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ABSTRACT 

Chronic morphine treatment and naloxone precipitated morphine withdrawal activates 

stress-related brain circuit and results in significant changes in food intake, body weight gain 

and energy metabolism. The present study aimed to reveal hypothalamic mechanisms 

underlying these effects. Adult male rats were made dependent on morphine by subcutaneous 

implantation of constant release drug pellets. Pair feeding revealed significantly smaller 

weight loss of morphine treated rats compared to placebo implanted animals whose food 

consumption was limited to that eaten by morphine implanted pairs. These results suggest 

reduced energy expenditure of morphine-treated animals. Chronic morphine exposure or pair 

feeding did not significantly affect hypothalamic expression of selected stress- and metabolic 

related neuropeptides - corticotropin-releasing hormone (CRH), urocortin 2 (UCN2) and 

proopiomelanocortin (POMC) compared to placebo implanted and pair fed animals.  

Naloxone precipitated morphine withdrawal resulted in a dramatic weight loss starting as 

early as 15-30 min after naloxone injection and increased adrenocorticotrophic hormone, 

prolactin and corticosterone plasma levels in morphine dependent rats. Using real-time 

quantitative PCR to monitor the time course of relative expression of neuropeptide mRNAs in 

the hypothalamus we found elevated CRH and UCN2 mRNA and dramatically reduced 

POMC expression. Neuropeptide Y (NPY) and arginine vasopressin (AVP) mRNA levels 

were transiently increased during opiate withdrawal. These data highlight that morphine 

withdrawal differentially affects expression of stress- and metabolic-related neuropeptides in 

the rat hypothalamus, while relative mRNA levels of these neuropeptides remain unchanged 

either in rats chronically treated with morphine or in their pair-fed controls.  

 

Keywords: Corticotropin-releasing hormone, Morphine Dependence, Morphine Withdrawal, 

Neuropeptide Y, Proopiomelanocortin, Urocortin 2, Pair feeding 
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INTRODUCTION 

Opiate addiction results in significant changes in mood and affective behaviour, while 

morphine withdrawal syndrome consists of severe somatic alterations [1], whose 

neurobiological background have not been fully resolved. Understanding activation of the 

stress-related brain circuit and changes in energy metabolism and feeding behaviour during 

drug withdrawal is important because these alterations have been reported to be among the 

most severe physical symptoms of morphine administration and withdrawal. Morphine 

treatment is often accompanied by robust changes in food intake and body weight. In the first 

part of this study, we aimed to follow, day-by-day, changes in these metabolic parameters of 

rats implanted with placebo or morphine pellets. An additional group of placebo implanted 

rats was pair fed to morphine implanted animals such that the amount of food provided to 

these animals was equal to that consumed by the morphine-treated group. This pair fed group 

permitted the investigation of the morphine’s effect on energy balance via mechanisms 

independent of food intake.  

Chronic morphine exposure and withdrawal results in neuronal plasticity in the brain 

stress system and affects neuroendocrine- and autonomic regulation. Upregulated 

corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP) transcription in the 

hypophyseotropic neurosecretory neurons of the hypothalamic paraventricular nucleus (PVN) 

is related to activation of hypothalamo-pituitary-adrenocortical (HPA) axis during naloxone 

precipitated morphine withdrawal [2,3]. 

Proopiomelanocortin (POMC) and neuropeptide Y (NPY) synthesizing hypothalamic cell 

groups have been recognized to coordinate food intake and energy metabolism (for recent 

review see [4]). Morphine withdrawal is accompanied with significant metabolic alterations 

that might also be governed by these hypothalamic networks. For instance, it is well 

demonstrated that naloxone precipitated- or spontaneous opioid withdrawal results in weight 

loss up to 15-20% of body weight in rats [5]. In spite of these significant somatic alterations it 

remained unknown how abused drugs and drug withdrawal affects metabolic-related 

neurocircuits. Functional anatomical mapping using immediate-early genes have repeatedly 

revealed recruitment of neurons in different hypothalamic (arcuate, ventromedial and 

paraventricular nuclei), limbic (amygdala) and medullary (NTS) structures that are parts of 

neuronal circuits involved in stress- and metabolic regulation. These immediate early genes 

encode transcription factors that may regulate neuropeptide expression and the encoded 

peptides are involved in regulation of food intake and energy expenditure during morphine 

dependence and withdrawal.  
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It is well recognized that CRH and related urocortins have important metabolic effects in 

the CNS and at the periphery and have been implicated in coordination of autonomic 

functions during stress [6]. Furthermore, urocortins have recently been implicated in 

neuroadaptations that contribute to development of alcohol and cocaine addiction [7] although 

their involvement in morphine addiction and withdrawal has not been addressed yet.  

We hypothesize that robust stress- and metabolic changes seen in morphine withdrawal 

are accompanied with transcriptional activity of key neuropeptide genes in the hypothalamus.    

Thus, in the second part of this study we measured and followed the timing of changes during 

naloxone-precipitated morphine withdrawal on HPA activity, energy balance as well as on the 

transcription of stress-related- anorexigenic- and orexigenic neuropeptides within the 

hypothalamus.  
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MATERIALS AND METHODS 

Animals 

Adult male Wistar rats (from the colony breed at the Institute of Experimental Medicine 

Budapest) weighing 250-300 g at the beginning of the experiments were used. Animals had 

free access to rodent food and water and were maintained under controlled conditions: 

temperature, 21°C±1° C; humidity, 65%; light-dark cycle, 12-h light/12-h dark cycle, lights 

on at 07:00. All procedures were conducted in accordance with the guidelines set by the 

European Communities Council (86/609/EEC/2 and 2010/63 Directives of European 

Community) and the protocol was approved by the Institutional Animal Care and Use 

Committee of the Institute of Experimental Medicine, Budapest Hungary (permit numbers: 

22.1/3347/003/2007 and (PEI/001/29-4/2013).   

