

lpfA_inside_fw
a 

TCGACAGTAAATTGTGAATC Part of lpfA AY057066 233-790 50 this study 

lpfA_inside_rev
a 

GAAGCGTAATATTATAGGCG      
 

423 

a
 Primers used in RT-PCR for the detection of lpfA expression. 424 

425 
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Table 3.  Escherichia coli strains with whole genomes in GenBank containing continuous lpf2 operons with high homology to the lpf2-1 of 426 

strain T22. 427 

Strain Serotype Pathotype SNPs in the 

Lpf operon 

Genbank 

number 

Reference 

SE11  commensal 6 AP009240.1 (Oshima et al., 2008) 

11128 O111:NM EHEC 7 AP010960.1 (Ogura et al., 2009) 

55989  EAEC 8 CU928145.2 (Touchon et al., 2009) 

KO11  commensal 9 CP002516.1 unpublished,  

JGI Project ID: 4085738 

W  commensal 9 CP002185.1 (Archer et al., 2011) 

11368 O26:H11 EHEC 9 AP010953.1 (Ogura et al., 2009) 

IAI1  commensal 10 CU928160.2 (Touchon et al., 2009) 

E24377A  ETEC 11 CP000800.1 (Rasko et al., 2008) 

 428 
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FIGURE LEGENDS 429 

 430 

Figure 1. Schematic representation of the genetic region from E. coli strain T22 containing lpf2. The relative length of the arrows is 431 

proportional to the relative length of the genes. Arrows representing genes from the same functional cluster are filled with the same pattern. The 432 

pst cluster encodes a phosphate ABC transporter, phoU encodes a phosphate transport regulator, and the product of bgIG is a putative 433 

transcriptional regulator. The glm cluster encodes an N-acetyl glucosamine-1-phosphate uridyltransferase, and atpC encodes the epsilon subunit 434 

of ATP synthase. 435 

 436 

Figure 2. Comparative chart of in vitro bacterial adhesion assays to Caco-2, Hep-2 and T84 cell lines. The results are expressed as the 437 

percentage of cell-associated bacteria from the original inoculum [(final CFU/ml / initial CFU/ml) x 100] and are the means ± the standard error 438 

of at least two independent experiments in triplicate wells. 439 

 440 

 441 

Figure S1. Sequence comparison of the lpf2 operons of atypical bovine Escherichia coli O157 strains. The yellow arrows indicate the ORFs 442 

of the individual lpf genes. Point mutations are marked in red. The sequences of the lpf2 operons were deposited under the following accession 443 

numbers: E. coli B47 (O157:NM) KC207119, E. coli B54 (O157:H12) KC207120, E. coli T16 (O157:H43)  KC207121, E. coli T34 (O157:H9) 444 

KC207122, E. coli T49 (O157:H37)  KC207123, E. coli T50 (O157:H43)  KC207124 445 
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FIGURES 448 

 449 

Figure 1. Schematic representation of the genetic region from E. coli strain T22 containing lpf2.  450 

 451 
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Figure 2. Comparative chart of in vitro bacterial adhesion assays to Caco-2, Hep-2 and T84 cell lines. 452 
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