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Abstract

Fragment optimizations in nearly 150 fragment-based drug discovery programs reported in 

the literature during the last fifteen years were investigated. Analyzing physico-chemical 

properties and ligand efficiency indices we found that biochemical detection methods yield 

hits with superior ligand efficiency and lipophilicity indices than do X-ray and NMR. These 

advantageous properties are partially preserved in the optimization since higher affinity 

starting points allow optimizations better balanced between affinity and physico-chemical 

property improvements. Size-independent ligand efficiency (SILE) and lipophilic indices 

(primarily LELP) were found to be appropriate metrics to monitor optimizations. Small and 

medium enterprises (SME) produce optimized compounds with better properties than do big 

pharma companies and universities. It appears that the use of target structural information is a 

major reason behind this finding. Structure-based optimization was also found to dominate 

successful fragment optimizations that result in clinical candidates. These observations 

provide optimization guidelines for fragment-based drug discovery programs.
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Introduction

Fragment based drug discovery (FBDD) became a general approach used by both academic 

and industry players on a wide variety of targets in the last decade,. The foundation of FBDD 

was provided by two fundamental concepts, the theory of chemical space and molecular 

complexity. It has been suggested and later shown that the chemical space of low molecular 

weight compounds is much smaller than that of the more complex molecules. This results that 

the fragment space could be more effectively sampled by smaller collection of fragments 

relative to the conventional compound libraries screened in HTS campaigns. Based on their 

complexity theory Hann et al., concluded that less complex fragments have typically higher 

chance forming favorable interactions with the binding site as compared to more complex 

compounds. Screening a limited set of low complexity compounds (fragments) would 

therefore improve the odds of identifying suitable chemical starting points for even the most 

challenging targets. Low molecular weight low complexity fragments, however, show limited 

affinity towards these binding sites. There are multiple conditions to detect the binding of 

fragments. Theoretically fragments should form high quality polar interactions within the 

binding site that suggests their low lipophilicity. At the technical level the identification of 

fragment hits requires high screening concentration that needs highly soluble hydrophilic 

fragments. Fragment screening therefore yields low complexity polar hits that were 

previously identified as preferred starting points for medicinal chemistry programs. These 

compounds could provide more operational freedom for structural modifications during 

multidimensional optimizations. On the other hand, it was concluded that due to their limited 

size and high polarity the physicochemical profile could be controlled more effectively in 

fragment optimizations. Limited affinity of the initial fragments, however, is typically far 
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from the general potency criteria of viable leads. Early optimization of fragments is therefore 

supposed to be potency driven that was recently identified as the major source of property 

inflation and molecular obesity,,. This questions the highly controlled nature of fragment 

optimizations and in our view makes the process rather challenging. Considering the 

objectives of lead discovery teams they should optimize low millimolar or high micromolar 

affinity, low complexity polar fragments to low micromolar leads with promising specificity 

and acceptable physicochemical and ADME profile. Improvements in potency typically 

require increasing size and lipophilicity that have ambiguous effect on ADME properties. 

Although the permeability improves, metabolic stability is typically decreasing while 

promiscuity, P-gp and hERG liability are increasing with increasing lipophilicity. Due to the 

complex relationship between the potency and physicochemical and ADME properties and 

also the time pressure under these teams are working they need powerful tools delivering 

optimized compounds of high quality. Ligand efficiency metrics are of the primary choice and 

used guiding optimizations effectively. Ligand efficiency (LE) and its derivatives (BEI, SILE) 

are useful to control the size while lipophilic efficiency metrics (LLE, LLEAstex and LELP) are 

used controlling the lipophilicity of the compounds optimized. 

LE -RTln(Kd or Ki)/Nhev

BEI (pKi or pKd)/MW

SILE  pIC50/(Nhev)0.3

LLE pKi - LogP (or LogD)

LLEAstex 0.11*ln(10)*RT{logP-log(Kd or Ki or IC50)}/Nhev

LELP logP/LE
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The pioneering work of Reynolds and coworkers revealed that ligand efficiency is size 

dependent. Since the size of the fragments increases significantly during their optimization the 

use of size independent metrics such as SILE would be more meaningful in fragment settings. 