 

Morphine pellet 

Morphine base was obtained from Alcaliber Laboratories (Madrid, Spain) in cooperation with 

the Área de Estupefacientes y Psicotropos, Agencia Española del Medicamento y de 

Productos Sanitarios (Madrid, Spain). Pellets of morphine and lactose (control) were prepared 

in the Department of Pharmacy and Pharmaceutics Technology (School of Pharmacy, 

Granada, Spain).  

 

Experimental Procedures 

Flow chart of the experiments is shown on Figure 1.  

Experiment 1. Morphine Treatment and Pair Feeding 

Before the experiment, rats were handled and their food consumption and body weight 

registered daily. Animals were rendered dependent on morphine by subcutaneous 

implantation of constant release morphine base pellets (2x 75=150 mg) on day 0, under light 

ether anaesthesia. Control animals were implanted with placebo pellets containing lactose 

instead of morphine. Animals were kept in individual cages, their body weight and food 

consumption was recorded daily (between 08-09 am). On day 2 and day 7, animals were 

decapitated, trunk blood collected, hypothalami were dissected and frozen for qRT-PCR 

measurements.  

One day after pellet implantation (day 1), a third group of rats, matched for body weight to the 

morphine treated group, was implanted with placebo pellet (pair fed group). Animals in this 
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group received the same amount of food consumed by their morphine implanted pairs in the 

previous day.  This group of animals was sacrificed on day 3 or day 8.  

 

 

Experiment 2. Naloxone precipitated morphine withdrawal  

Separate set of rats were implanted with morphine or placebo pellets as described above. In 

the morning of day 7, animals were weighted and placed into transparent plastic cages in a 

quiet room and left undisturbed for 15 min. Rats were then injected subcutaneously with 

naloxone (Sigma, 1 mg/kg/ml bw) or saline (1ml/kg bw) and decapitated 2 hours after 

injection.  

Two independent observers, unaware of the drug combination used, observed the rats for the 

occurrence of somatic signs of opiate withdrawal up to 15 min after the naloxone or saline 

injections. The following behavioural elements were recorded onto a preformulated score 

sheet: somatic signs: jumps, wet-dog shakes, paw tremors, sniffing, ptosis, mastication, and 

body tremor [8], and vegetative signs: diarrhoea, rhynorrhea, lacrimation and piloerection [9]. 

The withdrawal-induced weight loss of the animals was calculated as the difference between 

body weights before naloxone/saline injection and before decapitation.  

Trunk blood was collected into ice cold EDTA containing plastic tubes, centrifuged and 

plasma samples for hormone measurement (adrenocorticotrophic hormone, (ACTH), 

corticosterone, insulin, adiponectin and leptin) were stored -20
 o

C. After decapitation, a drop 

of blood was applied to the D-Cont Personal blood glucose meter (77 Elektronika LTD 

Budapest, Hungary) for blood glucose measurement. 

Hypothalamic tissue blocks for real-time PCR were also collected and stored at -70
 o
C. 

 

Experiment 3. Time course of naloxone precipitated morphine withdrawal  

To reveal time-dependent changes of HPA axis activation and in neuropeptide expression 

during morphine withdrawal, separate set of rats were made morphine-dependent on day 0. 

The food consumption and body weight was also recorded daily. On day 7, animals were 

weighted and injected subcutaneously with naloxone (Sigma; 1 mg/kg; 1ml/kg bw) then were 

decapitated at various time intervals (15, 30, 60, 120 min) after injection. Placebo-implanted 

control animals received the same volume (1 ml/kg) saline subcutaneously.  

The behaviour of the animals was observed during the first 15 min of withdrawal as in 

experiment 2. The weight loss was also calculated as a difference between pre – and post 
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injection values. Blood samples for ACTH, corticosterone and prolactin (PRL) were collected 

from trunk blood. Hypothalamic samples were dissected and stored as in experiment 2.  

 

Hormone measurements 

Plasma adrenocorticotrophic hormone (ACTH), prolactin (PRL) and corticosterone (CORT) 

concentrations were measured by radioimmunoassay (RIA) as described.  ACTH RIA was 

developed in our group [10] using an antibody (#8514) raised against the mid-portion of 

human ACTH1-39. The test uses 50 µl of plasma per determination, has a lower limit of 

sensitivity of 0.1 fmol/ml, and the average intra-and inter-assay coefficients of variation are 

4.8 % and 7.0 % respectively. Plasma corticosterone has been measured by a direct RIA 

without extraction as described [11]. The intra and interassay CVs in this assay are 12.3 and 

15.3 respectively. 

Because plasma prolactin (PRL) in males is a relevant indicator of stress and PRL release is 

under dopaminergic control by tuberoinfundibular dopaminergic (TIDA) neurons, we 

followed the time course of PRL secretion during withdrawal by measuring plasma hormone 

levels by RIA. The sensitivity of PRL assay is 2 ng/ml, with 10.53% intra- and 12.67 % 

interassay variation.  

Plasma concentrations of leptin, insulin and adiponectin were measured by RIA kits obtained 

from Linco/Millipore according to the manufacturer’s instructions. 

 

Hypothalamic Neuropeptide mRNA levels 

After decapitation, the brain was immediately removed from the skull, placed onto RNase free 

rubber surface and the hypothalamus was dissected with a sterile razor blade. The boundaries 

of the hypothalamic blocks were at the optic chiasm in rostral- at the mammillary bodies in 

caudal- and at the hypothalamic sulcus in the lateral directions. The tissue samples were 

immediately frozen on dry ice and stored at -70
o
C until assay. 

 

Primer design 

Primers used for the comparative CT experiments were designed by the Primer Express 3.0 

program (Applied Biosystems). Primer sequences are given in Table 1.  

