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1 Introduction

In the present note the authors supplement significant properties of infinitely divisible and

embeddable probability measures on a locally compact Abelian group G. There are at

least two versions of infinite divisibility appearing in the literature which deserve special

attention, and the problem of embedding those measures leads directly to the study of

continuous convolution semigroups on G. It is evident from the classical setup of G = Rd

for d> 1 that in this context Gaussian semigroups and measures play a favorite rôle.

The main result of Section 3 concerns the representation of Gaussian measures in terms of

their characteristics and their relationship to Gaussian measures in the sense of Parthasarathy.

Section 6 and 7 deal with the embedding of infinitely divisible probability measures in the

weak or strong sense respectively. We present direct proofs to more or less known statements,

but stress the irreplacable hypothesis that the dual Ĝ of G is arcwise connected. In a

concluding Section 8 we initiate the study of Gaussian and diffusion hemigroups on G and

their analysis, especially for 1–dimensional connected Abelian groups.

2 Preliminaries

Let G be a locally compact group with identity element e. Let M1(G) denote the

semigroup of probability measures on G. For every x ∈ G, εx denotes the Dirac measure

in x. For a compact subgroup H of G, ωH denotes the normalized Haar measure on

H.

2.1 Definition. Let H be a compact subgroup of G. A family (µt)t>0 in M1(G)

(indexed by positive real numbers) is called an H–continuous convolution semigroup

in M1(G) if µs ∗ µt = µs+t for all s, t > 0 and limt↓0 µt = ωH .

A family (µt)t>0 in M1(G) is called a continuous convolution semigroup in

M1(G) if µs ∗ µt = µs+t for all s, t > 0 and the limit µ0 := limt↓0 µt exists in M1(G).

The limit measure µ0 is an idempotent element of M1(G) and hence (µt)t>0 is an

H–continuous convolution semigroup in M1(G) for some compact subgroup H of G.
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2.2 Definition. A continuous convolution semigroup (νt)t>0 in M1(G) is called a

Gaussian semigroup if

lim
t↓0

1

t
νt(G \N) = 0

for all Borel neighbourhoods N of e. A measure ν ∈ M1(G) is said to be a Gaussian

measure if there exists a Gaussian semigroup (νt)t>0 in M1(G) with ν1 = ν.

The class of Gaussian measures in M1(G) will be abbreviated by G(G), and the subclass

of its symmetric elements by Gs(G).

If (νt)t>0 is a Gaussian semigroup in M1(G) then limt↓0 νt(G \ N) = 0 for all

Borel neighbourhoods N of e, hence ν0(N) = 1 for all Borel neighbourhoods N of

e with ν0(∂N) = 0. If G is metrizable then this implies ν0 = εe, thus (νt)t>0 is an

{e}–continuous convolution semigroup.

The above definition slightly differs from the Definition 6.2.1 in Heyer [6], since here a

Gaussian semigroup may consists of Dirac measures (εxt)t>0 belonging to a continuous

one–parameter subsemigroup (xt)t>0 of G.

It is known that for a Gaussian semigroup (νt)t>0 in M1(G) we have supp(νt) ⊂ G0

for every t > 0, where G0 denotes the connected component of the identity e (see

Heyer [6, Theorem 6.2.3]). Moreover, if G is a locally compact group and G 6= {e}
then G(G) \ D(G) 6= ∅, where D(G) := {εx : x ∈ G} (see Heyer [6, Theorem 6.2.8]).

Consequently, if G is not totally disconnected and G 6= {e} then G(G) \ D(G) 6= ∅, and

if G is totally disconnected then G(G) = {εe}.

2.3 Definition. A measure µ ∈ M1(G) is called infinitely divisible if for all n ∈ N
there exists µ 1

n
∈ M1(G) such that µ = (µ 1

n
)n (and hence µ 1

n
can be considered as an

n–th root of µ ). The set of all infinitely divisible measures in M1(G) will be denoted by

I(G).

2.4 Definition. A measure µ ∈ M1(G) is called continuously embeddable if there

exist a continuous convolution semigroup (µt)t>0 in M1(G) such that µ = µ1. The set

of all continuously embeddable measures in M1(G) will be denoted by E(G).

Clearly Gs(G) ⊂ G(G) ⊂ E(G) ⊂ I(G).

3 Gaussian measures

Let G be a second countable locally compact Abelian group. The dual group of G will

be denoted by Ĝ. We will define Gaussian measures in the sense of Parthasarathy by their

Fourier transforms.

3.1 Definition. The Fourier transform µ̂ : Ĝ → C of a measure µ ∈ M1(G) is

defined by

µ̂(χ) :=

∫
G

χ(x)µ(dx), χ ∈ Ĝ.
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The mapping µ 7→ µ̂ from M1(G) into the set of mappings Ĝ→ C is injective.

3.2 Definition. A continuous function ψ : Ĝ → R+ is called a quadratic form on Ĝ

if

ψ(χ1χ2) + ψ(χ1χ
−1
2 ) = 2(ψ(χ1) + ψ(χ2)) for all χ1, χ2 ∈ Ĝ.

The set of all quadratic forms on Ĝ will be denoted by q+(Ĝ).

3.3 Definition. A measure ν ∈ M1(G) is said to be a Gaussian measure in the sense

of Parthasarathy if there exist an element m ∈ G and a quadratic form ψ ∈ q+(Ĝ)

such that

ν̂(χ) = χ(m) exp{−ψ(χ)}

holds for all χ ∈ Ĝ.

The class of Gaussian measures in the sense of Parthasarathy in M1(G) will be abbre-

viated by GP(G), and the subclass of its symmetric elements by Gs
P(G).

3.4 Definition. A measure µ ∈ M1(G) is called weakly infinitely divisible if for all

n ∈ N there exist a measure µn ∈ M1(G) and an element xn ∈ G such that µ = µnn ∗εxn.

The collection of all weakly infinitely divisible measures in M1(G) will be denoted by I0(G).

Obviously I(G) ⊂ I0(G).

3.5 Remark. For a bounded positive measure τ on G, the Poisson measure eτ−τ(G)εe ∈
M1(G) with exponent τ is defined by

eτ−τ(G)εe := e−τ(G)
(
εe + τ +

τ ∗ τ
2!

+
τ ∗ τ ∗ τ

3!
+ · · ·

)
.

A measure ν ∈ M1(G) is a Gaussian measure in the sense of Parthasarathy if and only if it

is weakly infinitely divisible and if for every factorisation of ν of the form ν = eτ−τ(G)εe ∗λ
with a bounded positive measure τ on G and a weakly infinitely divisible probability

measure λ one has τ = aεe for some a ∈ R+.

If ν ∈ GP(G) then an element m ∈ G and a quadratic form ψ ∈ q+(Ĝ) with the

property such that ν̂(χ) = χ(m) exp{−ψ(χ)} holds for all χ ∈ Ĝ are uniquely determined.

Moreover, if m ∈ G and ψ ∈ q+(Ĝ) then there exists ν ∈ GP(G) such that

ν̂(χ) = χ(m) exp{−ψ(χ)} holds for all χ ∈ Ĝ.

(See Theorems 5.2.7 and 5.2.8 in Heyer [6].)

For m ∈ G and ψ ∈ q+(Ĝ) let νm,ψ ∈ M1(G) be defined by

ν̂m,ψ(χ) = χ(m) exp{−ψ(χ)} for all χ ∈ Ĝ.

Then

GP(G) = {νm,ψ : m ∈ G, ψ ∈ q+(Ĝ)},

Gs
P(G) = {νm,ψ : m ∈ G, m2 = e, ψ ∈ q+(Ĝ)}.
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3.6 Definition. An element x ∈ G is called continuously embeddable if there exists

a continuous one–parameter subsemigroup (xt)t>0 in G such that x1 = x.

The set of continuously embeddable elements in G will be denoted by GE .

Since G is a locally compact Abelian group, GE is a subgroup of G.

3.7 Theorem. Let G be a second countable locally compact Abelian group. Then

G(G) = {νm,ψ : m ∈ GE , ψ ∈ q+(Ĝ)}.

Consequently, Gs(G) ⊂ Gs
P(G) ∩ G(G) and ⊂ Gs

P(G) ∪ G(G) ⊂ GP(G) ⊂ I0(G).

Proof. If ν ∈ G(G) then there exists a Gaussian semigroup (νt)t>0 in M1(G) with

ν1 = ν. Consequently, for all t> 0 we have that νt = νnt/n and limn→∞ nνt/n(G \N) = 0

for all Borel neighbourhood N of e. By Theorem 5.4.3 in Heyer [6], we obtain that

νt ∈ GP(G) for all t> 0. Thus there exist mt ∈ G and ψt ∈ q+(Ĝ) such that

ν̂t(χ) = χ(mt) exp{−ψt(χ)} for all χ ∈ Ĝ and t> 0.

The semigroup property νs+t = νs∗νt for s, t> 0 implies ν̂s+t(χ) = ν̂s(χ)ν̂t(χ) for χ ∈ Ĝ,

thus

ν̂s+t(χ) = χ(ms+t) exp{−ψs+t(χ)} = χ(ms) exp{−ψs(χ)}χ(mt) exp{−ψt(χ)}
= χ(msmt) exp{−(ψs(χ) + ψt(χ))}.

Consequently ms+t = msmt for all s, t> 0. Obviously m0 = e. Moreover

t 7→ χ(mt) =
ν̂t(χ)

|ν̂t(χ)|

is a continuous mapping from R+ into C for all χ ∈ Ĝ, hence (mt)t>0 is a continuous

one–parameter subsemigroup in G. Consequently ν = νm1,ψ1 and m1 ∈ GE .

Suppose now that ν = νm,ψ with m ∈ GE and ψ ∈ q+(Ĝ). Then there exist a

continuous one–parameter subsemigroup (mt)t>0 in G such that m1 = m. For all t> 0

there exists a measure νt ∈ GP(G) such that

ν̂t(χ) = χ(mt) exp{−tψ(χ)} for all χ ∈ Ĝ.

Clearly (νt)t>0 is an {e}–continuous convolution semigroup in M1(G) such that ν1 = ν.

Consider the related continuous convolution hemigroup µs,t := νt−s, 0 6 s6 t. Let (Xt)t>0

be an associated (time–homogeneous) increment process in G. By Theorem 2.6 in Bingham

and Heyer [4] we conclude that (Xt)t>0 has a. s. continuous paths. By Corollary 2 of

Theorem 2 in Siebert [15] we obtain that (µs,t)06s6t is a diffusion hemigroup in the sense

that

lim
Z∈Z[0,T ]

n∑
k=1

µτk−1,τk(G \N) = 0

for all Borel neighbourhood N of e and for all T > 0. This implies that (νt)t>0 is a Gaus-

sian semigroup. Indeed, for all ε > 0 there exists δ > 0 such that
∑n

k=1 µτk−1,τk(G \N) 6 ε

for all decomposition Z := {0 = τ0 < τ1 < · · · < τn = 1} of [0, 1] with |Z| < δ. Hence

nνt(G \ N) 6 ε if t < δ and nt6 1, which clearly implies that lim
t→0

1
t
νt(G \ N) = 0.

Consequently ν ∈ G(G). 2
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4 Continuously embeddable elements

Let again G be a second countable locally compact Abelian group. First observe that

an element of G is continuously embeddable if and only if the related Dirac measure is a

continuously embeddable measure, i.e., x ∈ GE if and only if εx ∈ E(G). Consequently,

GE = {x ∈ G : εx ∈ E(G)} and {εx : x ∈ GE} ⊂ G(G). Moreover, by Theorem 3.7,

G(G) = GP(G) holds if and only if {εx : x ∈ G} ⊂ E(G).

Further, note that each continuous one–parameter subsemigroup (xt)t>0 of G can be

extended to a continuous one–parameter subgroup (xt)t∈R of G by

xt := (x−t)
−1, t < 0.

Hence

GE =
⋃
{ϕ(R) : ϕ ∈ Hom(R, G)} ⊂ G0,

where Hom(R, G) denotes the set of continuous homomorphisms from the additive group

R into G. Consequently, if G is not connected then GE 6= G, and hence G(G) 6= GP(G).

Moreover, GE is a dense subgroup of G0, and GE equals to the union of the arcs of

G which contain e, i.e., GE is the arc–component of e. Combining Theorem 3.7 with

the results of Dixmier [5] we conclude the following theorem.

4.1 Theorem. Let G be a second countable locally compact Abelian group. Then the

following statements are equivalent:

(i) G(G) = GP(G);

(ii) GE = G;

(iii) {εx : x ∈ G} ⊂ E(G);

(iv) G is the union of all continuous one–parameter subgroups of G;

(v) G is arcwise connected;

(vi) G = Rn × TI , where n ∈ Z+ and I is an at most countable set.

Note that each solenoidal group Σc is a compact connected Abelian group with (Σc)E 6=
Σc (see Example 5.4).

5 Examples

5.1 Gaussian measures on Rd.

Consider the group G = Rd, where d ∈ N. The character group (Rd)∧ is topologically

isomorphic with Rd. Every continuous character of Rd has the form χy(x) = ei〈x, y〉,

x ∈ Rd for some y ∈ Rd. Every quadratic form ψ on (Rd)∧ ∼= Rd has the form
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ψB(χy) = 〈By, y〉 for some symmetric positive semidefinite matrix B ∈ Rd×d. Clearly

(Rd)E = Rd, hence

G(Rd) = GP(Rd) = {νa,B : a ∈ Rd, B ∈ Rd×d with B> = B and B > 0},

Gs(Rd) = Gs
P(Rd) = {ν0,B : B ∈ Rd×d with B> = B and B > 0},

where νa,B ∈ M1(Rd) is defined by

ν̂a,B(χy) := exp

{
i〈a, y〉 − 1

2
〈By, y〉

}
, for all y ∈ Rd ∼= (Rd)∧.

5.2 Gaussian measures on Td.

Consider the group G = Td, where T := {e2πix : 0 6 x < 1} denotes the torus group. The

character group (Td)∧ is topologically isomorphic with Zd. Every continuous character of

Td has the form χm(x) =
∏d

k=1 x
mk
k , x = (x1, . . . , xd) ∈ Td for some m = (m1, . . . ,md) ∈

Zd. Every quadratic form ψ on (Td)∧ ∼= Zd has the form ψB(χm) = 〈Bm, m〉 for some

symmetric positive semidefinite matrix B ∈ Rd×d. Clearly (Td)E = Td, hence

G(Td) = GP(Td) = {νa,B : a ∈ Td, B ∈ Rd×d with B> = B, B > 0},

Gs(Td) = Gs
P(Td) =

{
νa,B : a ∈ Td with ai ∈ {1,−1}, B ∈ Rd×d with B> = B, B > 0

}
,

where νa,B ∈ M1(Td) is defined by

ν̂a,B(χm) :=

(
d∏

k=1

amk
k

)
exp

{
−1

2
〈Bm, m〉

}
, for all m = (m1, . . . ,md) ∈ Zd ∼= (Td)∧.

Writing the element a = (a1, . . . , ad) ∈ Td in the form a = (e2πiα1 , . . . , e2πiαd) with

0 6 αk < 1, k = 1, . . . , d, we obtain χm(a) = e2πi〈α,m〉 with α := (α1, . . . , αd), and

ν̂a,B(χm) = exp

{
2πi〈α, m〉 − 1

2
〈Bm, m〉

}
, for all m = (m1, . . . ,md) ∈ Zd ∼= (Td)∧.

5.3 Gaussian measures on T∞.

Consider the group T∞ :=
∏∞

k=1Gk, where Gk := T for all k ∈ N. The character

group (T∞)∧ is topologically isomorphic with Z(∞) consisting of the elements of Z∞

having only finitely many nonzero coordinates. Every continuous character of T∞ has the

form χm(x) =
∏∞

k=1 x
mk
k , x = (x1, x2, . . .) ∈ T∞ for some m = (m1,m2, . . .) ∈ Z(∞).

Every quadratic form ψ on (T∞)∧ ∼= Z(∞) has the form ψB(χm) =
∑∞

j,k=1 bj,kmjmk

for some symmetric positive semidefinite matrix B = (bj,k)j,k=1,2,... ∈ R∞×∞ (i.e., Bd :=

(bj,k)j,k=1,...,d ∈ Rd×d is positive semidefinite for all d ∈ N ). Clearly (T∞)E = T∞, hence

G(T∞) = GP(T∞) = {νa,B : a ∈ T∞, B ∈ R∞×∞ with B> = B, B > 0},

Gs(T∞) = Gs
P(T∞) =

{
νa,B : a ∈ T∞ with ai ∈ {1,−1}, B ∈ R∞×∞ with B> = B, B > 0

}
,

6



where νa,B ∈ M1(T∞) is defined by

ν̂a,B(χm) :=

(
∞∏
k=1

amk
k

)
exp

{
−1

2

∞∑
j,k=1

bj,kmjmk

}
for all m = (m1,m2, . . .) ∈ Z(∞) ∼= (T∞)∧. Writing the element a = (a1, a2, . . .) ∈ T∞

in the form a = (e2πiα1 , e2πiα2 , . . .) with 0 6 αk < 1, k = 1, 2, . . ., we obtain χm(a) =

exp {2πi
∑∞

k=1 αkmk}, and

ν̂a,B(χm) = exp

{
2πi

∞∑
k=1

αkmk −
1

2

∞∑
j,k=1

bj,kmjmk

}
for all m = (m1,m2, . . .) ∈ Z(∞) ∼= (T∞)∧.

5.4 Gaussian measures on solenoidal groups.

Let c = (c1, c2, . . .) ∈ N∞ with ck > 2 for k ∈ N. The solenoid Σc can be considered as

a subgroup of T∞, namely,

Σc :=
{
x = (x1, x2, . . .) ∈ T∞ : xk = xckk+1 for all k ∈ N

}
.

Thus for x = (x1, x2, . . .) ∈ Σc we have xj = x
cjcj+1...ck−1

k = x
c[j,k)

k for j 6 k, where

c[j,k) := cjcj+1 . . . ck−1 for j < k and c[k,k) := 1. In fact, Σc is the projective limit of the

projective sequence (Gk, πj,k), 1 6 j 6 k, where Gk := T for all k ∈ N, and πj,k : Gk → Gj

is the mapping z 7→ zc[j,k) . It follows that Σc is a second countable compact connected

group. It is well known that Σc is not locally connected and not arcwise connected. The

arc–component of the identity e = (1, 1, . . .) of Σc (i.e., the subgroup of continuously

embeddable elements of Σc) is

(Σc)E =
{(

e2πiλ, e2πiλ/c1 , e2πiλ/(c1c2), . . .
)

: λ ∈ R
}
.

If m = (m1,m2, . . .) ∈ Z(∞) ∼= (T∞)∧ then there exists k ∈ N such that mj = 0 for all

j > k, hence

χm(x) =
k∏
j=1

x
mj

j =
k∏
j=1

x
mjc[j,k)

k = x
m1c[1,k)+···+mk−1c[k−1,k)+mk

k .

Consequently, the character group Σ̂c is topologically isomorphic with the (discrete) additive

group {
γ =

`

c[1,k)
: ` ∈ Z, k ∈ N

}
of rational numbers. Every continuous character of Σc has the form χγ(x) = x`k, x =

(x1, x2, . . .) ∈ Σa for some γ = `
c[1,k)

, ` ∈ Z, k ∈ N. Every quadratic form ψ on Σ̂c has

the form ψb(γ) = bγ2 for some b> 0. Hence

G(Σc) = {νa,b : a ∈ (Σc)E , b> 0},

GP(Σc) = {νa,b : a ∈ Σc, b> 0},

Gs(Σc) = Gs
P(Σc) =

{
νa,b : a ∈ Σc with ai ∈ {1,−1}, b> 0

}
,
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where νa,b ∈ M1(Σc) is defined by

ν̂a,b(χγ) := a`k exp

{
−1

2
bγ2

}
, for all γ =

`

c[1,k)
∈ Σ̂c.

Note that there exists an element a ∈ Σc with ai ∈ {1,−1} and a 6= e if and only if there

are only at most finitely many even numbers among {ck : k ∈ N}. Moreover, if a ∈ (Σc)E
with ai ∈ {1,−1} then a = e.

If a ∈ (Σc)E then there exists λ ∈ R such that a =
(
e2πiλ, e2πiλ/c1 , e2πiλ/(c1c2), . . .

)
,

hence for γ = `
c[1,k)

∈ Σ̂c we have χγ(a) = a`k = e2πiλ`/c[1,k) = e2πiλγ. Consequently,

ν̂a,b(χγ) = exp

{
2πiλγ − 1

2
bγ2

}
, for all γ ∈ Σ̂c.

Now let a = (a1, a2, . . .) ∈ Σ. Write ak ∈ T in the form ak = e2πiαk with 0 6 αk < 1.

Since a1 = ac12 , there exists an integer j1 ∈ Z such that α1 = c1α2 − j1, hence

a2 = e2πi(α1+j1)/c1 . In a similar way one obtains ak = e2πi(α1+j1+···+c[1,k−1)jk−1)/c[1,k) for

all k ∈ N with some j = (j1, j2, . . .) ∈ Z∞. Hence for γ = `
c[1,k)

∈ Σ̂c we have

χγ(a) = a`k = e2πi(α1+j1+···+c[1,k−1)jk−1)`/c[1,k) = e2πi(α1+j1+···+c[1,k−1)jk−1)γ. Consequently,

ν̂a,b(χγ) = exp

{
2πi(α1 + j1 + · · ·+ c[1,k−1)jk−1)γ −

1

2
bγ2

}
, for all γ ∈ Σ̂c.

Note that each Gaussian measure on Σc in the sense of Parthasarathy has full support

and is singular with respect to a Haar measure on Σc. Moreover, two Gaussian measures

νa,b, νa′,b′ ∈ GP(Σc) in the sense of Parthasarathy are mutually absolutely continuous if

a−1a′ ∈ (Σ)E , otherwise they are singular with respect to each other. Particularly, any two

Gaussian measures νa,b, νa′,b′ ∈ G(Σc) are mutually absolutely continuous. (See Bendikov

and Saloff–Coste [2, 5.2].)

6 Weakly infinitely divisible measures

The purpose of this section is to characterize the set of locally compact Abelian groups G

for which each weakly infinitely divisible measure is embeddable, i.e., I0(G) = E(G).

6.1 Theorem. Let G be a second countable locally compact Abelian group. Then the

following statements are equivalent:

(i) G is arcwise connected;

(ii) I0(G) = I(G) = E(G).

Proof. (i) =⇒ (ii). Let us consider an arbitrary measure µ ∈ I0(G). We are going to

show that µ ∈ E(G). Let g : G× Ĝ→ R be a local inner product (see Definition 5.1.7 in

Heyer [6]). Then by Corollary IV.7.1 in Parthasarathy [13], the Fourier transform µ̂ admits

a representation

(6.2) µ̂(χ) = ω̂H(χ)χ(m) exp

{
−ψ(χ) +

∫
G

(
χ(x)− 1− ig(x, χ)

)
η(dx)

}
8



for all χ ∈ Ĝ, where H is a compact subgroup of G, m ∈ G, ψ ∈ q+(Ĝ) and η is

a Lévy measure on G, i.e., η is a positive Borel measure on G such that η({e}) = 0,

η(G \ N) < ∞ for all Borel neighbourhood N of e, and
∫
G

(
1 − Reχ(x)

)
η(dx) < ∞

for all χ ∈ Ĝ. Since G is arcwise connected, there exists a continuous one–parameter

subsemigroup (mt)t>0 in G such that m1 = m (see Theorem 4.1 ). Clearly tψ ∈ q+(Ĝ)

and tη is a Lévy measure on G for all t> 0. By Theorem IV.7.1 in Parthasarathy [13],

for all t> 0 there exists a measure µt ∈ I(G) such that

µ̂t(χ) = ω̂H(χ)χ(mt) exp

{
−tψ(χ) + t

∫
G

(
χ(x)− 1− ig(x, χ)

)
η(dx)

}
for all χ ∈ Ĝ. We have

ω̂H(χ) =

{
1 if χ(x) = 1 for all x ∈ H,

0 otherwise.

(In fact, the set {χ ∈ Ĝ : χ(x) = 1 for all x ∈ H} is the annihilator of H in Ĝ.) Hence

we have ω̂H(χ)2 = ω̂H(χ) for all χ ∈ Ĝ. Moreover, for each s, t > 0 and χ ∈ Ĝ, we have

χ(ms)χ(mt) = χ(msmt) = χ(ms+t), thus we can conclude µ̂s(χ)µ̂t(χ) = µ̂s+t(χ). Further,

limt↓0 µ̂t(χ) = ω̂H(χ) for all χ ∈ Ĝ implies limt↓0 µt = ωH . Consequently (µt)t>0 is a

H–continuous convolution semigroup in M1(G) with µ1 = µ, and we obtain µ ∈ E(G).

(ii) =⇒ (i). If G is not arcwise connected then consider an element x ∈ G such that

x 6∈ GE (see Theorem 4.1 ). Then εx ∈ I0(G) but εx 6∈ E(G), hence I0(G) 6= E(G). 2

7 Embedding property

A locally compact group G is said to satisfy the embedding property if I(G) = E(G). If

G is a locally compact Abelian group such that any µ ∈ I(G) is root compact (i.e., the

root set R(µ) := ∪n∈N{νm : ν ∈ M1(G) with νn = ν, 1 6m6 n} is relatively compact

in M1(G) ) then by Theorem 3.5.12 in Heyer [6] the following statements are equivalent:

(i) G0 is locally arcwise connected;

(ii) I(G) = E(G).

We note that by Theorem 3.5.12 in Heyer [6] for any locally compact Abelian group G the

following statements are equivalent:

(i) any µ ∈ I(G) is root compact;

(ii) the set of all compact elements of G is compact, and the set of divisible elements of

G equals G0.

In view of the above results one might conjecture that a locally compact Abelian group

satisfies the embedding property if and only if any µ ∈ I(G) is root compact and G0 is

locally arcwise connected, but such a result is false, as it is shown in Heyer [6, 3.5.21].
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We can give a sufficient condition for a locally compact Abelian group in order to satisfy

the embedding property in the following way. One can extend the statement of Theorem

4.1 along Dixmier [5] (see Heyer [6, Theorem B]). From this source follows that the class of

second countable locally compact Abelian groups G with arcwise connected dual Ĝ consists

of Abelian aperiodic groups which can be represented as closed subgroups of a locally convex

vector space, that is as products

Rn × ZI

with a countable set I (of cardinality |I|), embeddable into

Rn+|I|.

(Note that a second countable locally compact Abelian group G is aperiodic if and only

if Ĝ = Rn × K with n> 0 and with a connected and compact K such that K̂ is

torsion–free, see Heyer [6, 3.5.15, 3.5.18].) From Siebert’s paper [14, 6, Satz 4] follows that

this closed subgroup of the vector space is strongly root compact. In fact, if |I| is infinite,

then there exists a closed, discrete, free subgroup N of ZI which is uniformly root compact

such that

G = N × Rn.

Now, apply Theorem 3.1.11 in Heyer [6], and one gets the uniform root compactness of G.

From this it follows by Theorem 3.5.8 (or Corollary 3.5.9) of Heyer [6] that for a second

countable locally compact Abelian group G with arcwise connected dual Ĝ we have

I(G) = E(G), and for each µ ∈ I(G) there exists a unique {e}–continuous convolution

semigroup (µt)t>0 with µ1 = µ.

The aim of this section is to give another proof of the above statement.

7.1 Lemma. (Existence and uniqueness of the logarithm)

(i) Let S be a locally arcwise connected topological space, and let (fn)n>1 be a sequence

of continuous mappings fn : S → C \ {0} satisfying f 2
n+1 = fn for all n> 1. Then

there exists a continuous function h : S → C with f1 = exph.

(ii) Let S be a connected topological space, a ∈ S and f : S → C \ {0} a continuous

mapping with f(a) = 1. Then there exists at most one continuous function h : S → C
satisfying f = exph and h(a) = 0.

Proof. (i). Since every connected component of S is open, we may assume without loss

of generality that S is connected. We fix a ∈ S and assume that fn(a) = 1 for all n> 1.

Let

H := {z ∈ C : Re z > 0}

and let Un denote the connected component of

{s ∈ S : fn(s) ∈ H}

which contains a. Then (Un)n>1 is an increasing sequence of connected open subsets of

S. For every continuous arc γ : [0, 1] → S with γ(0) = a and sufficiently large n we have
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γ([0, 1]) ⊂ Un or S =
⋃
n>1 Un. Indeed, there exists a continuous function ϕ : [0, 1] → C

with f1 ◦ γ = expϕ. But then, for large n and ψ := 21−nϕ the function fn ◦ γ = expψ

takes values in H.

Now let log denote the principle branch of the logarithm on H and define hn on Un
by

hn(s) := 2n−1 log fn(s)

for each n> 1. The function hn is continuous on Un and coincides with hn+1 on Un.

Thus there exists a function h : S → C satisfying ResUnh = hn for all n> 1. The

function h is the desired logarithm.

(ii). Let h and h′ be two continuous functions S → C satisfying

f = exph = exph′

and h(a) = h′(a) = 0. Then the continuous function h′ − h takes on only values in 2πiZ
and is therefore constant. Thus h′ = h, since h′(a)− h(a) = 0. 2

7.2 Corollary. Let S be a connected and locally arcwise connected topological space, and

let a ∈ S. Moreover, let f : S → C \ {0} be a continuous mapping with f(a) = 1. We

assume that for every n> 1 there exists a continuous mapping gn : S → C \ {0} such

that gnn = f . Then there exists exactly one continuous function h on S with h(a) = 0

satisfying

f = exph.

7.3 Theorem. Let G be a second countable locally compact Abelian group with arcwise

connected dual Ĝ. Then

I(G) = E(G).

Moreover, for each µ ∈ I(G) there exists a unique {e}–continuous convolution semigroup

(µt)t>0 with µ1 = µ.

Proof. Let us consider an arbitrary measure µ ∈ I(G). Since Ĝ is supposed to be

arcwise connected, Ĝ is connected, hence its dual G is aperiodic (see Hewitt and Ross [11,

(24.19)] ). The aperiodicity of G implies that the only compact subgroup of G is {e}. By

the representation (6.2) we conclude that µ̂(χ) 6= 0 for all χ ∈ Ĝ. From the hypotheses

of the theorem it is clear that Lemma 7.1 applies and that therefore a continuous branch of

log µ̂ with

log µ̂(1) = 0

exists, where 1 denotes the identity element of the dual group which is the constant function

1. Consequently we have(
µ̂ 1

n
(χ)
)n

= µ̂(χ) = exp {log µ̂(χ)} , χ ∈ Ĝ,

thus

µ̂ 1
n
(χ) = exp

{
1

n
log µ̂(χ)

}
, χ ∈ Ĝ.
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Hence the n–th roots µ 1
n

of µ are uniquely determined. For each r = p
q
∈ Q with r > 0

let

µ p
q

:= (µ 1
q
)p.

Then

µ̂ p
q
(χ) =

(
exp

{
1

q
log µ̂(χ)

})p
= exp

{
p

q
log µ̂(χ)

}
, χ ∈ Ĝ.

If p
q

= p′

q′
∈ Q then

µ̂ p′
q′

(χ) = exp

{
p′

q′
log µ̂(χ)

}
= exp

{
p

q
log µ̂(χ)

}
= µ̂ p

q
(χ), χ ∈ Ĝ,

hence the notation µr := µ p
q

is justified. Clearly

(µr ∗ µr′ )̂ (χ) = µ̂r(χ)µ̂r′(χ) = exp {(r + r′) log µ̂(χ)} = µ̂r+r′(χ), χ ∈ Ĝ

for all r, r′ ∈ Q with r, r′ > 0, hence µr ∗ µr′ = µr+r′ for all r, r′ ∈ Q with r, r′ > 0.

Defining µ0 := εe, we obtain a rational convolution semigroup (µr)r∈Q+ in M1(G).

Next we show that the mapping

r 7→ µr

from Q+ into M1(G) is τv– and τw–continuous. Note that for µn, ν ∈ M1(G) (n ∈ N)

with

lim
n→∞

µ̂n(χ) = ν̂(χ), χ ∈ Ĝ,

the continuity theorem implies that

τv– lim
n→∞

µn = ν.

Let (rn)n>1 be a sequence in Q+ with rn → r ∈ Q+. Then

µ̂rn(χ) = exp {rn log µ̂(χ)} → exp {r log µ̂(χ)} = µ̂r(χ)

uniformly on compact subsets of Ĝ. This implies

τv– lim
n→∞

µrn = µr, hence τw– lim
n→∞

µrn = µr.

Finally we prove that (µr)r∈Q+ extends to a unique {e}–continuous convolution semigroup

(µt)t∈R+ in M1(G), and hence µ = µ1 ∈ E(G). Let r → t ∈ R+ with r ∈ Q+. Then

µ̂r(χ) → exp {t log µ̂(χ)} , χ ∈ Ĝ.

The limiting function

χ 7→ exp {t log µ̂(χ)}

from Ĝ into C equals 1 at χ = 1 and is a continuous positive definite function. Hence

for every t ∈ R+ there exists a unique measure µt ∈ M1(G) such that

µ̂t(χ) = exp {t log µ̂(χ)} , χ ∈ Ĝ.
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Clearly

(µt ∗ µt′ )̂ (χ) = µ̂t(χ)µ̂t′(χ) = exp {(t+ t′) log µ̂(χ)} = µ̂t+t′(χ), χ ∈ Ĝ

for all t, t′ ∈ R+, hence µt ∗ µt′ = µt+t′ for all t, t′ ∈ R+. The uniqueness of a continuous

embedding semigroup (µt)t∈R+ follows from the τw–continuity of the mapping

r 7→ µr

from Q+ into M1(G). 2

7.4 Theorem. Let µ be an infinitely divisible probability measure on a locally compact

Abelian group G with arcwise connected dual group Ĝ. Then there exists a unique

continuous negative definite function ϕ : Ĝ→ C such that ϕ(1) = 0 and

µ̂(χ) = exp{−ϕ(χ)}, χ ∈ Ĝ.

In fact,

ϕ(χ) = − log µ̂(χ), χ ∈ Ĝ,

and there exists an element m ∈ GE , a quadratic form ψ ∈ q+(Ĝ) and a Lévy measure η

on G such that

ϕ(χ) = − logχ(m) + ψ(χ)−
∫
G

(
χ(x)− 1− ig(x, χ)

)
η(dx), χ ∈ Ĝ.

7.5 Remark. The converse of this statement is obvious.

Proof. By Schoenberg’s theorem (see Berg and Forst [3, p.49, Theorem 8.3] ) a family

(µt)t>0 of measures in M1(G) (µ> 0, ‖µ‖6 1) is an {e}–continuous convolution semi-

group if and only if there exists a continuous negative definite function ϕ : Ĝ → C such

that

µ̂t(χ) = exp{−tϕ(χ)}, χ ∈ Ĝ

for all t ∈ R+. For t = 1 this gives us

µ̂(χ) = exp{−ϕ(χ)}, χ ∈ Ĝ.

But µ̂(1) = 1 implies ϕ(1) = 0. Since ϕ is continuous, satisfies ϕ(1) = 0 as well as

µ̂(χ) = exp{−ϕ(χ)}, χ ∈ Ĝ,

we see that ϕ is the continuous branch of − log µ̂ constructed above. The last statement

follows from Theorem IV.10.1 in Parthasarathy [13]. 2

8 Gaussian and diffusion hemigroups

Let G be a locally compact group.
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8.1 Definition. A family (µs,t)06s6t in M1(G) is called a continuous convolution

hemigroup (briefly hemigroup) in M1(G) if µs,r ∗ µr,t = µs,t for all 0 6 s6 r 6 t,

µt,t = εe for all t> 0, and if the mapping (s, t) 7→ µs,t from S into M1(G) is

continuous.

If (νt)t>0 is an {e}–continuous convolution semigroup in M1(G) then µs,t := νt−s,

0 6 s < t and µt,t := εe, t> 0 define a continuous convolution hemigroup.

Now we recall the definition of Gaussian hemigroups (see Heyer and Pap [10]).

8.2 Definition. A continuous convolution hemigroup (µs,t)06s6t in M1(G) is called a

Gaussian hemigroup if

lim
Z∈Z[0,T ]

n∑
k=1

µτk−1,τk(G \N) = 0

for all Borel neighbourhoods N of e and for all T > 0.

Corollary 2 of Theorem 2 in Siebert [15] implies that a convolution hemigroup (µs,t)06s6t

on a second countable locally compact group is a Gaussian hemigroup if and only if each

associated left additive process has continuous paths with probability one.

If G is a locally compact group Abelian group with countable basis of its topology

then a family (µs,t)06s6t in M1(G) is a Gaussian hemigroup if and only if there exist a

continuous function t 7→ mt from R+ into G with m0 = e and a function t 7→ ψt
from R+ into q+(Ĝ) with ψ0 = 0 such that t 7→ ψt(χ) is continuous for all χ ∈ Ĝ,

ψt − ψs ∈ q+(Ĝ) for all 0 6 s6 t, and such that

µ̂s,t(χ) = χ(m−1
s mt) exp

{
−1

2

(
ψt(χ)− ψs(χ)

)}
.

(See Bingham [1], Heyer [6, Theorem 5.6.19] and Heyer and Pap [9]). