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Abstract

It is usually supposed that tolerance levels are determined by the decision maker a priori
in a fuzzy linear program (FLP). In this paper we shall suppose that the decision maker
does not care about the particular values of tolerance levels, but he wishes to minimize
their weighted sum. This is a new statement of FLP, because here the tolerance levels are
also treated as variables.

1 Preliminaries
A fuzzy set ã of the real line R is defined by its membership function (denoted also by ã)
ã : R → [0, 1]. A fuzzy number ã is a fuzzy set of the real line with a normal, (fuzzy) convex
and continuous membership function of bounded support. A fuzzy set of the real line given by
the membership function

ã(t) =

 1−
|a− t|
α

if |a− t| ≤ α,

0 otherwise,
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where α > 0 will be called a symmetrical triangular fuzzy number with center a ∈ R and width
2α and we shall refer to it by the pair (a, α).
Let ã = (a, α) and b̃ = (b, α′) be two fuzzy numbers of symmetric triangular form, λ ∈ R.
Then it is easily verified from Zadeh’s extension principle that we have

ã+ b̃ = (a+ b, α + α′), ã− b̃ = (a− b, α + α′), λã = (λa, |λ|α). (1)

Fuzzy numbers can also be considered as possibility distributions. If ã ∈ F is a fuzzy num-
ber and x ∈ R a real number then ã(x) can be interpreted as the degree of possibility of the
statement ”x is ã”.
Let ã, b̃ ∈ F be fuzzy numbers. The degree of possibility that the proposition ”ã is less than or
equal to B” is true denoted by Pos[ã ≤ b̃] and defined by the extension principle as [2]

Pos[ã ≤ b̃] = sup
x≤y

min{ã(x), b̃(y)}, (2)

This formula uses once more Zadeh’s extension principle. Let ã = (a, α) and b = (b, α′) be
two fuzzy numbers of symmetric triangular form. Then it can be easily checked that

Pos[ã ≤ b̃] =


1 if a ≤ b,

1−
a− b
α + α′

if b < a ≤ b+ α + α′,

0 if a > b+ α + α′.

(3)

2 Fuzzy Linear Programs
Consider the following fuzzy linear programming problem

〈c̃, x〉 → min; subject to Ãx ≤ b̃, x ∈ Rn. (4)

where 〈c̃, x〉 = c̃1x1 + · · · + c̃nxn, denotes the weighted sum of fuzzy number coefficients c̃j;
〈ãi, x〉 = ãi1x1 + · · · + ãinxn denotes the weighted sum of fuzzy number coefficients ãij; b̃
is a vector of fuzzy numbers b̃i i = 1, . . . ,m, j = 1, . . . , n and ≤ is understood in possibilis-
tic sense. Supposing that the decision maker has a (fuzzy) aspiration level for the objective
function, represented by a fuzzy number b̃0, problem (4) can be stated as

〈c̃, x〉 ≤ b̃0; subject to Ãx ≤ b̃, x ∈ Rn. (5)

In the sequal we shall suppose that all of the fuzzy number coefficients in (4) are chosen from
the class of symmetric triangular fuzzy numbers.
Consider now (5) with fuzzy number coefficients c̃j = (cj, α), b̃i = (bi, di) and ãij = (aij, α)
of symmetric triangular form, i = 0, 1, . . . ,m, j = 1, . . . , n, and rewrite it in the form: find
x ∈ Rn such that,

(〈c, x〉, α‖x‖1) ≤ (b0, d0); subject to {(〈ai, x〉, α‖x‖1) ≤ (bi, di), i = 1, . . . ,m}, (6)

where ‖x‖1 = |x1|+ · · ·+ |xn|, 〈c, x〉 = c1x1 + · · ·+ cnxn and 〈ai, x〉 = ai1x1 + · · ·+ ainxn;
and in this case we shall call (6) a flexible linear programming problem and interpret it as a
fuzzy extension of the crisp linear inequality problem: find x ∈ Rn such that,

〈c, x〉 ≤ b0; subject to Ax ≤ b, (7)
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and di > 0 is interpreted as the level of maximal admissible violation for the i-th crisp con-
straint 〈ai, x〉 ≤ bi, i = 1, . . . ,m; d0 is the level of maximal admissible violation for the crisp
constraint 〈c, x〉 ≤ b0; and b0 is interpreted as the decision maker’s crisp aspiration level for the
crisp objective function 〈c, x〉.
Then the degree of possibility, denoted by µi(x), that x satisfies the i-th constraint in (6) is
computed as in [3]

µi(x) =


1 if 〈ai, x〉 ≤ bi

1−
〈ai, x〉 − bi
α‖x‖1 + di

if bi < 〈ai, x〉 ≤ bi + di

0 if 〈ai, x〉 > bi + di,

for i = 1, 2, . . . ,m, and the degree to which x satisfies the decision maker’s goal is computed
as

µ0(x) =


1 if 〈c, x〉 ≤ b0

1−
〈c, x〉 − b0
α‖x‖1 + d0

if bi < 〈c, x〉 ≤ b0 + d0

0 if 〈c, x〉 > b0 + d0.

