9th Pannonian International Symposium On Catalysis

8 – 12 September 2008

Štrbské pleso High Tatras National Park Slovakia

Symposium Committee

Günther Rupprechter, Austria

Árpád Molnár, Hungary

Miroslav Derewinski, Poland

Petr Kluson, Czech Republic

Milan Hronec, Slovakia

Organising Committee

Milan Hronec Blažej Horváth Magdaléna Štolcová Milan Králik

Editors

Blažej Horváth Milan Hronec

Published by the Slovak University of Technology in Bratislava In the Publisher house of the Slovak University of Technology in Bratislava in 2008 Impress: 100 copies 486 pages

ISBN 978-80-227-2923-9

ONIUM SALTS AS CATALYSTS IN THE LIQUID-PHASE OXIDATION OF CYCLOHEXENE OR TETRALINE BY N₂O

János T. Kiss^a, László J. Csányi^b, István Pálinkó^{a,*}

^aDepartment of Organic Chemistry, University of Szeged, Dóm tér 8, Szeged, H-6720 Hungary ^bDepartment of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, Szeged, H-6720 Hungary

Abstract

The liquid-phase oxidation of cyclohexene or tetraline with N_2O was studied in various solvents in the presence of onium salts or without them. The onium salts exerted significant promoting effect on the reactions. The activation of the oxidant was studied by IR spectroscopy. It was found that the interactions of the ions in the onium salts and the polarised N–O bond further enhanced polarisation leading to an activation of the oxidant, thus, increasing the rate of oxidation.

Keywords: liquid-phase oxidation; N₂O activation; onium salts; cyclohexene; tetraline; promoting effect.

Introduction

 N_2O could be an environmentally benign oxidation agent, since upon providing the useful product(s) after oxygen transfer N_2 is only formed. However, it is a sluggish reactant in both gas-phase and liquid-phase oxidations: high pressures (53-120 bar) and high temperatures (150-250 °C) are required, for a recent review, see ref. [1]. Nevertheless, it is an oxidant of interest for the chemical industry as well [2, 3].

Research in this area is going on, recently, a chemoselective catalyst (Ru^{IV} -Co^{III} oxides supported on γ -Al₂O₃) was developed for the oxidative preparation of aldehydes and ketones from saturated and unsaturated primary and secondary alcohols using N₂O. Still, the reactions only proceed under pressure (10 bar) and at relatively high temperature (110 °C) [4]. Under forcing conditions (200 °C or higher, 25 bar total pressure) cyclic alkenes could be oxidised to cyclic ketones [5] without promoters.

In our hands, however, the liquid-phase oxidation of cyclohexene or tetraline with N_2O took place under mild conditions (70 °C, 1 bar) with appreciable rate in the presence of onium salts. The onium salts were proved to be necessary and choice of solvent was found to be critical. Kinetic investigations are detailed elsewhere [6], here we report on results acquired during studying the interactions between the oxidant, the onium salt and the solvent by IR spectroscopy.

Experimental

The onium salts (Hex₄NCl and Me(Oct)₃NCl), the solvents (chlorobenzene, acetonitrile, diethyl carbonate and CCl₄), cyclohexene and tetraline were the products of

^{*}Corresponding author, palinko@chem.u-szeged.hu

Aldrich Co and were used without further purification. The oxidant N₂O (Ph. EUR 4 grade) was supplied by Linde Co. The O₂ content was < 0.03% by gas chromatography (5A molecular sieve column). The presence of traces of O₂ in N₂O is an indication that not even traces of NO can be present, because NO would react with O₂ instantly.

The reactions were performed in the liquid phase at 70 °C at atmospheric pressure. Samples were withdrawn after 2 hours and the concentrations of the reactants and the products were determined by gas chromatography. Identification was performed using authentic samples of the compounds (both the products and the reactants).

For studying the possible interactions between the onium salt and N₂O in various solvents a BIORAD Digilab FTS-65/896 spectrometer equipped with a DTGS detector was used. The resolution was 4 cm⁻¹ and 128 scans were collected for a spectrum. Changes in the positions and band areas of N-O stretching (v_1), the v_2 deformation and the N-N stretching (v_3) vibrations were monitored. Spectral evaluations were done with the WinIR package. Before measurements the solvents were purged with N₂ for 5 min to remove traces of O₂. Then, the N₂ atmosphere was fully replaced by N₂O, the gas burette was connected, the oxidant was allowed to dissolve at atmospheric pressure under intense stirring for 5-10 hours, and the gas uptake was noted.