 

Quantitative Real-Time PCR 

Total RNA was isolated from hypothalamic samples with QIAGEN RNeasy Mini Kit 

(Qiagen, Valencia, CA, USA) according the manufacturer’s instruction. To eliminate genomic 
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DNA contamination DNase I treatment was used (100 μl RNase-free DNase I (1 U DNase I, 

Fermentas) solution was added). Sample quality control and the quantitative analysis were 

carried out by NanoDrop (Thermo Scientific). Amplification was not detected in the reverse 

transcription (RT)-minus controls. cDNA synthesis was performed with the High Capacity 

cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA, USA). The designed 

primers (Invitrogen) were used in the Real-Time PCR reaction with Power SYBR Green PCR 

master mix (Applied Biosystems, Foster City, CA, USA) on ABI StepOne instrument. The 

gene expression was analyzed by ABI StepOne 2.0 program. The amplicon was tested by 

Melt Curve Analysis on ABI StepOne instrument. GAPDH was used as endogenous control 

reference genes and all data were normalized to GAPDH expression. 

 

Statistical analysis 

Data are presented as mean ± SEM. Body weight, food intake (Experiment 1) and time course 

of hormone levels and neuropeptide mRNA during withdrawal (Experiment 3) were analysed 

by one-way analysis of variance (ANOVA) with time (days and minutes, respectively) as the 

repeated measure and treatment as the main factor using Prism6.1 software (GraphPad, La 

Jolla, CA). One-way ANOVA with Tukey’s HSD test was used to assess the effect of 

treatment at each particular time point (2 or 7 days or 0, 15, 30, 60, 120 min). Body weight 

loss, plasma hormone and glucose levels as well as neuropeptide mRNA levels in Experiment 

2 (two hours withdrawal) were analysed by two-way ANOVA with chronic treatment 

(morphine/placebo pellet) and acute injections (naloxone/saline) as main factors. To compare 

two groups, Student's t- test was used. In all cases p value of 0.05 or lower was considered 

significant. 
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RESULTS 

Experiment 1. Chronic Morphine Treatment and Pair Feeding 

 

Body weight, food and water intake 

Following morphine implantation (day 1 post surgery) animals consumed 87% less food 

compared to placebo implanted controls (Fig.2A). This decrease of food intake was 

accompanied by a significant reduction in body weight gain (Δ bw24h after placebo: +6.0 

±0.5 g, morphine: -7.3 ±2.5 g). Tolerance developed in food intake after day 2 post 

implantation in morphine implanted rats. Placebo-implanted pair fed rats lost significantly 

more weight during the first three days after pellet implantation than their morphine implanted 

pairs (Fig.2B).  

Chronic morphine administration decreased cumulative water intake over the 7 days 

experimental period (placebo: 320.3 ±39.0 ml vs. morphine 184.2 ±17.5 ml, p=0.019 

Student’s t-test). 

 

Plasma hormone levels  

Table 2. summarizes changes in plasma ACTH, CORT and PRL levels in placebo, morphine 

implanted- and pair fed animals. ANOVA on CORT data revealed significant treatment effect 

F(2,15)=6.79, p=0.0095. Tukey’s post-hoc test indicated significantly (p<0.05) elevated CORT 

levels in morphine implanted rats compared either to placebo or pair fed animals two days 

after pellet implantation.  

 

Neuropeptide mRNA 

Relative mRNA levels of arginine vasopressin AVP, corticotropin-releasing hormone CRH, 

proopiomelanocortin POMC and urocortin 2 (UCN2, also known as stresscopin-related 

peptide in human) were not significantly different in hypothalamic blocks of morphine treated 

animals, placebo implanted-, and pair fed rats that were sacrificed 2 or 7 days after treatment 

(Table 3). In case of NPY, ANOVA showed significant treatment effect in groups of animals 

2 days (F(1,21)=20.51, p<0.001) and 7 days (F(1,21)=12.85 p=0.032) after pellet implantation. 

Elevated hypothalamic NPY mRNA level was detected 2 days after morphine implantation 

compared to placebo implanted control and pair fed groups. Pair fed rats displayed elevated 

NPY mRNA levels seven days after placebo pellet implantation (Table 3).  

 

Experiment 2. Morphine withdrawal  
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In this experiment the following groups were tested: placebo+saline, placebo+naloxone, 

morphine+saline and morphine+naloxone. All animals were implanted with subcutaneous 

pellets for 7 days and decapitated 2 hours after saline/naloxone injection. Categories for 

statistical analysis were: placebo or morphine pellet implantation-(chronic) treatment; saline 

or naloxone injection-(withdrawal). 

 

Behaviour 

Chronic morphine exposure produced strong physical dependence syndrome as assessed by 

the characteristic set of behavioural responses to naloxone-evoked withdrawal [12]. All 

(100%) morphine implanted, naloxone injected rats displayed tremor, ptosis and escape; 80% 

showed salivation, rhynorrhea, teeth chattering and “wet-dog” shakes; while lacrimation was 

observed in 77%. 60% of rats displayed diarrhoea and 55% showed piloerection during the 15 

min observation period. None of these behavioural elements was observed in the other 

treatment groups.  

 

Weight loss 

Naloxone precipitated morphine withdrawal resulted in significant weight loss (-26.8 ±1.9 g) 

in 2 hours after naloxone injection (F(3,14)=59.2, p<0.001). The weight change in any other 

treatment group was not significant (placebo+saline: -1,9 ±0,5 g; placebo+naloxone: -24  ±0.3 

g; morphine+saline: -1.67  ±0.2 g). 

Hormones  

As shown in Table 4, plasma ACTH and CORT levels were elevated in morphine implanted 

rats two hours after naloxone injection compared to placebo implanted control animals  

[ACTH: F(1,39)= 24.69, p<0.001 treatment and F(1,39)=18.40, p<0.001 withdrawal; CORT: 

F(1,39)=62.12, p<0.001 treatment and F(1,39)=65.81, p<0.001 withdrawal]. Morphine dependent, 

saline injected or placebo implanted, naloxone injected rats did not display significantly 

altered plasma concentration of ACTH or CORT. Plasma PRL concentrations were not 

different in morphine dependent or placebo implanted animals sacrificed two hours after 

saline/naloxone treatment. Table 4. also summarises changes in blood glucose and plasma 

insulin, leptin and adiponectin levels as measured at 2 hours after saline or naloxone injection.  

Chronic morphine treatment had no effect on blood glucose concentration compared to 

placebo implanted controls, however elevated blood glucose levels were detected in the group 

of morphine implanted, naloxone treated rats. 
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In ad libitum fed animals, leptin plasma levels were not different in naloxone injected groups 

compared to placebo-implanted saline injected controls. However, a moderate decrease in 

plasma leptin concentration was detected after chronic morphine treatment, which has 

increased 2 h after naloxone injection.   

Plasma adiponectin level was significantly higher in placebo implanted, naloxone injected rats 

compared to any other group. 

Plasma insulin levels did not show any significant difference in response to chronic morphine 

administration or withdrawal.   

 

Neuropeptide mRNA in the hypothalamus 

Morphine dependence and two hours’ opiate withdrawal affected AVP and POMC mRNA 

levels in the hypothalamus. Relative quantities of AVP mRNA were significantly lower in 

placebo implanted naloxone injected rats than in placebo implanted saline injected animals 

and in both morphine treated groups (chronic treatment, F(1,10)=18.76, p=0.0015; acute 

treatment F(1,10)=8.55, p=0.015; chronic × acute treatment interaction, F(1,10)=11.04, p=0.007). 

Morphine withdrawal resulted in a significant decrease of hypothalamic POMC mRNA levels 

two hours after naloxone injection (chronic treatment, F(1,20)=2.368, p=0.13 NS; acute 

treatment, F(1,20)=17.61, p<0.001; chronic treatment × acute treatment, F(1,20)=0.11, p=0.74 

NS). RQ values for CRH, UCN2 and NPY were not significantly different in the 

hypothalamus of morphine dependent rats two hours after morphine withdrawal (Fig.3)  

 

Experiment 3. Time course of changes during naloxone-precipitated morphine 

withdrawal 

In this set of experiments the time course of weight loss, hormonal- and neuropeptide 

responses were followed during naloxone precipitated morphine withdrawal and compared to 

that of placebo implanted, saline injected animals. 

Behaviour of the rats during withdrawal that was observed during the first 15 min following 

saline/naloxone injections was similar to that observed in Experiment 2.  

 

Time Course of Withdrawal-induced Weight loss 

Two way ANOVA revealed significant effect of treatment, F(1,29)=198.4, p<0.001; time, 

F(3,29)=15.21, p<0.001 and treatment × time interaction, F(3,29)=11.91 p<0.001. 

Figure 4. shows that body weight gradually decreases during morphine withdrawal and the 

weight loss is significant as early as 30 min after naloxone injection to morphine dependent 
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rats. Saline injection stress in placebo implanted animals did not result in any significant body 

weight change during the two hours experimental period.  

 

Time course of HPA axis activation and prolactin secretion  

ANOVA revealed significant treatment effect on plasma ACTH level during morphine 

withdrawal (treatment F(1,23)=27.94, p<0.001; time, F(4,23)=1.57 p=0.23 NS; interaction, 

F(4,23)=1.63, p=0.19 NS). Naloxone precipitated morphine withdrawal dramatically enhanced 

ACTH secretion, compared to saline injection, as early as 15 min after challenge, remained 

elevated up to 2 hours after naloxone injection. (Fig.5A). ACTH levels were not significantly 

different in placebo implanted, saline injected rats.   

As shown in Fig. 5B, plasma CORT levels were significantly elevated as early as 15 min after 

naloxone injection in morphine treated animals and remained at this plateau level during the 

whole 120 min testing period. In placebo implanted rats saline injection did not result in any 

significant change of CORT plasma levels. (ANOVA results: treatment, F(1,34)=1789, 

p<0.001; time, F(4,34)=127, p<0.001.) 

Changes in plasma PRL concentration following morphine withdrawal were significant 

(treatment, F(1,23)=119.98, p<0.001; time, F(4,23)=14.5, p<0.001). While PRL levels were not 

different in placebo implanted saline injected rats, naloxone administration of morphine 

implanted rats resulted in an elevation of PRL secretion at 15 min, with a significant peak at 

30 min and declined by 2 hours post-injection (Fig.5C). 

 

Time Course of Hypothalamic Neuropeptide Expression  

Figure 6. shows the time course of relative fold changes of corticotropin-releasing hormone 

(CRH), urocortin 2 (UCN2), proopiomelanocortin (POMC), neuropeptide Y (NPY) and 

arginine vasopressin (AVP) mRNAs in the hypothalamic samples of morphine dependent rats 

following withdrawal as compared to placebo implanted, saline injected animals. Naloxone 

precipitated morphine withdrawal resulted in significant increase of CRH (treatment, 

F(1,24)=129.60, p<0.001; time, F(4,24)=33.5, p<0.001), UCN2 (treatment, F(1,24)=54.41, p<0.001; 

time, F(4,24)=19.93, p<0.001), NPY (treatment, F(1,24)=206.60, p<0.001; time, F(4,24)=15.45, 

p<0.001); and AVP (treatment, F(1,24)=18.7, p<0.001; time, F(4,24)=1.23, p=0.32 NS) mRNA 

relative quantities in the hypothalamus.  Expression of POMC mRNA was continuously 

decreased in the hypothalamus following naloxone precipitated morphine withdrawal to 30% 

of the baseline by 120 min after naloxone injection (treatment, F(1,24)=71.99, p<0.001; time, 

F(4,24)=19.45, p<0.001). 
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DISCUSSION  

Methodical Consideration 

There are two distinct experimental protocols with which to address the effects of chronic 

opioid exposure in rodents. Repeated injections of escalating doses of morphine result in 

cycles of partial morphine withdrawal and mimic the situation of addicts using short acting 

opioids. By contrast, subcutaneous implantation of slow release morphine pellets has been 

repeatedly shown to maintain constant level of morphine in rats to induce tolerance and 

physical dependence [8,13]. This paradigm is similar to the situations when patients are on 

chronic morphine therapy or when addicts are given long acting opioid methadone during 

detoxification[14]. In this study we have implanted 2 morphine pellets at the beginning of the 

experiments, instead of implanting increasing amounts of morphine pellets in every second 

day as reported in previous protocols [15,16] to avoid the effect of surgical stress. 

Subcutaneous implantation surgery in ether anaesthesia is an important stress factor that 

affects food intake, body weight, HPA activity and related neuropeptide expression [17]. Our 

present drug treatment paradigm has also been shown to produce constant plasma level of 

morphine throughout the experiment and a full withdrawal syndrome following acute 

injection of opiate antagonists [8]. Here we also found somatic and behavioural withdrawal 

syndrome in morphine implanted rats following naloxone injection.  

 

Morphine dependence 

Similar to other morphine treatment regimes [16,18,19] subcutaneous implantation of 150 mg 

morphine also resulted in a dramatic reduction in food consumption and body weight gain, 

which was significant in the first two days after drug administration. To investigate if body 

weight loss is due to decrease in food intake and/or changes in energy metabolism pair-

feeding experiments were performed. Here we report that weight loss of morphine implanted 

animals, is less than that seen in placebo-implanted pair fed rats, suggesting decrease in their 

metabolic activity. Indeed, it has been well documented that morphine reduces gut motility 

and energy metabolism [20] which may contribute to the less weight loss seen in morphine–

treated animals compared to pair fed animals. Furthermore, hypo-locomotion seen in 

morphine-implanted rats may also contribute to reduced weight loss [21].  

We have found dissociation of HPA axis regulation in the early phase of chronic 

morphine administration. Plasma CORT levels were significantly elevated in morphine 

treated rats 2 days following pellet implantation without any increase of hypothalamic CRH 

mRNA or plasma ACTH. Increased CORT secretion seems to be directly related to morphine 



 14 

administration rather than a consequence of surgical stress or decreased food intake and 

weight loss, since placebo implanted and pair fed rats did not have increased CORT plasma 

concentration.  

HPA axis activity is clearly different in the early (2 days) and late (7 days) phase of 

chronic morphine implantation. By seven days post-implantation there is no significant 

difference in ACTH and CORT levels of morphine dependent and placebo treated animals 

and -in agreement with previous reports [3,22]-we found unchanged CRH and AVP mRNA 

levels in morphine dependent rats 7 days after morphine implantation. Furthermore, chronic 

morphine exposure by pellet implantation does not affect plasma PRL levels and dampens 

adrenocortical activation to stress challenges.  In sharp contrast, chronic intermittent morphine 

administration results in elevated basal ACTH and CORT concentrations as well as facilitated 

pituitary-adrenocortical responses to novel stressors and is considered by itself as a chronic 

stressor [23].  

It is intriguing that significant reductions in food intake and body weight at early phase of 

morphine treatment were not accompanied by overt changes in hypothalamic mRNA levels 

most of metabolic-related neuropeptides. Only NPY relative quantity values were moderately 

elevated in morphine treated- but not in pair fed rats. Decreased food intake may trigger only 

subtle changes of mRNAs that can not be technically detected over the substantial pool of 

neuropeptide mRNA in the hypothalamus. 

At later time points during morphine exposure, tolerance develops in body weight gain 

and food consumption in morphine treated rats, still without any significant change in the 

expression of metabolic-related hypothalamic neuropeptides by the end (7
th

day) of the 

experiment. We have previously reported an elevation of NPY expression in hypothalamic 

samples of chronic morphine treated rats [16]. Furthermore, increased hypothalamic levels of 

NPY and co-expressed Agouti-related peptide (AgRP) mRNA were detected in mice 

chronically exposed to morphine [24]. By contrast, in the present study, we did not reveal 

significantly increased NPY mRNA levels on the final day (day 7
th

) that might be explained 

either by species difference or by different morphine treatment paradigm used in the present 

experiment.  

Expression of orexigenic NPY, however, was elevated in pair fed animals 8 days after 

treatment. Fasting or food restriction and decreased leptin plasma levels are reliable stimuli 

for hypothalamic NPY transcription [25-27] and elevated NPY mRNA levels might be 

compensatory responses of pair fed animals. It is unknown however, why NPY transcripts 
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remain unchanged in the hypothalamus of morphine treated animals which consume less food 

than placebo-treated, ad libitum fed rats and have lower circulating leptin level.  

Recent microarray studies on various brain sites have revealed several genes that are 

differentially expressed in morphine-treated mice compared to controls [24,28]. Within the 

mouse hypothalamus NPY and AgRP mRNA levels were upregulated while POMC mRNA 

down-regulated by 4 days morphine treatment [24]. In contrast, our study on rats did not 

detect significant changes in NPY and POMC mRNA levels in morphine dependent rats that 

might be due to species difference and differences in timing and dose of morphine.  

 It remains unrevealed to what extent these relative quantity values of neuropeptide 

mRNAs reflect alterations in peptide concentration and/or release. For instance, in morphine 

treated mice, hypothalamic NPY exhibited an increase in both mRNA and peptide levels, 

while CART and POMC/α-MSH exhibited slight down-regulation of mRNA levels with up-

regulation of peptide levels [24]. mRNA stability and  regulation by microRNAs might also 

contribute to the final regulation of hypothalamic neuropeptide expression in morphine 

dependent animals.   

 

Morphine withdrawal 

In the second part of the study, we have characterized stress- and metabolic-related 

physiological, hormonal and transcriptional events associated with acute morphine 

withdrawal.  

We confirmed the finding that naloxone-precipitated morphine withdrawal results in 

significant activation of the hypothalamo-pituitary-adrenocortical axis [3,29], here by 

measuring increased plasma levels of ACTH CORT and PRL. In contrast to transient pituitary 

hormone release seen during other acute stress situations [17], ACTH and CORT elevation 

during naloxone-precipitated morphine withdrawal lasts up to 2 hours after naloxone 

injection.  

Early in progression of drug withdrawal, a rapid burst of hypothalamic CRH and UCN2 

mRNA expression occurs that is paralleled with significant induction of stress hormones, 

withdrawal–induced weight loss and other physical symptoms of withdrawal. By contrast, 

relative quantity of POMC mRNA in the hypothalamic samples gradually decreased. NPY 

fold change values were only transiently elevated. 

Using in situ hybridization histochemistry, we previously showed that activation of HPA 

axis during morphine withdrawal is accompanied by induction of de novo transcription of 

CRH gene in the medial parvocellular subdivision of the hypothalamic paraventricular 
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nucleus [3] the cell population that initiates the neuroendocrine stress response. Our present 

qRT-PCR measurements also provided evidence for increased hypothalamic CRH mRNA 

levels in morphine dependent rats as early as 15 min after withdrawal that peaked 60 min after 

naloxone administration. Increase of hypothalamic CRH expression in morphine tolerant rats 

is specific to opioid withdrawal, since stress, caused by saline injection did not result in 

significant elevation of CRH mRNA relative quantities. In view of substantial pool of CRH 

peptide accumulated in the nerve endings parvocellular neurons at the median eminence and 

the rapidity of its release during morphine withdrawal [30] CRH mRNA increase described 

here seemed to be viewed most aptly as to serve to replenish depleted neuropeptide stores. 

The possible molecular mechanisms that drive CRH expression during morphine withdrawal 

may include activation of cAMP-pCREB pathway that has been shown upregulated in the 

tolerant rats’ PVH after naloxone injection [31]. 

CRH appears to be elevated during active withdrawal in many drugs of abuse [32-34]. 

Increased CRH expression in morphine treated, naloxone injected rats may also play a role in 

mediating metabolic and behavioural symptoms of opiate withdrawal. In addition to its well-

known hypophyseotrophic effect, CRH is released centrally and mediates several stress-

specific changes in food intake and energy metabolism through CRF-1 receptors [35,36]. 

Central CRH inhibits food intake and increases sympathetic activity [37,38] both effects 

contribute to metabolic changes seen in morphine dependent rats during withdrawal.  

The weight loss during naloxone precipitated morphine withdrawal is very rapid and 

remarkable. Changes in body weight after spontaneous or naloxone precipitated morphine 

withdrawal are well documented [19,39]. Here, the time course of weight loss has been 

revealed: as early as 15-30 min following naloxone injection, rats lost significant amount of 

weight, which can be due to summation of water loss associated with diarrhoea, salivation, 

lacrimation and rhynorrhea. Morphine withdrawal is accompanied with significant release of 

arginine vasopressin (AVP) into the blood [40] that might be interpreted not only as a rebound 

effect to tolerance developed after primary inhibition of AVP release by morphine but also as 

a response to dehydration (due to diarrhoea, salivation and lacrimation). To support this 

hypothesis we found a transient increase in hypothalamic AVP mRNA level 15 min after 

naloxone injection in morphine tolerant rats using RT-PCR. It remains unknown however, if 

increased AVP mRNA levels are localized in magnocellular neurons of the hypothalamic 

supraoptic (SON) and paraventricular nuclei (PVN) in morphine withdrawn rats. In a previous 

study increased neuronal activation has been detected in the neurohypophyseal neurons of the 

PVN and SON without any significant activation of AVP hnRNA levels in these cells two 
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hours after morphine withdrawal in rats. Another important notion regarding AVP mRNA 

levels is the increase seen in placebo implanted naloxone injected rats implicating a tonic 

inhibitory effect by the endogenous opioids. 

 

In support the role of CRH in withdrawal anxiety and anorexia it has been recently shown 

that CRF-1 receptor antagonists CP154526 and antalarmin reduced weight loss and irritability 

during naloxone precipitated morphine withdrawal in rats [9]. Functional anatomical results 

also revealed neuronal activation of autonomic-related hypothalamic neurons, such as those in 

the ventral parvocellular-, lateral and dorsal parvocellular subdivisions in the PVN [3], 

although it remains unknown if these autonomic projection neurons synthesize CRH in 

response to morphine withdrawal. Naloxone injection to morphine-dependent rats also 

increased c-Fos-IR in the central amygdala and bed nucleus of the stria terminalis, however 

these were CRH negative neurons [2]. 

The other noteworthy finding of the present experiments is to reveal induction of 

urocortin 2 expression in the hypothalamus of morphine dependent rats after naloxone 

injection. Urocortin 2 is a specific ligand of CRF-2 receptors [41,42] and has been implicated 

in mediation of autonomic effects of stress [43], including anorexia [6]. To support this 

finding it has been revealed that CRF-2 receptor specific antagonist anti-sauvagine prevented 

the withdrawal-induced weight loss in chronically morphine treated rats [44]. Along these 

lines, mice with genetic disruption of CRF-2 receptor pathway display reduced somatic signs 

to stressful condition of spontaneous or naloxone-precipitated morphine withdrawal. 

However, analysis of weight loss in morphine dependent CRF2
-/-

 vs. WT mice did not reveal 

genotype or opiate treatment effect and genotype × morphine interaction [45]. 