Similarly, lipophilic efficiency could be more straightforwardly evaluated by LELP and 

LLEAstex that also reflect the molecular size. Validation of these assumptions was also in the 

scope of this study that was originally initiated to answer the following questions: i) do 

fragment starting points eliminate the risk of property inflation per se, ii) how do ligand 

efficiency metrics support fragment optimizations, and iii) what is the impact of the detection 

methods, the hit properties, the optimization strategy and the company culture on the outcome 

of the optimizations. To achieve these goals we collected and analyzed fragment 

optimizations published up to 2011 and report the results of this investigation here.

Methods

A literature search of fragment hit optimizations up to and including year 2011 has been 

performed. 145 fragment programs were identified from major reviews1,9, and further 

examples published between 2009 and 2011 (see Supplementary Information). They targeted 

83 proteins out of which 6 are receptors, one is an ion channel and 76 are enzymes. A 

database was set up with pairs of fragment hits and their optimized counterparts containing 

their chemical structures, affinities and calculated properties as obtained with the calculator 

plugins from ChemAxon. The physico-chemical and ligand efficiency parameters were 

analyzed. It is to be noted that the level of optimization is varying and optimized compounds 

include leads, tools and clinical candidates. This may contribute to the observed spread of 

properties. Distributions of the parameters for the hits and for the optimized fragments are 
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presented in histograms generated with Microsoft Excel. The analysis is primarily based on 

the median of the distributions. Differences between properties were investigated by 

calculating the Mann-Whitney U test with Statistica and was accepted to be significant at 

p<0.05, unless otherwise noted.

Results and Discussions

Physico-chemical and Ligand Efficiency Parameters

Fragments are small sized compounds usually with low affinity towards their targets and thus 

affinity improvement is a fundamental objective of their optimizations. Indeed, the median of 

the affinity of the fragment hits is 80 M and that of the optimized compounds is 60 nM 

representing an approximately 3 order of magnitude improvement (Median of the affinity 

before and after optimization together with the medians of other properties discussed below 

are shown in Table 1.) The affinity improvement exceeds 1 order of magnitude in 90% of the 

cases (and exceeds 1.5 in 80%). The affinity distributions are shown in Figure 1. In the course 

of affinity improvement the size and the polarity of the fragments change significantly. The 

histograms of the number of heavy atoms for the fragments and for the optimized compounds 

together with the histogram of their changes are shown in Figure 2. The median of the 

molecular weight of the fragment hits is 215 Da with a heavy atom number of 15. The size 

increases considerably in the optimizations. 90% of the optimizations is accompanied by an 

increase of at least 4 heavy atoms corresponding to an increase of 50 Da in molecular weight. 

The median of the number of heavy atoms of the optimized compounds is 28 and that of the 

molecular weights is 381. Lipophilicity increases from the initial logP of 1.79 to 3.19 (see 
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Figure 3). 80% of the optimizations result in compounds with a logP higher than the 

corresponding starting fragment.

Fragment hits have typically low affinity but owing to their small size they have reasonable 

ligand efficiency. The median of the ligand efficiency for the fragments is 0.37 and it hardly 

changes during the optimizations as it is shown by the median of 0.34 of the optimized 

compounds and can also be seen in Figure 4. Maximal ligand efficiency, however, is known 

to be size dependent,, and fragment optimizations are accompanied with significant increase 

in molecular size and complexity (cf. Figure 2). This means that typically an increase in 

affinity at constant LE is achieved with an increased molecular size (cf. with LE definition). 

This is an advantageous step forward, since maximal LE decreases with molecular size, and 

thus a compound with increased size and unaltered LE is a further step ahead to the maximal 

LE.  This improvement is quantitatively expressed by size independent ligand efficiency 

(SILE). Indeed, SILE increases from 1.75 to 2.64 in the optimizations and this significant 

increase is also apparent from the histograms in Figure 5. This finding emphasizes the 

importance of taking into account the effect of the compound size on the ligand efficiency in 

order to obtain a sensible measure of compound quality changes in optimizations. Ligand-

lipophilicity efficiency increases during the optimizations from 2.15 to 4.13 (Figure 6). Even 

the optimized compounds have lower LLE than the assumed ideal value of 5. Nevertheless, 

the nearly 2 order of magnitude increase in ligand-lipophilicity efficiency and the over 3 order 

of magnitude increase in affinity (see above) are in line with the modest increase of logP that 

was found to be less than 1.5 units. The LELP parameter that has been shown to relate to the 

ADME properties of compounds has a favorable median of 4.62 for the fragment hits that 

increases to the less favorable value of 8.47 for the optimized compounds (Figure 7). This 

unfavorable tendency is associated with a fairly wide range of LELP values for the optimized 
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compounds suggesting that various optimization strategies lead to compounds with 

considerably different quality.

