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Abstract. A sequence of first–order integer–valued autoregressive type (INAR(1))
processes is investigated, where the autoregressive type coefficients converge to 1. It
is shown that the limiting distribution of the joint conditional least squares estima-
tors for this coefficient and for the mean of the innovation is normal. Consequences
for sequences of Galton–Watson branching processes with unobservable immigra-
tion, where the mean of the offspring distribution converges to 1 (which is the
critical value), are discussed.

1 Introduction

In many practical situations one has to deal with non–negative integer–valued
time series. Examples of such time series, known as counting processes, arise
in several fields of medicine (see, e.g., Cardinal et.al. [5] and Franke and Selig-
mann [9]). To construct counting processes Al–Osh and Alzaid [1] proposed
a particular class of models, the so–called INAR(1) model. Later Al–Osh and
Alzaid [2], Du and Li [8] and Latour [12] generalized this model by introducing
the INAR(p) and GINAR(p) models. These processes can be considered as
discrete analogues of the scalar– and vector–valued AR(p) processes, because
their correlation structure is similar.

The present paper deals with so–called nearly unstable INAR(1) models.
It is, in fact, a sequence of INAR(1) models where the autoregressive type
coefficient αn is close to one, more precisely, αn = 1− γn/n with γn → γ,
where γ > 0. This parametrization has been suggested by Chan and Wei
[6] for the usual AR(1) model. The main motivation of our investigation
comes from econometrics, where the so–called ‘unit root problem’ plays an
important role (see, e.g., the monograph of Tanaka [15]). We considered in
[10] the conditional least squares estimate (CLSE) for αn assuming that the
mean µε of the innovation is known. In this paper we do not suppose that
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µε is known, and we show asymptotic normality of the joint CLSE of αn
and µε.

To define the INAR(1) model let us recall the definition of the α◦ oper-
ator which is due to Steutel and van Harn [14].

Definition 1.1 Let X be a non–negative integer–valued random variable.
Let (Yj)j∈N be a sequence of independent and identically distributed (i.i.d.)
Bernoulli random variables with mean α. We assume that the sequence
(Yj)j∈N is independent of X. The non–negative integer–valued random
variable α ◦X is defined by

α ◦X :=





X∑
j=1

Yj , X > 0,

0, X = 0.

The sequence (Yj)j∈N is called a counting sequence.

Let (εk)k∈N is an i.i.d. sequence of non–negative integer–valued random
variables with mean µε and variance σ2

ε . The zero start INAR(1) time
series model is defined as

Xk =

{
α ◦Xk−1 + εk, k = 1, 2, . . . ,

0, k = 0,

where the counting sequences (Yj)j∈N involved in α◦Xk−1 for k = 1, 2, . . .
are mutually independent and independent of (εk)k∈N. We suppose that
µε > 0 (otherwise Xk = 0 for all k ∈ N).

It is easy to show (see [10]), that

lim
k→∞

EXk =
µε

1− α, lim
k→∞

VarXk =
σ2
ε + αµε
1− α2 , for all α ∈ [0, 1),

and that limk→∞ EXk = limk→∞ VarXk =∞ if α = 1. The case α ∈ [0, 1)
is called stable or asymptotically stationary, while the case α = 1 is called
unstable.

Let Fk be the σ–algebra generated by the random variables X1, . . . , Xk.
Clearly E(Xk | Fk−1) = αXk−1 + µε, thus the conditional least squares
estimator (CLSE) α̂ of α based on the observations (Xk)16k6n (assuming
that µε is known) can be obtained by minimizing the sum of squares

n∑

k=1

(Xk − αXk−1 − µε
)2

(1)

with respect to α, and it has the form

α̂n =

∑n
k=1Xk−1(Xk − µε)∑n

k=1(Xk−1)2
.
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In the stable case under the assumption Eε3
1 < +∞ we have

n1/2(α̂n − α)
D−→ N (0, σ2

α,ε), σ2
α,ε =

α(1− α)EZ3
0 + σ2

εEZ2
0

(EZ2
0 )2

,

where (Zk)k∈Z is a stationary solution of the INAR(1) model

Zk = α ◦ Zk−1 + εk, k ∈ Z,
see Klimko and Nelson [11].