Some of the efferent mechanisms related to opiate withdrawal-induced weight loss in rats 

may be associated with increased sympathetic outflow, initiated by neuropeptides of the CRF 

family [46]. It has been shown that autonomic related parvocellular neurons in the PVH- those 

which are activated during morphine withdrawal- are command neurons that regulate and 

coordinate sympathetic outflow [37]. Furthermore, central and peripheral CRH and UCN2 

inhibit gastric emptying and promote colonic motility [47,48] that may also contribute to 

gastrointestinal symptoms and weight loss during opioid withdrawal. 

Post-synaptic mu opioid receptors (MOR) have been revealed in the hypothalamic arcuate 

nucleus [49] that are coupled to inhibitory G proteins and their activation hyperpolarize 

POMC neurons [50]. Furthermore, POMC expression in the hypothalamic arcuate nucleus is 

under negative autoregulation by opioids [51,52]. In contrast, we and others did not detect 
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significant downregulation of POMC mRNA levels in the hypothalamus of morphine treated 

rats [16]. If chronic morphine treatment inhibits POMC neurons, one can expect activation of 

POMC neurons following morphine withdrawal. However, Lightman and Young [22] and, 

more recently, Houshyar et al. [19] reported unchanged in situ hybridization signals 

corresponding to POMC mRNA over the arcuate nucleus of rats 4h after naloxone 

precipitated- and 12h - 8 days following spontaneous morphine withdrawal, respectively. In 

contrast, we found significantly decreased POMC mRNA levels in the hypothalamus of 

morphine-implanted rats up to 2h of naloxone injection. POMC expressing cells in the medial 

basal hypothalamus have two major posttranslational products, the endogenous opioid peptide 

β-endorphin and the anorexigenic alpha-melanocyte-stimulating hormone (αMSH). Due to 

translational and/or post-translational changes in neuropeptide expression however, it cannot 

be assumed that the hypothalamic peptide levels were changed along with mRNA content.  

The molecular mechanisms responsible for morphine withdrawal-induced decline of 

POMC mRNA remain to be explored. In addition to yet unknown mechanisms mediated by 

opioid receptors, withdrawal-induced glucocorticoids may play a role in regulation of POMC 

mRNA levels either by decrease RNA stability and/or enhance its degradation since the short 

time frame of POMC mRNA down-regulation is inconsistent with the classic genomic effect 

of activated glucocorticoid receptors. It has been shown that GR complexes can be bound to 

untranslated 3’ end of target mRNA to facilitate its degradation [53]. Furthermore, rapid 

decay of POMC mRNA levels in the hypothalamus is compatible with activation of various 

microRNA (miRNA) populations. To support this hypothesis, a search of miRNA databases 

(www.targetscan.org, www.microrna.org) revealed several miRNA that might interact with 

POMC mRNA untranslated region, including miR-488, miR-485, miR-384-3p, miR-383, 

miR-377, miR-485-5p and miR-181 (family). 

The other major metabolic related cell group in the medial basal hypothalamus is the 

NPY containing neuron population in the arcuate nucleus. We found transient upregulation of 

NPY mRNA levels in the hypothalamus 30 min after naloxone injection to morphine 

dependent rats, although it remains unknown how this increased mRNA is translated as 

increased NPY release at various hypothalamic targets. Because attenuated withdrawal 

syndrome is seen after intracerebroventricular application of NPY [54,55] and because NPY 

is an orexigenic peptide, it can be hypothesized that NPY is involved in an endogenous 

counter-regulatory mechanism to opioid withdrawal.  

 

http://www.targetscan.org/
http://www.microrna.org/
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In conclusion, this study shows differential transcriptional responses of selected stress- 

and metabolic-related genes in the hypothalamus of morphine dependent rats during naloxone 

precipitated withdrawal. Thus, drug abstinence triggers corticotropin-releasing hormone and 

urocortin 2 mRNA levels while dampens proopiomelanocortin mRNA relative quantities in 

hypothalamic samples. These transcriptional changes might be related to the 

regulatory/counter regulatory mechanisms in response to acute drug withdrawal and/or to 

replenish depleted neuropeptide stores in hypothalamic neurosecretory neurons. 
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Legends to the Figures 

Figure 1. Schematic overview of the pair feeding and time course experiments. Baseline 

food intake (FI) and body weight (BW) data were obtained on days -2 and -1. On day 

0 rats were subcutaneously implanted with placebo or morphine pellets. Based on the 

food consumption data of morphine implanted rats, a group of placebo implanted, pair 

fed rats was added on day 1. These rats received the same amount of food daily that 

was consumed by their morphine-implanted pairs on the previous day. Some morphine 

and placebo treated rats were decapitated on day 2 along their placebo-implanted, pair 

fed partners on day 3. On day 7, placebo and morphine-implanted groups were further 

divided into two groups half of the rats from each group received subcutaneous 

injection of saline or naloxone and sacrificed at different time points thereafter. 

Animals from pair fed group were decapitated on day 8 (7
th

 day after pellet 

implantation). 

 

Figure 2. Effects of chronic morphine treatment and pair feeding on metabolic 

parameters of male rats.  

A. Daily changes of food intake in placebo and morphine implanted animals. Pair fed rats 

were placebo implanted and received the same amount of food that was consumed by 

the morphine implanted pairs. n=12, 
+
p<0.05, 

++
p<0.01 morphine vs. placebo-

implanted group (Student’s t-test) 

 

B. Mean (±SEM) values of daily changes in body weight of morphine implanted and 

placebo implanted and pair fed rats. Note that pair feeding of placebo implanted rats 

resulted in significantly more body weight loss compared to morphine implanted 

animals, n=12, *p<0.05 placebo implanted vs. pair fed group (Student’s t-test).  

 

Figure 3. Effect of chronic morphine treatment and naloxone precipitated morphine 

withdrawal on neuropeptide expression in the hypothalamus.  

Mean (±SEM) values of relative expression values of selected hypothalamic 

neuropeptide mRNAs in placebo or morphine treated rats two hours after saline or 

naloxone injection. Neuropeptide mRNA levels were normalised to GAPDH levels 

and expressed as fold change compared to the levels of placebo implanted saline 

groups set to 1. n=6/group, *p<0.0.1 compared to saline injected respective controls. 
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Figure 4. Time course of weight loss during morphine withdrawal. Mean (±SEM) values 

of body weight change in morphine implanted, naloxone injected- (solid dots) and 

placebo implanted, saline injected rats (open dots) at different time points after 

injection. n=16/group,  p<0.01 compared to time 0.  

Figure 5. Changes in plasma hormone levels during morphine withdrawal. Mean (±SEM) 

values for adrenocorticotrophic hormone ACTH (A) corticosterone (B) and prolactin, 

PRL (C) plasma levels in morphine implanted naloxone injected- and placebo treated 

saline injected rats. n= 16/group; *p<0.05; **p<0.01; ***p<0.001. 

Figure 6. Time course of relative expression levels of stress- and metabolic-related 

neuropeptide genes in the hypothalamus during naloxone precipitated morphine 

withdrawal.  Mean (±SEM) fold change values of CRH, UCN2, POMC, NPY and 

AVP mRNAs in the hypothalamus of morphine-implanted naloxone injected (solid 

bars) compared to placebo-implanted saline injected animals (open bars). All values 

were normalized to GAPDH levels and shown as fold changes compared to levels of 

morphine and placebo implanted animals sacrificed at time 0, respectively. n=5/time 

point, *p<0.05; **p<0.01; ***p<0.001, compared to placebo implanted, saline 

injected group (at the same time point).  
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Table 1. List of primer pairs used in real-time quantitative PCR reactions 

GAPDH 

Forward: ACAGCCGCATCTTCTTGTGC 

Reverse: GCCTCACCCCATTTGATGTT 

CRH 

Forward: CAGCCGTTGAATTTCTTGCA 

Reverse: 

CCAGGCGGAGGAAGTATTCTT 

UCN2 

Forward: 

GGATGTCCCCATTGGCCTCCTG 

Reverse: GCGGCCAACACGGGCTAGTA 

POMC 

Forward: 

AGGTTAAGGAGCAGTGACTAAG 

Reverse: CGTCTATGGAGGTCTGAAGC 

NPY 

Forward: 

CCATGATGCTAGGTAACAAACGAATG 

Reverse: 

ATGTAGTGTCGCAGAGCGGAGTA 

AVP 

Forward: TCGCCATGATGCTCAACACT 

Reverse: 

CTCTTGGGCAGTTCTGGAAGTAG 
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Table 2. Mean ±SEM plasma hormone concentrations in placebo- or morphine 

implanted and pair-fed rats 2 or 7 days after pellet implantation 
 2 days 7 days 

 Placebo Morphine Pair Fed Placebo Morphine Pair Fed 

ACTH 

(pM) 

8,05±4,02 22,35±11,52 20,80±5,16 49,20±18,43 34,87±3,57 59,05±15,76 

CORT 

(nM) 

128,1±94,1 1365,4±443,7*
+
 282,5±129,3 515,2±365,1 1622,5±937,4 1682,5±325,6 

PRL 

(ng/ml) 

6,06±2,38 4,10±1,58 6,60±2,73 5,32±1,33 7,85±3,98 17,57±3,90 

*p<0,05 morphine vs. pair fed;
 +

p<0,05 placebo vs. morphine; n=7/group 

 

 

Table 3. Mean ±SEM relative expression levels of selected hypothalamic neuropeptides 

in placebo or morphine-treated and pair fed animals 2 or 7 days after pellet 

implantation 
 2 days 7 days 

 Placebo Morphine Pair Fed Placebo Morphine Pair Fed 

CRH 1,00±0,15 0,95±0,10 1,10±0,06 1,00±0,14 0,97±0,31 1,14±0,18 

UCN2 1,00±0,23 1,51±0,36 0,71±0,04 1,00±0,28 0,83±0,30 0,92±0,07 

NPY 1,00±0,06 1,55±0,07
+
 1,22±0,09

#
 1,00±0,09 0,92±0,11 1,55±0,09*

#
 

POMC 1,00±0,15 1,14±0,13 0,82±0,09 1,00±0,08 0,67±0,17 0,86±0,15 

AVP 1,00±0,16 1,17±0,18 0,98±0,15 1,00±0,18 1,10±0,16 1,26±0,10 

*p<0,01 placebo vs. pair fed; 
#
p<0,01 morphine vs. pair fed; 

+
p<0,001 placebo vs. morphine; 

n=7/group 

 

Table 4. Plasma hormone levels and blood glucose concentration 7 days after morphine 

or placebo implantation and 2 hours after saline or naloxone injection 

 Placebo Morphine 

 Saline Naloxone Saline Naloxone 

ACTH (pM) 55,93±11,20 29,96±9,71 58,96±16,24 451,53±73,53* 

CORT (nM) 493,74±87,85 306,85±72,88 249,26±54,86 4479,3±378,5* 

PRL (ng/ml) 34,26±7,01 31,96±13,91 25,35±6,51 35,40±13,27 

Blood Glucose 

(mM) 

8,68±0,84 7,25±0,25 6,75±0,56 11,03±0,61* 

Insulin (ng/ml) 1,93±0,15 1,82±0,43 1,15±0,42 1,34±0,04 

Leptin (ng/ml) 2,08±0,26 2,02±0,18 0,85±0,11
+
 1,82±0,06* 

Adiponectin 

(µg/ml) 

2,26±1,53 4,08±0,86
+
 2,46±0,56 2,14±0,54 

+
p<0,05 placebo+saline vs. placebo+naloxone; *p<0,05 morphine+saline vs. 

morphine+naloxone group; n=6/group 
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