The N₂O stock solutions could be stored without notable change under a protecting N₂O blanket (at atmospheric pressure) in a closed vessel for at least 1-2 days. However, the N₂O concentration dropped immediately when the vessel was opened. To avoid N₂O loss when these solutions were diluted or mixed with onium salt solutions and also when the IR cell was filled, the stock solution in the reactor was passed via a siphon fitted with a 3-way tap either to the IR cell, or to a 4 cm³ mixing syringe. The syringe initially contained 2.00 cm³ solvent or onium salt solution, to which 2.00 cm³ N₂O stock solution was added at atmospheric pressure. After thorough mixing, the IR cell was filled from the mixing syringe.

Results and discussion

As far as reaction rates are concerned chlorobenzene and CCl_4 proved to be the best solvents (Table 1).

The reactions were negligible or very slow in acetonitrile and diethyl carbonate. Moreover, these solvents were not transparent in frequency ranges important in studying N₂O vibrations (see later), therefore, these systems were excluded from further considerations. The products in the remaining two solvents were cyclohexene oxide (chex-ox) and 2-cyclohexene-1-ol (chex-ol) from cyclohexene, α -tetralone (tetr-one) and α -tetralol (tetr-ol) from tetraline. Cyclohexene could be oxidised without onium salts in chlorobenzene and the products were the same as in the their presence. However, the reaction was much faster when onium salts were added. In CCl₄ only the alcohol could be detected and only in very minute amount without onium salts. Tetraline could not be oxidised in any of the solvents without onium salts. Oxidation of this compound was found to be selective. The oxo (tetr-one) compound was only formed in chlorobenzene, while exclusively alcohol (tetr-ol) was identified in CCl₄. It was also observed that oxidation was accelerated considerably in CCl₄ containing trace amounts of water.

Table 1

Product distribution (in mmol) in the liquid-phase oxidation of cyclohexene and tetraline with N_2O after 120 min reaction time

Hydrocarbon	Catalyst	Chex-ox	Chex-ol	Tetr-one	Tetr-ol
Chlorobenzene					
Chex	_	0.053	0.068	_	_
Chex	Hex ₄ NCl	0.084	0.130	—	_
Chex	Me(Oct) ₃ NCl	0.064	0.410	_	_
Tetr	_	_	_	0.000	0.000
Tetr	Hex ₄ NCl	_	_	0.821	0.000
Tetr	Me(Oct) ₃ NCl	—	—	0.499	0.000
CCl ₄					
Chex	—	0.000	0.020	—	_
Chex	Hex ₄ NCl	0.019	0.302	_	_
Chex	Me(Oct) ₃ NCl	0.009	0.164	_	_
Tetr	_	_	_	0.000	0.000
Tetr	Hex ₄ NCl	_	-	0.000	2.585
Tetr	Me(Oct) ₃ NCl	_	-	0.000	1.076

quantities of cyclohexene (chex) and tetraline (tetr) are 19.744 and 22.078 mmol, respectively; amount of the onium promoter is 0.024 mmol at the beginning of the reaction

chex-ox – cyclohexene oxide, chex-ol – 2-cyclohexene-1-ol, tetr-one – α -tetralone, tetr-ol – α -tetralol

During the reaction the bonding system of N_2O should change. Since the reaction rate is only appreciable in the presence of onium salts, the interaction between the ion pair and the N_2O molecule should initiate this change. Infrared spectroscopy is an appropriate tool to detect it. The fundamental frequencies of N_2O are collected in Table 2 in the gas phase as well as in the solvents used in this study. Fortunately, the solvents where the reaction rates were appreciable (chlorobenzene and CCl₄) are transparent in the frequency ranges of fundamental vibrations.