Let us consider now a nearly unstable sequence of INAR(1) models

X
(n)
k =

{
αn ◦X(n)

k−1 + ε
(n)
k , k = 1, 2, . . . ,

0, k = 0,
n = 1, 2, . . . ,

where the autoregressive type coefficient has the form αn = 1− γn/n with
γn → γ such that γ > 0. In [10] the authors have proved that (α̂n)n∈N is
asymptotically normal, namely,

n3/2(α̂n − αn)
D−→ N (0, σ2

γ,ε).

In this case it suffices to assume Eε2
1 < +∞. We draw the attention to the

normalizing factor n3/2, which is different from the stable case.
By minimizing the sum of squares (1) with respect to αn and µε, we

obtain the joint conditional least squares estimator (α̃n, µ̃ε,n) of the vector

(αn, µε) based on the observations (X
(n)
k )16k6n:

α̃n =

∑n
k=1X

(n)
k−1

(
X

(n)
k −X(n))

∑n
k=1

(
X

(n)
k−1 −X

(n)

∗
)2 , µ̃ε,n = X

(n) − α̃nX
(n)

∗ ,

where

X
(n)

:=
1

n

n∑

k=1

X
(n)
k , X

(n)

∗ :=
1

n

n∑

k=1

X
(n)
k−1.

In Section 3 we show that (α̃n, µ̃ε,n)n∈N is asymptotically normal, namely,
(
n3/2(α̃n − αn)

n1/2(µ̃ε,n − µε)

)
D−→ N (0, Σγ,ε), (2)

and the covariance matrix Σγ,ε will be given explicitely.
It is easy to observe that the INAR(1) process is a special case of the

Galton–Watson branching process with immigration if the offspring distribu-
tion is a Bernoulli distribution (see, e.g., Franke and Seligmann [9]). We recall
that a Galton–Watson process is said to be subcritical, critical or supercriti-
cal if the expectation of the offspring distribution is less than 1, equals 1 or
greater than 1, respectively. The result (2) can be reformulated as follows.

Corollary 1.2 Consider a sequence of Galton–Watson branching processes
with Bernoulli offspring distribution with parameter αn = 1−γn/n, γn → γ
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where γ > 0, and (unobservable) immigration with expectation µε > 0 and
variance σ2

ε <∞. Then the joint conditional least squares estimator of αn
and µε is asymptotically normal.

We remark that the asymtotic normality in the sub–critical case with gen-
eral offspring distribution and observed immigration is proved by Venkatara-
man and Nanthi [16]. The rate of convergence is n1/2 in this case. We
conjeture that our result can be extended for Galton–Watson processes with
a more general offspring distribution.

We note that Sriram [13] considered a nearly critical sequence of Galton–
Watson branching processes with a general offspring distribution. However,
the immigration was supposed to be observable. That is the reason why
Sriram [13] investigated the limiting behaviour of another joint estimator for
the offspring mean and for the mean of the immigration distribution.

2 Preliminaries

We shall need a simple lemma, which gives a sufficient condition for con-
vergence to a functional of a continuous process. The proof is based on the
Continuous Mapping Theorem (see Billingsley [4, Theorem 5.5]), and it can
be found in Arató, Pap and Zuijlen [3].

For measurable mappings Φ,Φn : D(R+,Rk)→ D(R+,R`), n = 1, 2, . . .
we shall write Φn  Φ if ‖Φn(xn)−Φ(x)‖∞ → 0 for all x, xn ∈ D(R+,Rk)
with ‖xn − x‖∞ → 0, where ‖ · ‖∞ denotes the supremum norm.

Lemma 2.1 Let Φ,Φn : D(R+,Rk)→ D(R+,R`), n = 1, 2, . . . be measur-
able mappings such that Φn  Φ. Let Z, Zn, n = 1, 2, . . . be stochastic

processes with values in D(R+,Rk) such that Zn
D−→ Z in D(R+,Rk)

and almost all trajectories of Z are continuous. Then, Φn(Zn)
D−→ Φ(Z)

in D(R+,R`).

Let

M
(n)
k := X

(n)
k − αnX(n)

k−1 − µε.

Let us introduce the random step functions

X(n)(t) := X
(n)
[nt], M (n)(t) :=

[nt]∑

k=1

M
(n)
k , t > 0.