A comparison of the efficiency and size change as observed in optimizations is shown in 

Figure 8. These results show similarity to the analogous results obtained for “successful drug 

discovery programs” (Figure 5 in ref ), except that the size increase is more pronounced and 

no lowering of MW is observed in our analysis that is a logical consequence of considering 

fragment optimizations. Ligand efficiency is decreased in almost 60% of optimizations that 

appears to be similar to the value reported in ref. . By contrast, when the size dependence of 

the ligand efficiency is taken into account by depicting MW ratio against SILE ratio in Figure 

9, then SILE is improved in 90% of the optimizations. This finding again points out the 

importance of using a size dependent measure for characterizing the efficiency of compounds 

with different size. This is particularly relevant in fragment optimizations that are 

accompanied with a significant increase in ligand size.

Finally we analyzed changes in physicochemical properties and ligand efficiency metrics in 

the context of medicinal chemistry optimizations (Table 2). Classical HTS based 

optimizations starts from hits with micromolar affinity that is typically improved by 1.4 

pPotency unit to provide nanomolar compounds. This change in potency is associated with 

moderate increase in both molecular weight and lipophilicity. Ligand efficiency does not 

change very much, however, SILE increases due to the 3-4 non-hydrogen atoms added. 

Ligand-lipophylic efficiency (LLE) improves, but LELP is virtually constant. In contrast, the 

more improvement in potency needed for the optimization of less potent fragment hits results 

in much higher increase in both molecular weight and logP. Although the average increase in 

heavy atoms is about 13-14, SILE improves significantly but this is not reflected in LE that 

seems to be constant again. Improvement in LLE is comparable to that observed for HTS 

based optimizations, however, in line with the 4-fold higher increase in lipophilicity the size 
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dependent LELP is getting significantly worse. Comparing these changes to fragment 

optimization resulting clinical candidates one can conclude that in successful optimizations 

the somewhat higher increase in potency is achieved by smaller increase in size and much 

smaller in lipophilicity. Interestingly, LE does not discriminate these processes but SILE and 

LLE improves more significantly than average and the undesired change in LELP is also 

much smaller. These trends are pretty much similar to those reported for successful lead 

optimizations demonstrating effective control in both size and lipophilicity as indicated by 

large improvements in SILE, LLE and even in LELP. Based on this analysis we argue that 

similar to lead optimizations the strict control of physicochemical properties using SILE, LLE 

and LELP would help very much identifying high quality compounds from fragment 

optimizations.

The Impact of Detection Methods on the Properties of Fragment Hits and Optimized 

Compounds

Next we investigated the effect of hit discovery strategies on the quality of initial and 

optimized hits. Four methods for detecting hits are well represented in our dataset of fragment 

optimizations, namely biochemical (38%), X-ray (18%), NMR (25%) and virtual screening 

(11%). Other methods, like SPR and MS represent only 8% and they were not included in the 

analysis below. It should be noted that hit identification often includes more than a single 

method (e.g. biochemical+NMR, or virtual+biochemical) and in these cases the first applied 

method was selected. Virtual screening is unique in the sense that its hits are always validated 

by another method, most often by biochemical tests. Another characteristic feature of virtual 
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screening is that it typically exploits preliminary structural information either on ligands or on 

the target and eventually on both.

A comparison of the parameters of the hits obtained with the four methods shows significant 

differences in five pairs: virtual-NMR, biochemial-NMR, virtual-X-ray, NMR-X-ray and 

biochemical-X-ray. Hit parameters are more advantageous for the virtual and biochemical 

methods than for X-ray and NMR the differences being more pronounced for the latter (Table 

3). In the following detailed analysis property values are quoted where significant differences 

observed.

Biochemical (4.75) and virtual (4.73) hits have higher affinity than do X-ray (3.56) and NMR 

(3.53) hits. Although X-ray hits have the smallest size among all the methods (HA=13,0 vs. 

biochemical 15.5, NMR 15.0, virtual 17.0) SILE is higher for biochemical (2.19) than for X-

ray (1.68). The higher affinity and the similar size yield more beneficial SILE for virtual 

(2.02) and biochemical (2.19) than for NMR (1.53) screens. The difference in SILE between 

biochemical (2.19) and X-ray (1.68) hits is the consequence of the higher affinity of 

biochemical hits that overbalances the smaller size of the X-ray hits. Significant differences in 

ligand efficiency were found for the biochemical (0.40) vs. NMR (0.31) and for X-ray (0.38) 

vs. NMR (0.31). LLE is more advantageous for biochemical (3.10) and virtual (3.00) than for 

X-ray (1.83) and NMR (1.36). (p=0.070 for virtual vs. X-ray). LELP exhibits difference in 

favor of biochemical over NMR (4.05 vs. 5.65).

The above analysis points out that hit properties exhibit significant dependence on hit 

detection methods. This can be partially traced back to the difference in the compound 

libraries of the hit detection methods. Two principal motifs behind library compilation are the 

objective of the screening (e.g. fragments vs. larger compounds) and the technical constraints 

of the hit detection method (e.g. moderate potency for NMR or small library size for X-ray).
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Table 3 also shows how the properties of optimized compounds depend on the hit detection 

method. Significant differences are observed only in few cases for the optimized compounds 

suggesting that the optimization tends to diminish the differences in hit properties. 

Interestingly, however, hits identified by biochemical methods preserve their advantage after 

optimization (see Table 3) primarily relative to NMR hits (pIC50 7.68 vs. 6.70, LE 0.37 vs. 

0.32, LLE 4.55 vs. 3.17, LELP 7.62 vs. 10.51, SILE 2.91 vs. 2.45), but also relative to X-ray 

hits (pIC50 7.68 vs. 7.13 with p=0.055, SILE 2.91 vs. 2.57). 

The effect of hit quality on the optimization process and on the optimized compound was 

further investigated by using data from 18 optimizations where one or several intermediates in 

the optimization are also revealed and their activities are available. Figure 10 plots the activity 

vs. molecular weight for these optimizations. Best fit linear trends are also shown. These lines 

contain information on the effectiveness of the optimization; the slope is smaller when 1 unit 

affinity improvement is achieved with a smaller increase in molecular weight thus a smaller 

slope corresponds to a more efficient optimization. The slope varies between 10.3 and 138.5 

with an average of 61.4 and a standard deviation of 34.3. The average is remarkably similar to 

that (64) reported in ref , where a pKd vs. MW plot obtained by an a posteriori deconstruction 

of lead compounds. The variation of the slope, however, is more important in our analysis. 

This suggests that real optimizations do not necessarily follow the ideal path proposed on the 

basis of a posteriori lead deconstruction. The assumption of the ideal optimization path is 

equivalent with assuming that hit properties (affinity and molecular weight) well determine 

the quality of optimized compounds. Our analysis based on true optimizations gives a more 

complex picture. Data in Table 3 and in Figure 10 show that significant differences observed 

at hit level may disappear in optimized compounds. On the other hand, biochemical hits 

appear to be exceptions as these hits tend to result in optimized compounds superior to those 

optimized from hits with less advantageous properties. We propose the following explanation 
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for the above findings. The affinity driven optimization of the generally low affinity hits is a 

common practice in the hit-to-lead process of fragment based optimizations. This practice 

tends to diminish the differences originating from the hit detection method. The apparent 

exceptions are biochemical hits that have higher affinities and therefore, a more balanced 

optimization with less aggressive affinity improvement is possible. This explains why 

biochemical hits are able to preserve their advantageous properties in the optimizations and 

why they yield optimized compounds with better affinity and lipophilicity indices with 

respect to those optimized from NMR hits and, to a lesser extent, from X-ray hits. In the latter 

case we think it is the use of structural information that helps improving the affinity without 

jeopardizing the physicochemical profile.

The effect of hit properties to optimized compounds will be further investigated in a 

comparative analysis of all and successful optimizations the latter resulting in clinical 

candidates (see later).

Company Culture and Fragment Optimization

Optimizations in drug discovery programs have been shown to be affected by company 

culture. In order to investigate this point, changes in compound parameters in fragment-based 

optimizations performed by academic (UNI 18%), small and medium enterprises (SME, 37%) 

and big pharmaceutical companies (BIG, 45%) were compared. In the following analysis 

values of significant property changes are quoted.

Interestingly, data show that SME results are superior to BIG and UNI results. Affinity 

improvements in SME are larger than in BIG (3.10 vs. 2.35) and this appears also in SILE 

changes (0.84 vs. 0.60). Considering the increase of LLE SME (1.84) perform better than BIG 
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(0.88) and UNI (0.70). These data show that better affinity improvements in SME are not 

compensated by a better control of other parameters (size, logP) by BIG and UNI. We 

propose that the reason behind the good performance of SME is the dominant application of 

protein structural information in optimizations and the company culture that emphasizes its 

utmost importance. SME are typically platform-companies whose proprietary technology 

often includes biophysical methods that provide different levels of structural information. 

Indeed, it was found that 40 out of the 53 optimizations performed by SME used protein 

structural information (75%). By contrast, this ratio is 41/65 (63%) for BIG. The lower ratio is 

probably the consequence of the availability of a wide range of technologies whose use is 

traditionally part of the optimization process. Nevertheless we could not rule out that the 

higher content of challenging targets without structural information in big pharma portfolios 

might also contribute to this observation. This is indicated by the fact that BIG are less 

restrictive in their target selection: all but one programs (six out seven) with non-enzyme 

targets are associated with BIG. The use of structural information is much less frequent by 

UNI (33%), most probably because of the high entry level investment structure-based 

optimizations require. Considering the optimizations of all the 145 fragment-based programs 

analyzed here 15 (10%) and 75 (52%) of them used structural information from NMR and X-

ray crystallography, respectively. Thus 62% of the optimizations used structural information 

and it is likely to exceed the use of structural information in drug discovery programs in 

general. This tendency goes parallel to recent polls published at the Practical Fragments blog. 

The apparent consensus on the importance of atomic level information on the target structure 

in fragment-based programs is amplified by the present finding that the better performance of 

SME is accompanied by a more frequent use of structure-based optimization.
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Clinical Candidates from Fragment Optimizations

Up to now 18 clinical candidates were published as the results of fragment-based drug 

discovery programs, (see also Supporting Information). The structure of the starting point and 

the clinical candidate was identified for 13 programs. This represents approximately 10 % of 

our dataset. These optimizations were compared to all fragment-based optimizations. The 

limitations of this comparison are the small number of clinical candidates with available 

structures and also the varying level of optimization of the compounds taken from the 

literature. 

Properties of programs leading to clinical candidates are indicated in Figure 1- Figure 7 

together with those of all fragment-based programs. These figures show that clinical 

candidates originated from hits with similar size and lipophilicity as hits of other programs. 

On the other hand, their affinity is higher: pXC50=7.85 vs. 7.22, but interestingly it is not 

higher than that found for average oral drugs. This suggests that compounds optimized to the 

affinity of pXC50~8 have almost the optimal combination of potency and physico-

chemical/ADME properties maximizing their in vivo efficacy. Owing to their higher affinity 

accompanied with a size and lipohilicity similar to average optimizations the size-independent 

ligand efficiency, SILE (2.89 vs. 2.64), and ligand-lipophilicity efficiency, LLE (4.91 vs. 4.13 

p=0.058) of compounds from successful fragment optimizations are also significantly better. 

In the course of optimizing their ligand efficiency, LE hardly changes, SILE improves and 

logP increases modestly, and thus LLE (LLE=3.17 vs. 1.49) and LELP (LELP=1.38 vs. 

4.02) exhibit significantly more beneficial changes than do average optimizations. These 

observations clearly show that lipophilic efficiency monitoring, whose importance is already 

established for drug discovery programs in general, has fundamental importance in fragment-

based optimizations, as well.
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It is worth also noting that 10 out of 13 clinical candidates come from optimizations that used 

target structural information. This high representation of structure-based optimizations in 

successful fragment projects underlines the importance of exploiting atomic level structural 

information on the target.

The properties of all compounds optimized from fragment hits were compared to the 

properties of those compounds that reached clinic. This was done with the objective to see if 

certain properties are appropriate to indicate the success of optimizations. The most striking 

observation is the concentration of the clinical candidates around the preferred region in 

LELP vs. logP diagram (Figure 11). It was previously established that LELP under, 10 and 

logP under 5 tend to be associated with beneficial physico-chemical and ADME properties. 

The appearance of the clinical candidates exclusively within or near to this preferred region 

while the wider spread of other optimized compounds in the LELP-logP space shows, that 

these are useful parameters to be considered for fragment optimization programs. It is 

instructive to see, that the separation of clinical candidates from other optimized compounds 

is more pronounced in the LELP space. In fact, there is no compound with logP>5 and 

LELP<10, while there are several compounds with LELP>10 and logP<5. Considering that 

LELP well discriminates preferred starting points of fragment optimizations the current 

finding underpins the use of LELP as a valuable parameter also in the optimization process.

Conclusion

The analysis of nearly 150 fragment optimizations published up to 2011 reveals several 

interesting features and trends. The reduced size of the fragment space, the advantageous 

physico-chemical properties and high ligand efficiencies of fragment hits are all in favor of 
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fragment-based programs. On the other hand, the typically low affinity of fragment hits makes 

their optimizations to leads and later to clinical candidates challenging. Ligand efficiency and 

lipophilicity indices are particularly important for fragment optimizations owing to the 

significant property changes inherent in the hit-to-lead-to-candidate process. Moreover, the 

considerable increase in molecular size makes the use of size dependent indices unpractical 

and even misleading. Fragment optimizations are accompanied with important affinity 

increase that is well reflected by increasing SILE values while LE, its size-dependent variant, 

does not change in a consistent manner. Considering lipophilicity metrics, logP and LELP 

were found to be particularly useful as all clinical candidates arose from fragment-based 

programs were located in, or near to the logP 0-5 and LELP 0-10 space.

Hit detection methods were found to affect hit quality and biochemical hits were found to be 

especially advantageous. Biochemical hits not only exhibit better affinity and lipophilicity 

indices over NMR and X-ray hits, but compounds optimized from them preserve their 

advantageous properties over those optimized primarily from NMR and partly from X-ray 

hits. We propose that this is due to their higher affinity that allows a less aggressive potency 

optimization and consequently optimized compounds with more balanced properties. In 

addition, we think that biochemical screening has a higher chance identifying functionally 

active, pharmacologically relevant hits. On the other hand, however, we underline that the 

generally high false positive rate of fragment screening urges orthogonal biophysical profiling 

at the hit validation phase.

In addition to the hit detection method, the way of optimization also affects the properties of 

the optimized compounds. It appears that the use of atomic level structural information of the 

target (most often from X-ray but also from NMR) advantageously influences compound 

properties. It was found that SME that apply almost exclusively structure-based optimizations 

are particularly successful in producing good quality optimized compounds. By contrast, big 
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pharma and academia that apply structure-based optimizations less frequently produce, on 

average, somewhat inferior compounds at least in the present set of fragment optimization 

programs. The high representation of SME (10/13) and that of structure-based optimizations 

(10/13) in fragment-based clinical candidates supports this view. 

The results of the analysis allow us to make recommendations for fragment-based drug 

discovery programs. We propose hit-detection by biochemical methods, followed by 

orthogonal biophysical validation and subsequent structure-based optimization with a target 

affinity of pIC50~8. Large scale analysis of fragment optimizations suggests that monitoring 

size-independent ligand efficiency (SILE) and lipophilic efficiency (LELP) indices increase 

the chance of success in fragment-based drug discovery programs.

Supporting Information Available: All hits and optimized compounds together with their 

parameters and references to the original papers. This material is available free of charge via 

the Internet at http://pubs.acs.org.

Abbreviations Used

BEI, Binding efficiency index; LELP, ligand-efficiency-dependent lipophilicity; LLE, 

Ligand-lipophilicity efficiency; SILE, Size independent ligand efficiency; SPR, Surface 

plasmon resonance
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Table 1
Medians of properties for fragment hits and for optimized compounds

fragment
hit

optimized
compound

pIC50 4.10 7.22

HA 15 28

logP 1.79 3.19

LE 0.37 0.34

SILE 1.75 2.64

LLE 2.15 4.13

LELP 4.62 8.47
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Table 2
Ligand efficiency metrics in fragment optimizations (mean of property changes)

Process
pPot

change
MW

change
logP

change
LE

change
SILE

change
LLE

change
LELP
change

HTS based opt.
from ref. 

1.39 51.5 0.27 0.02 0.58 1.1 0.1

Fragment opt.
from this work

2.74 186.9 1.33 -0.04 0.70 1.4 4.8

Fragment opt. 
(successful)

from this work
3.10 165.5 0.48 -0.01 0.86 2.6 1.0

Lead opt. 
(successful)
from ref. 

2.08 89.9 0.05 0.01 0.85 2.1 -1.1
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Table 3
Property medians for compounds grouped by hit detection methods. Values are shown for pair 
of detection methods where properties are not equal according to the Mann-Whitney U-test at 
a 0.05 significance level. The analysis is performed separately for hits and for optimized 
compounds.

Bio-NMR Bio-Xra NMR-Vir NMR-Xra Vir-Xra

pIC50
hit 4.75-3.53 4.74-3.56 3.53-4.73 4.73-3.56
opt 7.68-6.70 7.68-7.13a

MW
hit 223-190 235-190
opt

HA
hit 15.5-13.0 15.0-13.0 17.0-13.0
opt

LE
hit 0.40-0.31 0.31-0.38
opt 0.37-0.32

LLE
hit 3.10-1.36 3.10-1.83 1.36-3.00 3.00-1.83b

opt 4.55-3.17

LELP
hit 4.05-5.65
opt 7.62-10.51

SILE
hit 2.19-1.53 2.19-1.68 1.53-2.02
opt 2.91-2.45 2.91-2.57

a p=0.055
bp=0.070
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Figure 1
a) 
Affinity distribution of fragment hits (FRG) and optimized compounds (OPT). Vertical lines 
show median of hits (red) and optimized compounds (blue). Medians of hits and optimized 
compounds for programs resulting clinical candidates are shown under the horiziontal axis.
b)
Affinity change distribution calculated from the differences in affinities of optimized 
compounds and fragment hits. 

Figure 2
a)
Number of heavy atom distribution of fragment hits (FRG) and optimized compounds (OPT). 
Vertical lines show median of hits (red) and optimized compounds (blue). Medians of hits and 
optimized compounds for programs resulting clinical candidates are shown under the 
horiziontal axis.
b)
Heavy atom change distribution calculated from the differences in the number of heavy atoms 
of optimized compounds and fragment hits. 

Figure 3
a)
logP distribution of fragment hits (FRG) and optimized compounds (OPT). Vertical lines 
show median of hits (red) and optimized compounds (blue). Medians of hits and optimized 
compounds for programs resulting clinical candidates are shown under the horiziontal axis. 
b)
logP change distribution calculated from the differences in logP of optimized compounds and 
fragment hits. 

Figure 4
a)
Ligand efficiency (LE) distribution of fragment hits (FRG) and optimized compounds (OPT). 
Vertical lines show median of hits (red) and optimized compounds (blue). Medians of hits and 
optimized compounds for programs resulting clinical candidates are shown under the 
horiziontal axis. These latter are very close (0.39 and 0.40) although they belong to different 
bins.
b)
LE change distribution calculated from the differences in LE of optimized compounds and 
fragment hits. 

Figure 5
a)
Size independent ligand efficiency (SILE) distribution of fragment hits (FRG) and optimized 
compounds (OPT). Vertical lines show median of hits (red) and optimized compounds (blue). 
Medians of hits and optimized compounds for programs resulting clinical candidates are 
shown under the horiziontal axis.
b)
SILE change distribution calculated from the differences in SILE of optimized compounds 
and fragment hits. 
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Figure 6
a)
Ligand-lipophilicity efficiency (LLE) distribution of fragment hits (FRG) and optimized 
compounds (OPT). Vertical lines show median of hits (red) and optimized compounds (blue). 
Medians of hits and optimized compounds for programs resulting clinical candidates are 
shown under the horiziontal axis.
b)
LLE change distribution calculated from the differences in LLE of optimized compounds and 
fragment hits. 
 

Figure 7
a)
Lipophilic efficiency dependent lipophilicity (LELP) distribution of fragment hits (FRG) and 
optimized compounds (OPT). Vertical lines show median of hits (red) and optimized 
compounds (blue). Medians of hits and optimized compounds for programs resulting clinical 
candidates are shown under the horiziontal axis.
b)
LELP change distribution calculated from the differences in LELP of optimized compounds 
and fragment hits. 

 
Figure 8
Ligand efficiency (LE) ratio vs. molecular weight (MW) ratio. LE ratio = 
LE(optimized)/LE(fragment) and MW ratio = MW(optimized)/MW(fragment).

Figure 9
Size independent ligand efficiency (SILE) ratio vs. molecular weight (MW) ratio. SILE ratio 
= SILE(optimized)/SILE(fragment) and MW ratio = MW(optimized)/MW(fragment). 

Figure 10
Ligand affinity (pKi) vs. molecular weight (MW) for 18 fragment optimization programs. 
Best fit linear trends are also shown.

Figure 11
logP vs. LELP for compounds optimized from fragment hits. Green rectangles correspond to 
compounds that reached clinic. They are within or near to the green area of preferred LELP 
and logP values.
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