Table 2

Wavenumbers for the fundamental peaks of N ₂ O							
	Fundamental frequencies (cm ⁻¹)						
	N–N- stretch.	N–O stretch.					
	(v ₃)	(v_1)	deform.				
			(v_2)				
	←N—N→	←N-	1				
	←0	$\leftarrow N \longrightarrow 0 \rightarrow$	NNO				
			\downarrow \downarrow				
Gas phase	2224	1285	589				
Chlorobenzene	2218	1281	583				
Acetonitrile	a	1284	586				
Diethyl carbonate	2224	b	585				
CCL	2218	1281	586				

a – severely disturbed by the strong self-absorption of the solvent

b – could not be detected

It is to be seen that the frequencies do not change significantly on going from the gas phase to any of the solvents used. It was also observed that their positions remained the same when onium salts were present, however, the intensities of the v_1 fundamental

vibration were very much altered with the addition of the onium salts, while the other two hardly changed.

Figure 1 allows the comparison of the IR spectra of the N_2O solution with and without the onium salts and Table 3 summarises the ratios of the band areas at various onium salt concentrations for both promoters.

Data reveal that in chlorobenzene the v_1 band disappears and in CCl₄ greatly diminishes. At the same time, apparently nothing happens with the two other fundamental vibrations. These observations indicate that the N–O bond disruption is promoted by ion-pair formation between the cation of the onium salt and its counter ion at the O-end and the N-end of the N–O bond, respectively.

Fig. 1. IR spectra for N_2O with (upper curve) and without onium salts (lower curve) in (a) chlorobenzene and (b) CCl_4

Promoter	Concentration	Ratio of band areas		
	(mol/dm^3)	$A_{v3/}A_{v1}$	$A_{\nu 3/}A_{\nu 2}$	
in chlorobenzene				
—	0	9.6	40.0	
Hex ₄ NCl	0.153	a	46.6	
Me(Oct) ₃ NCl	0.153	a	48.9	
in CCl ₄				
—	0	6.0	40.3	
Hex ₄ NCl	0.155	20.3	48.1	
	0.197	15.0	50.0	
Me(Oct) ₃ NCl	0.0214	24.0	48.0	
	0.143	19.1	51.0	
.1 1 1 1	1			

Table 3 Ratios of fundamental N_2O IR band areas in the presence of promoter onium salts or without them using various solvents

 $a-\text{the}\,\nu_1\,\text{band}\,\,\text{disappeared}$

The resonance theory representation of N_2O (Scheme 1) places charges even onto the undisturbed molecule.

 $N \equiv N = 0$ \longleftrightarrow N = N = 0

Scheme 1. Limiting structures for N2O according to resonance theory

The inner nitrogen holds the positive charge in either limiting structure, while the negative charge can be located either on the terminal nitrogen or the oxygen. Thus, the anionic part of the onium salt surely will interact with the inner nitrogen, while both ends might interact with the cation. Since change was only found with the v_1 fundamental vibration, therefore it is safe to state that the cation interacts with the oxygen.

In the reaction mixture (where the hydrocarbon, the onium salt, the solvent as well as N_2O are present) the terminal nitrogen somehow interacts with the double bond or one of the double bonds of these molecules. This interaction ceases by the end of the reaction since N_2 evolution occurs and at the same time or close to it the products are formed.

Conclusions

The experimental results indicated that the interactions between the cation and the counter anion of the onium salts with the N–O bond in N_2O significantly contribute to the activation of the molecule. The activated moiety reacts in the oxidation reactions of cyclohexene as well as tetraline under mild conditions.

Acknowledgement. This work was supported by the National Science Fund of Hungary through grant K62288. The financial help is highly appreciated.

References

- [1] V.N. Parmon, G. I. Panov, A. Uriarte, A.S. Noskov: Catal. Today 100 (2005), 115.
- [2] G.I. Panov, C.A. Dubkov, E.V. Starokon, L.V. Pirutko: *PCT Int. Appl.* (2003) CODEN: PIXXD2 WO 2003078372.
- [3] G. Bub, R. Fornika, B. Fischer, D. Guschin, T. Meyer, W. Scheldrick: *PCT Int. Appl.* (2003) CODEN: PIXXD2 WO 2003059856.
- [4] T.L. Stuchinskaya, M. Mushawir, E.F. Kozhevnikova, I.V. Kozhevnikov: *J. Catal.* **231** (2005), 41.
- [5] E.V. Starokon, K.A. Dubkov, D.E. Babushkin, V.N. Parmon, G.I. Panov: *Adv. Synth. Catal.* **346** (2004), 268.
- [6] L.J. Csányi, K. Jáky, J.T. Kiss, I. Ilisz, P. Forgo, Gy. Dombi: J. Mol. Catal. A 263 (2007), 48.