
A&A 493, 51–54 (2009)
DOI: 10.1051/0004-6361:20078635
c© ESO 2008

Astronomy
&

Astrophysics

Factor analysis of the long gamma-ray bursts

Z. Bagoly1, L. Borgonovo2, A. Mészáros2,3, L. G. Balázs4, and I. Horváth5

1 Dept. of Physics of Complex Systems, Eötvös University, 1117 Budapest, Pázmány P. s. 1/A, Hungary
e-mail: zsolt.bagoly@elte.hu

2 Stockholm Observatory, AlbaNova, 106 91 Stockholm, Sweden
e-mail: luis@astro.su.se

3 Astronomical Institute of the Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
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ABSTRACT

Aims. We study statistically 197 long gamma-ray bursts, detected and measured in detail by the BATSE instrument of the Compton
Gamma-Ray Observatory. In the sample, 10 variables, describing for any burst the time behavior of the spectra and other quantities,
are collected.
Methods. The factor analysis method is used to find the latent random variables describing the temporal and spectral properties of
GRBs.
Results. The application of this particular method to this sample indicates that five factors and the REpk spectral variable (the ratio
of peak energies in the spectrum) describe the sample satisfactorily. Both the pseudo-redshifts inferred from the variability, and the
Amati-relation in its original form, are disfavored.
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1. Introduction

Factor analysis (FA) and principal component analysis (PCA)
are powerful statistical methods in data analysis. Using PCA
and FA Bagoly et al. (1998) demonstrated that the 9 vari-
ables typically measured (T50 and T90 durations; P64, P256, and
P1024 peak fluxes; F1,F2,F3, and F4 fluences) for gamma-
ray bursts (GRBs), observed by the BATSE instrument on-
board the Compton Gamma-Ray Observatory and listed in the
Current BATSE Catalog (Meegan et al. 2001), can be satisfacto-
rily represented by 3 hidden statistical variables. Borgonovo &
Björnsson (2006, hereafter BB06) studied the statistical proper-
ties of 197 long GRBs detected by BATSE. They defined 10 sta-
tistical variables describing the temporal and spectral properties
of GRBs. By performing a PCA, they concluded that about 70%
of the total variance in the parameters were explained by the first
3 principal components (PCs). The aim of this article is to pro-
ceed in a similar way to BB06 by using instead FA.

By solving the eigenvalue problem of the correlation (co-
variance) matrix, PCA transforms the observed variables into
the same number of uncorrelated variables (PCs). An essential
ingredient of PCA is a distinction between the “important” and
“less important” variables by taking into account the magnitude
of the eigenvalues of the correlation (covariance) matrix. FA as-
sumes that the observed variables can be described by a linear
combination of hidden variables given by:

x = Λ f + ε, (1)

where x denotes an observed variable of dimension p,Λ is a ma-
trix of p×m dimensions (m < p), f represents a hidden variable

of m dimensions. The components of Λ are called loadings, the
factor f represents scores, and ε is a noise term. We can infer x
from observations while the quantities on the right-hand-side of
Eq. (1) have to be computed by a suitable algorithm.

PCA expresses the x observed variable as a linear transfor-
mation of a hidden variable of the same p dimension, whose
components are uncorrelated. The transformation matrix is set
up from the eigenvectors of the correlation matrix of x. By re-
taining only the first m < p eigenvectors, it can be shown that,
the resultant transformation matrix provides the best reproduc-
tion of x among those using only m < p components. By retain-
ing only the first m < p eigenvectors, one receives a transfor-
mation matrix of dimensions p × m and an expression identical
to the first term on the right side of Eq. (1). Due to this fact, the
PCA is a default solution of FA in many statistical packages (e.g.
SPSS1; for a detailed comparison of PCA and FA, see Jolliffe
2002). Although PCA is a default solution in many packages,
FA has other algorithms as well. In our computations, we use
the Maximum Likelihood (ML) method (for details see Jolliffe
2002).

2. The sample

We use the sample of 197 long GRBs in BB06 and the 10 vari-
ables defined there. Of the 10 variables, T90 and F were taken
directly from the BATSE Catalog. The remaining 8 variables
were calculated by BB06. In summary, the 10 variables are the

1 SPSS is a registered trademark (see www.spss.com).
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Table 1. Correlation matrix among the 10 variables. Except for α the decimal logarithms are taken.

Variable log T90 logT50 log τ log V logSF log τlag logREpk logF log Epk α

log T90 1.00 0.78 0.58 0.18 0.09 –0.01 –0.15 0.5 0.24 –0.26
logT50 0.78 1.00 0.87 0.51 0.25 0.09 –0.21 0.61 0.14 –0.16

log τ 0.58 0.87 1.00 0.4 0.24 0.15 –0.25 0.61 0.14 –0.12
log V 0.18 0.51 0.4 1.00 0.32 –0.18 –0.37 0.33 0.08 –0.07

logSF 0.09 0.25 0.24 0.32 1.00 0.03 –0.37 0.07 –0.23 0.03
log τlag –0.01 0.09 0.15 –0.18 0.03 1.00 0.24 –0.04 –0.28 0.33

logREpk –0.15 –0.21 –0.25 –0.37 –0.37 0.24 1.00 –0.03 0.04 –0.01
logF 0.5 0.61 0.61 0.33 0.07 –0.04 –0.03 1.00 0.58 –0.2

log Epk 0.24 0.14 0.14 0.08 –0.23 –0.28 0.04 0.58 1.00 –0.28
α –0.26 –0.16 –0.12 –0.07 –0.03 0.33 –0.01 –0.2 –0.28 1.00

following: duration time T90, emission time T50, autocorrelation
function (ACF) half-width τ, variability V , emission symmetry
SF , cross-correlation function time lag τlag, the ratio of peak
energies REpk, fluence F , peak energy Epk, and low frequency
spectral index α.

Since the variables have different dimensions in a similar
way to BB06 we use the decimal logarithms (except for α). The
correlations between the variables are indicated in Table 1. The
choice of the logarithms is motivated by the fact that the dis-
tributions of most variables are well described by log-normal
distributions (see the discussion of BB06).

In a similar way to BB06, we do not consider the fluence on
the highest channel (>300 keV) separately, although in Bagoly
et al. (1998) this variable alone was used to define a PC (fac-
tor). This choice is motivated by two reasons: first, fluences on
the fourth channel often vanish or have significant errors (“the
values are noisy”); second, as noted by BB06, in a sample of
long-soft GRBs only, this quantity is less important. It is now
certain that the long-soft and short-hard bursts are different phe-
nomena (Horváth 1998; Norris et al. 2001; Horváth 2002; Balázs
et al. 2003). The significance of the intermediate GRBs is un-
clear (Horváth et al. 2006).

3. Estimation of the number of factors

In contrast to PCA, in FA the choice of the number of hypo-
thetical (latent) random variables (factors) is – at the beginning
– a free parameter. To determine the optimal number of factors,
there are no direct methods (even the notion “best number of
factors” is unclear; see Jolliffe 2002).

By solving the eigenvalue problem of the correlation matrix,
PCA yields PCs in descending order of the eigenvalue magni-
tudes. To validate a factor model, one retains the first m < p PCs,
which satisfactorily reproduce the original correlation matrix. In
the ML method, the expected number of factors is an input pa-
rameter, and the algorithm computes the probability that the dif-
ference between the original and reproduced correlation matrix
can be attributed to chance only. One stops increasing the num-
ber of factors, when this probability is already sufficiently large.

The factor model assumes that a linear transformation exists
between the observed and the latent (factor) variables. The num-
ber of unknown parameters (i.e. p (m + 1) on the right side of
Eq. (1)) are constrained by the dimension of the covariance ma-
trix of x (i.e. 1/2 p(p+ 1) independent parameters) and the need
for factor-loading orthogonality, which provides 1/2 m(m − 1)
free parameters (Kendall & Stuart 1973). Thus, the number m of
factors can be constrained by the following inequality:

m ≤ (2p + 1 −
√

8p + 1)/2, (2)

which provides m ≤ 6 in our case. Since the number of factors is
an integer, m = 6 is a maximum value in our case. Equation (2)
provide the upper limit to the number of factors, although the
true number remains to be estimated.

There are several further criteria that constrains the required
number of factors (Jolliffe 2002, and references therein). The
first additional criterion follows from the “cumulative percent-
age of the total variance”. Taking into account any new factor,
the percentage of the variation explained by these factors should
increase. Then, if one defines a cut-off percentage, the number of
factors m required is given by the value factors, when the cumu-
lative variance in percentage is already higher than this cut-off
percentage. There is no exact rule about the best value of the cut-
off: Jolliffe (2002) proposes to choose a value around 70–90%,
and in addition, if p � 1%, a smaller value is proposed. Hence,
in our case the value around 70% seems to be a good choice. For
PCA and for the correlation matrix, m can also be estimated from
the eigenvalues of the PCs – PCs with eigenvalues larger than 0.7
should be retained. Using FA – instead of the PCA – one may
also assume that the number of factors in general should not be
larger than the number of PCs (in most cases it is even smaller)
(Jolliffe 2002). The most accurate estimate of the number of fac-
tors m is therefore a combination of several criteria.

The advantage of the ML approach is that it helps to con-
strain the value of m, the dimension of the hidden factor vari-
ables. This is because the ML method provides a probability of
the null hypothesis, i.e. that the correlation matrix of the ob-
served variables and that reproduced by the factor solution are
identical from the statistical point of view.

By performing FA on the observed variables assuming 6 fac-
tors, which is the maximum number allowed by Eq. (2), one ob-
serves the validity of the null hypotheses with only p = 0.0191,
which implies that even the maximum allowable number of fac-
tors can’t reproduce the original correlation matrix of the ob-
served variables satisfactorily. Table 2 shows the factor coeffi-
cients (loadings) of this solution.

By inspecting Table 2, it becomes obvious that Factor3 and
Factor5 are dominated by only one variable (logREpk and α,
respectively) and are hardly affected by the other variables.
Therefore, it appears reasonable to exclude one of them and
repeat the calculations with the remaining 9 variables. In this
case, the maximum allowable number of factors is m = 5, which
corresponds to either the null hypotheses p = 0.11, after ex-
cluding α, and p = 0.273 after excluding logREpk. We there-
fore decided to exclude logREpk, and the ML solution assum-
ing m = 5 factors is given in Table 3. The cumulative variance,
defined by 5 factors, is 71.9%. This fulfills the “cumulative per-
centage of the total variance” criterion for PCA, considering the
corresponding high value of p. This also supports the choice of
5 factors.
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Table 2. ML solution assuming 6 factors. In any column for the given factor the loadings are given (a larger value represents higher weight for
a given variable); the sum of their squares is denoted by SS loading; the value Proportion Var defines the proportion of SS loading to the sum of
variances of the input variables; Cumulative Var defines the sum of proportional variances.

Variable Factor1 Factor2 Factor3 Factor4 Factor5 Factor6
log T90 0.418 0.128 –0.066 0.884 –0.133 0.017
logT50 0.770 0.022 –0.087 0.490 –0.036 0.320
log τ 0.928 0.038 –0.158 0.198 –0.006 0.146
log V 0.249 0.063 –0.225 0.043 –0.041 0.844
logSF 0.173 –0.241 –0.319 0.036 –0.042 0.252
log τlag 0.246 –0.269 0.235 –0.008 0.333 –0.187
logREpk –0.070 0.001 0.981 –0.050 0.003 –0.159
logF 0.564 0.499 0.047 0.226 –0.066 0.187
log Epk 0.108 0.974 0.054 0.074 –0.159 –0.008
α –0.098 –0.105 –0.024 –0.106 0.981 –0.004
SS loadings 2.126 1.363 1.212 1.134 1.126 0.995
Proportion Var 0.213 0.136 0.121 0.113 0.113 0.099
Cumulative Var 0.213 0.349 0.470 0.584 0.696 0.796

Table 3. ML solution assuming 5 factors after removing the logREpk variable. Testing the hypothesis that 5 factors are sufficient resulted p = 0.273.

Variable Factor1 Factor2 Factor3 Factor4 Factor5
log T90 0.875 0.009 0.088 –0.152 –0.051
logT50 0.895 0.353 0.039 0.026 0.236
log τ 0.704 0.277 0.090 0.095 0.592
log V 0.176 0.973 0.091 –0.098 0.016
logSF 0.133 0.320 –0.244 –0.020 0.141
log τlag 0.110 –0.144 –0.175 0.490 0.141
logF 0.528 0.183 0.520 –0.068 0.245
log Epk 0.146 –0.060 0.947 –0.272 –0.005
α –0.191 0.038 –0.053 0.730 –0.100
SS loadings 2.459 1.309 1.285 0.895 0.519
Proportion Var 0.273 0.145 0.143 0.099 0.058
Cumulative Var 0.273 0.419 0.561 0.661 0.719

We have proven that m = 5 factors are sufficient. To prove
that it is essential, we also performed the ML analysis with m =
4 factors. This calculation resulted only p = 0.0044 that 4 factors
are sufficient. One can therefore conclude that m = 5 factors are
necessary and sufficient for describing the observed variables.

4. Results and discussion of FA

The first factor is constrained by T90, T50, τ and F , i.e. the first
factor is determined mainly by the temporal properties. Hence
measures T50 and T90 are the preferred length indicators over τ.

The second factor is dominated by V . However, according
to Ramirez-Ruiz & Fenimore (2000), Reichart et al. (2001), and
Guidorzi et al. (2005), the variability should be correlated with
the luminosities of GRBs, and hence to the fluence. No signifi-
cant connection is, however, inferred by the second factor raising
queries about the redshift estimations derived from variability.

The third factor is mainly driven by Epk. It is interesting that
the peak energy in the spectra appears to dominate the third fac-
tor so significantly. It emphasizes that the spectrum itself is an
important quantity (an expected result), and, in the spectrum Epk
itself, is a significant descriptor (an unexpected result). In addi-
tion, the loading of F is also important to the third factor. All
this has a remarkable impact on the Amati-relation.

The Amati-relation (Amati et al. 2002) proposes that there
should be a linear connection between log Epk;intr and log Eiso,
where Eiso is the emitted energy under the assumption of
isotropic emission, Epk;intr = (1 + z)Epk is the intrinsic peak en-
ergy, and z is the redshift. This relation, which follows from the
relation Epk;intr ∝ Ex

iso found by Amati et al. (2002) from the

analysis of twelve bright long GRBs with well-measured red-
shifts. The most probable value of x was around x = 0.5. Thus,
the Amati-relation – in its original form – claims that a direct
linear connection exists only between log Epk;intr and log Eiso.
We note that the Amati-relation was predicted even earlier by
the strong correlation between logF and log Epk (Lloyd et al.
2000). The importance of the Amati-relation is straightforward:
if it holds, then it is possible to determine the redshift of the given
long burst from the value of Epk alone, because Epk defines Eiso
independently of F . Then, by applying standard cosmology, we
can calculate from the known Eiso and F values the redshift (e.g.
Mészáros & Mészáros 1995).

The validity of the Amati-relation has been a matter of in-
tense discussion since publication. Several papers confirmed it
by newer analyses (e.g. Amati 2006; Ghirlanda et al. 2007, 2008,
and references therein). Cabrera et al. (2007) confirmed the exis-
tence of the Epk;intr–Eiso correlation in the rest-frame for 47 Swift
GRBs. These studies considered bright long GRBs with known
redshifts enabling Eiso to be determined. This causes strong se-
lection effect in the studied samples. It is possible that this se-
lection effect cause e.g. the entire BATSE sample to follow the
Amati-relation either only in a modified version or even not at
all, even though the relation holds for the truncated sample of
bright GRBs (Nakar & Piran 2005; Butler et al. 2007). BB06
obtained that it is better to use Epk;intr ∝ Ea1

isoτ
b1

intr with suitable a1
and b1 for the BATSE sample (τintr = τ/(1+z)). Hence, if b1 � 0,
then the Amati-relation is altered. BB06 proposes, as the optimal
choice, b1 = −0.3. Some papers even reject the Amati-relation
both in the BATSE sample (Nakar & Piran 2005) and in the
Swift sample (Butler et al. 2007). The most radical solution even
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challenges the meaning of Epk;intr itself in the spectra of GRBs
(Ryde 2005b).

For our purposes, it is essential statistically that the corre-
lation between logF and log Epk does not imply that there is
a linear connection only between log Eiso and log Epk;intr. BB06
also arrived at the conclusion that a relation of the form

log Eiso = a1 log Epk;intr + b1 log τintr + c1 (3)

should exist with some suitable non-zero constants a1, b1, and c1.
We note that T50 and τ strongly correlates with each other, i.e.
in this equation either τintr or T50;intr can be used.

The factor loadings imply that logF is explained basically
by the first and third factors. Since in Factor1 and Factor3 log τ
and log Epk are very strong, respectively, it suggests that

log Eiso = a2 log Epk;intr + b2 log τintr + c2 log Liso + d (4)

should hold with some suitable a2, b2, c2, and d non-zero con-
stants (Liso is the isotropic peak luminosity). We note that a sim-
ilar relation was also proposed by Firmani et al. (2006).

The correlation between logF and log Epk is mainly deter-
mined by Factor3. It follows from the loadings of the first and
third factors that the relationship between logF and log Epk is
as important as with the variables dominating Factor1. This fact
disfavors a simple linear relationship only between log Epk;intr
and log Eiso. The detailed study of Eq. (4) (cf. determination of
a2, b2, c2, d, and alternative equations) is beyond the aim of this
paper. Even from this conclusion, it however follows that the
Amati-relation in its original form is disfavored and some mod-
ified version proposed by BB06 is also supported here.

The fourth factor is defined by low frequency spectral in-
dex α and τlag. This implies that the direct correlation be-
tween τlag and V is negligible, and hence there is no direct sup-
port for the luminosity estimators based on these two variables
(Ramirez-Ruiz & Fenimore 2000; Reichart et al. 2001; Norris
2002).

The fifth factor is dominated by τ andF . With the first factor
this demonstrates that T90 andT50 are not completely equivalent,
although T50 characterizes a burst more closely.

In our opinion, the most remarkable result is that so few
quantities are needed, i.e. that all nine quantities can be char-
acterized by five variables. Because all of these conclusions are
derived from the measured data alone, all models of GRBs must
respect these expectations.

The number of essential variables is in accordance with
BB06. They claimed that 3–5 PCs should be used, and we con-
strained the number of important quantities to be 5.

5. Conclusions

The results of the paper may be summarized as follows.

– No more than 5 factors should be introduced. This essential
lowering of the significant variables is the key result of this
paper.

– The structure of factors is similar to the PCs of BB06. The
number of important quantities is more accurately defined
here.

– The first factor is dependent mainly on the temporal vari-
ables, and quantities T50 and T90 are the preferred length in-
dicators.

– The second factor is dominated by the variability.
– The connection of Epk in the third factor with other quan-

tities, and the structure of the first three factors cast some
doubts about the Amati-relation in its original form.

– The α and τlag parameter values in fourth factor give no di-
rect support for the luminosity estimators.

– The fifth factor demonstrates that T90 and T50 are not com-
pletely equivalent.
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