The fuzzy solution to problem (6) is defined by Bellman and Zadeh’s principle [1] as

D(x) = min{µ0(x), µ1(x), . . . , µm(x)}, x ∈ Rn,

and an optimal solution, x∗ ∈ Rn, is determined from the relationship

λ∗ = D(x∗) = max{D(x)|x ∈ Rn}. (8)

where λ∗ is called the degree of consistency of (5). It is easy to see that problem (8) leads to the
following nonlinear mathematical programming problem,

λ→ max

1−
〈c, x〉 − b0
α‖x‖1 + d0

≥ λ,

1−
〈ai, x〉 − bi
α‖x‖1 + di

≥ λ, i = 1, . . . ,m,

λ ∈ [0, 1], x ∈ Rn

In the extremal case α = 0 (but di > 0), the problem of finding an optimal solution to (6) from
equation (8) leads to the following linear programming problem,

λ→ max

1−
〈c, x〉 − b0

d0

≥ λ,

1−
〈ai, x〉 − bi

di

≥ λ, i = 1, . . . ,m,

λ ∈ [0, 1], x ∈ Rn,

which was introduced in [12]. Sensitivity analysis in FLP problems (with α = 0) was first
considered in [6], where a functional relationship between changes of parameters of the right-
hand side and those of the optimal value of the primal objective function was derived for almost
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all conceivable cases. Tanaka [11] formulated an FLP problem with symmetrical triangular
fuzzy numbe coefficients and discussed the value of information via sensitivity analysis. Stable
embeddings of linear equality and inequality systems into fuzzified systems were discussed in
[10].

3 FLP with a restricted overall flexibility level
Suppose that decision maker does not care about the particular values of di, but he wishes to
reduce the overall level of violation, defined by d0 + d1 + · · · + dm, as much as possible, and
the membership function of his soft overall flexibility is given by

µm+1(d0 + d1 + · · ·+ dm) =


1 if

∑m
i=0 di ≤ T

1−
∑m

i=0 di − T
t

if T <
∑m

i=0 di ≤ T + t

0 otherwise,

where T is called the decision maker’s crisp overall flexibility level, and t > 0 denotes his
tolerance level for exceeding T . Therefore, T is nothing else but the cumulated violation of
crisp inequalities in (7). Then the fuzzy decision problem (5) under soft overall flexibility
constraint can be formulated as [5]

〈c̃, x〉 ≤ b̃0 (9)

Ãx ≤ b̃,

d0 + · · ·+ dm ≤ (T, t), x ∈ Rn,

and its fuzzy solution is then defined by

D(x, d0, d1, . . . , dm) = min{µ0(x), µ1(x), . . . , µm(x), µm+1(d0 + d1 + · · ·+ dm)}, , (10)

where x ∈ Rn and d0 > 0, . . . , dm > 0. furthermore, an optimal solution to (9) can be obtained
by solving the following nonlinear mathematical programming problem,

λ→ max

1−
〈c, x〉 − b0
α‖x‖1 + d0

≥ λ,

1−
〈ai, x〉 − bi
α‖x‖1 + di

≥ λ, i = 1, . . . ,m, (11)

1−
d0 + · · ·+ dm − T

t
≥ λ

λ ∈ [0, 1], d0 > 0, . . . , dm > 0, x ∈ Rn.

In [5] it was proved that the fuzzy solution and degree of consistency of FLP problem (9)
depends continuously on the degree of flexiblity, that is, small changes in the decision maker’s
overall flexibility level can cause only small deviations both in the fuzzy solution and in the
degree of consistency.
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4 FLP with optimal tolerance levels
Suppose now that the decision maker is not in the position to identify his overall flexibility
level, but he is concerned about minimizing the weighted sum of all tolerance levels, where the
i-th weight shows the importance of the i-th constraint, i = 0, 1, . . . ,m. In this case the fuzzy
solution of FLP

〈c̃, x〉 ≤ b̃0; subject to Ãx ≤ b̃, x ∈ Rn. (12)

can be written in the form

D(x, d) = min{µ0(x, d), µ1(x, d), . . . , µm(x, d)}, x ∈ Rn,

where we used the notation d = (d0, d1, . . . , dm). Then an optimal solution, x∗ ∈ Rn and d∗0 >
0, . . . , d∗m > 0 is obtained by finding a good compromise solution to the following nonlinear
non-smooth biobjective problem{

max{D(x, d),min{w0d0 + w1d1 + · · ·+ wmdm}
}

(13)

subject to d0 > 0, . . . , dm > 0, x ∈ Rn

There are several approaches to nonlinear non-smooth problem (13) (see [7, 8, 9]). In this paper
we suggest the use of a scalarizing function, where the weight of the first objective is Ω and
the weight of the second objective is 1−Ω. Then (13) turns into the following single-objective
optimization problem

ΩD(x, d)− (1− Ω)(w0d0 + w1d1 + · · ·+ wmdm)→ max (14)

subject to d0 > 0, . . . , dm > 0, x ∈ Rn

That is,

Ω min{µ0(x, d), µ1(x, d), . . . , µm(x, d)} − (1− Ω)(w0d0 + w1d1 + · · ·+ wmdm)→ max

subject to d0 > 0, . . . , dm > 0, x ∈ Rn.

5 Summary
In this paper we have considered a novel statement of flexible linear programming problems
where the decision maker does not care about the particular values of tolerance levels, but he
wishes to minimize their weighted sum. These types of problems may arise in portfolio selec-
tion problems where the tolerance levels can be expressed in monetary terms and the weighted
sum of tolerances levels denote the amount of extra capital the investor might find in order
to improve portfolio performance. Treating tolerance levels as variables, the dimension of the
original problem (8) increases by (m+ 1) new variables. Furthermore, to find a solution to the
resulting biobjective nonlinear non-smooth problem (14) generally requires the use of genetic
optimization techniques, and could be tricky.
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