In [10] we have shown that

(
M̃ (n), X̃(n)

)
:=

(
M (n)

√
n
,
X(n) − EX(n)

√
n

)
D−→ (M,X) (3)
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in the Skorokhod space D(R+,R2), where (M(t))t>0 is a time–changed
Wiener process, namely, M(t) = W (TM (t)) with

TM (t) :=

∫ t

0

%γ,ε(u) du, %γ,ε(t) := σ2
ε + µε(1− e−γu),

and (W (t))t>0 is a standard Wiener process, and

X(t) :=

∫ t

0

e−γ(t−s) dM(s), t > 0

is a continuous zero mean Gaussian martingale (which is an Ornstein–Uhlen-
beck type process driven by M). The main idea was first to prove that

M̃ (n) D−→ M by the help of the Martingale Central Limit Theorem, and
then to show that X̃(n) is a measurable function of M̃ (n), namely,(
M̃ (n), X̃(n)

)
= Φn

(
M̃ (n)

)
with Φn : D(R+,R)→ D(R+,R2),

Φn(x)(t) =

(
x(t), x

(
[nt]

n

)
− γ∗n

∫ [nt]/n

0

e−γ
∗
n([nt]/n−s)x(s) ds

)
,

where γ∗n := −n logαn → γ. Clearly Φn  Φ, where

Φ(x)(t) =

(
x(t), x(t)− γ

∫ t

0

e−γ(t−s)x(s) ds

)
.

By Lemma 2.1, (M̃ (n), X̃(n))
D−→ (M,X), since Itô’s formula yields

∫ t

0

e−γ(t−s) dM(s) = M(t)− γ
∫ t

0

e−γ(t−s)M(s) ds,

hence (M,X) = Φ(X).
Moreover, based on (3), we proved in [10] that

n3/2(α̂n − αn)
D−→
∫ 1

0
µX(t) dM(t)
∫ 1

0
µX(t)2 dt

D
= N (0, σ2

γ,ε),

where

µX(t) := µε

∫ t

0

e−γudu =





µε
γ (1− e−γt), γ > 0,

µεt, γ = 0,

σ2
γ,ε :=

∫ 1

0
µX(t)2%γ,ε(t) dt
(∫ 1

0
µX(t)2 dt

)2 .

Introducing

µ
(n)
X (t) :=

1

n
EX(n)(t) =

1

n
EX

(n)
[nt],
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it is easy to show (see [10]) that µ
(n)
X → µX locally uniformly on R+, hence

also in D(R+,R).

We remark that Sriram [13] proved a limit theorem for the process n−1X(n)

for a nearly critical sequence of Galton–Watson branching processes with a
general offspring distribution. However, the result of Sriram [13] is not ap-
plicable for a nearly critical sequence of branching processes with Bernoulli
offspring distribution, since the variance α(1−α) of the Bernoulli distribu-
tion tends to 0 as α tends to its critical value 1. In fact, (3) implies that in

this case we have n−1X(n) D−→ µX in the Skorokhod space D(R+,R), but
this limiting relationship is not sufficient for deriving the limiting behaviour
of the sequence (α̃n, µ̃ε,n).

3 Joint Estimator

The main result of the paper is that the joint conditional least squares esti-
mator (α̃n, µ̃ε,n) of the vector (αn, µε) for a nearly unstable sequence of
INAR(1) models is asymptotically normal.

Theorem 3.1 Consider a sequence of INAR(1) models with parameters
αn = 1 − γn/n such that γn → γ with γ > 0, and suppose that µε > 0
and σ2

ε <∞. Then

(
n3/2(α̃n − αn)

n1/2(µ̃ε,n − µε)

)
D−→




∫ 1

0
µX(t) dM(t)− µX,1M(1)

µX,2 − (µX,1)2

µX,2M(1)− µX,1
∫ 1

0
µX(t) dM(t)

µX,2 − (µX,1)2



D
= N (0, Σγ,ε),

where µX,1 :=
∫ 1

0
µX(t) dt, µX,2 :=

∫ 1

0
(µX(t))2 dt, and

Σγ,ε =

(
σ

(i,j)
γ,ε(

µX,2 − (µX,1)2
)2

)

16i,j62

with

σ(1,1)
γ,ε =

∫ 1

0

(µX(t)− µX,1)2%γ,ε(t) dt,

σ(1,2)
γ,ε = −

∫ 1

0

(µX(t)− µX,1)(µX,1µX(t)− µX,2)%γ,ε(t) dt,

σ(2,2)
γ,ε =

∫ 1

0

(µX,1µX(t)− µX,2)2%γ,ε(t) dt.
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Proof. We have

α̃n =

∑n
k=1X

(n)
k−1X

(n)
k − n−1

∑n
k=1 X

(n)
k−1

∑n
k=1 X

(n)
k∑n

k=1

(
X

(n)
k−1

)2 − n−1
(∑n

k=1X
(n)
k−1

)2 ,

hence X
(n)
k − αnX(n)

k−1 = M
(n)
k + µε implies

α̃n − αn =

∑n
k=1 X

(n)
k−1M

(n)
k − n−1

∑n
k=1 X

(n)
k−1

∑n
k=1M

(n)
k

∑n
k=1

(
X

(n)
k−1

)2 − n−1
(∑n

k=1X
(n)
k−1

)2 =
Un
Vn
,

where

Un :=

∫ 1

0

X(n)(t) dM (n)(t)−M (n)(1)

∫ 1

0

X(n)(t) dt,

Vn := n

∫ 1

0

(
X(n)(t)

)2
dt− n

(∫ 1

0

X(n)(t) dt
)2

.

Applying X(n)(t) = nµ
(n)
X (t) + n1/2X̃(n)(t) and M (n)(t) = n1/2M̃ (n)(t),

we obtain

Un = Un,1n
3/2 + Un,2n,

Vn = Vn,1n
3 + Vn,2n

5/2 + Vn,3n
2,

where

Un,1 :=

∫ 1

0

µ
(n)
X (t) dM̃ (n)(t)− M̃ (n)(1)

∫ 1

0

µ
(n)
X (t) dt,

Un,2 :=

∫ 1

0

X̃(n)(t) dM̃ (n)(t)− M̃ (n)(1)

∫ 1

0

X̃(n)(t) dt,

Vn,1 :=

∫ 1

0

(
µ

(n)
X (t)

)2
dt−

(∫ 1

0

µ
(n)
X (t) dt

)2

,

Vn,2 := 2

∫ 1

0

µ
(n)
X (t)X̃(n)(t) dt− 2

∫ 1

0

µ
(n)
X (t) dt

∫ 1

0

X̃(n)(t) dt,

Vn,3 :=

∫ 1

0

(
X̃(n)(t)

)2
dt−

(∫ 1

0

X̃(n)(t) dt

)2

.

Next we investigate

µ̃ε,n = X
(n) −X(n)

∗

∑n
k=1X

(n)
k−1X

(n)
k − n−1

∑n
k=1 X

(n)
k−1

∑n
k=1X

(n)
k∑n

k=1

(
X

(n)
k−1

)2 − n−1
(∑n

k=1X
(n)
k−1

)2

=
n−1

∑n
k=1X

(n)
k

∑n
k=1

(
X

(n)
k−1

)2 − n−1
∑n
k=1X

(n)
k−1

∑n
k=1X

(n)
k−1X

(n)
k∑n

k=1

(
X

(n)
k−1

)2 − n−1
(∑n

k=1X
(n)
k−1

)2 .
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Clearly we have

µ̃ε,n − µε =
Wn

Vn
,

where

Wn := n−1
n∑

k=1

(
X

(n)
k −µε

) n∑

k=1

(
X

(n)
k−1

)2−n−1
n∑

k=1

X
(n)
k−1

n∑

k=1

X
(n)
k−1

(
X

(n)
k −µε

)
.

By X
(n)
k − µε = αnX

(n)
k−1 +M

(n)
k , we can write Wn in the form

Wn = n−1
n∑

k=1

M
(n)
k

n∑

k=1

(
X

(n)
k−1

)2 − n−1
n∑

k=1

X
(n)
k−1

n∑

k=1

X
(n)
k−1M

(n)
k

= M (n)(1)

∫ 1

0

(
X(n)(t)

)2
dt−

∫ 1

0

X(n)(t) dt

∫ 1

0

X(n)(t) dM (n)(t).

Applying again X(n)(t) = nµ
(n)
X (t)+n1/2X̃(n)(t) and M (n)(t) = n1/2M̃ (n)(t),

we obtain that

Wn = Wn,1n
5/2 +Wn,2n

2 +Wn,3n
3/2,

where

Wn,1 := M̃ (n)(1)

∫ 1

0

(
µ

(n)
X (t)

)2
dt−

∫ 1

0

µ
(n)
X (t) dt

∫ 1

0

µ
(n)
X (t) dM̃ (n)(t),

Wn,2 := 2M̃ (n)(1)

∫ 1

0

µ
(n)
X (t)X̃(n)(t) dt−

∫ 1

0

µ
(n)
X (t) dt

∫ 1

0

X̃(n)(t) dM̃ (n)(t)

−
∫ 1

0

X̃(n)(t) dt

∫ 1

0

µ
(n)
X (t) dM̃ (n)(t),

Wn,3 := M̃ (n)(1)

∫ 1

0

(
X̃(n)(t)

)2
dt−

∫ 1

0

X̃(n)(t) dt

∫ 1

0

X̃(n)(t) dM̃ (n)(t).

We can notice that

Zn := (Un,1, Un,2, Vn,1, Vn,2, Vn,3,Wn,1,Wn,2,Wn,3)

can be expressed as a continuous function of the random vector

In :=

(
M̃ (n)(1),

∫ 1

0

µ
(n)
X (t) dt,

∫ 1

0

X̃(n)(t) dt,

∫ 1

0

(
µ

(n)
X (t)

)2
dt,

∫ 1

0

(
X̃(n)(t)

)2
dt,

∫ 1

0

µ
(n)
X (t)X̃(n)(t) dt,

∫ 1

0

µ
(n)
X (t) dM̃ (n)(t)

)

and the random variable
∫ 1

0

X̃(n)(t) dM̃ (n)(t).
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In [10] it is shown that there exist measurable functionals Φ,Φn : D(R+,R)→
R, n ∈ N, such that

∫ 1

0

µ
(n)
X (t) dM̃ (n)(t) = Φn(M̃ (n)),

and Φn  Φ in the sense that |Φn(xn) − Φ(x)| → 0 for all x, xn ∈
D(R+,R) with ‖xn − x‖∞ → 0. Hence we conclude the existence of mea-
surable functionals Ψ, Ψn : D(R+,R3) → R7, n ∈ N, such that In =

Ψn(µ
(n)
X , M̃ (n), X̃(n)), and Ψn  Ψ in the sense that ‖Ψn(xn)−Ψ(x)‖ → 0

for all x, xn ∈ D(R+,R3) with ‖xn − x‖∞ → 0. Thus (3), µ
(n)
X → µX in

D(R+,R), and an appropriate analogue of Lemma 2.1 imply In
D−→ I with

I :=

(
M(1),

∫ 1

0

µX(t) dt,

∫ 1

0

X(t) dt,

∫ 1

0

(
µX(t)

)2
dt,

∫ 1

0

(
X(t)

)2
dt,

∫ 1

0

µX(t)X(t) dt,

∫ 1

0

µX(t) dM(t)

)
.

In [10] we have shown that

∫ 1

0

X̃(n)(t) dM̃ (n)(t) = An +Bn,

where

An :=
1

2

(
X̃(n)(1)

)2
+

(1 + αn)γn
2

∫ 1

0

(
X̃(n)(t)

)2
dt,

Bn :=
1

2n

n∑

k=1

(
M

(n)
k

)2 D−→ 1

2
TM (1).

Consequently, applying Slutsky’s theorem and its corollary in Chow and Te-

icher [7, 8.1], we obtain Zn
D−→ Z with

Z :=
(
U (1), U (2), V (1), V (2), V (3),W (1),W (2),W (3)

)
,

where

U (1) =

∫ 1

0

µX(t) dM(t)−M(1)

∫ 1

0

µX(t) dt,

V (1) =

∫ 1

0

(
µX(t)

)2
dt−

(∫ 1

0

µX(t) dt

)2

,

W (1) = M(1)

∫ 1

0

(
µX(t)

)2
dt−

∫ 1

0

µX(t) dt

∫ 1

0

µX(t) dM(t).
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Again by Slutsky’s argument we obtain

(
n3/2(α̃n − αn), n1/2(µ̃ε,n − µε)

)
=

(
n−3/2Un
n−3Vn

,
n−5/2Wn

n−3Vn

)

D−→
(
U (1)

V (1)
,
W (1)

V (1)

)
.

The covariance matrix Σγ,ε of the limiting normal distribution can be cal-

culated using dM(t) =
√
%γ,ε(t) dW (t) (see [10]). This relationship implies

(
M(1),

∫ 1

0

µX(t) dM(t)

)
D
= N (0, Σ)

with

Σ :=




∫ 1

0
%γ,ε(t) dt −

∫ 1

0
µX(t)%γ,ε(t) dt

−
∫ 1

0
µX(t)%γ,ε(t) dt

∫ 1

0

(
µX(t)

)2
%γ,ε(t) dt


 .

Now the formula for Σγ,ε follows, since U (1) and W (1) are linear combi-

nations of M(1) and
∫ 1

0
µX(t) dM(t). �
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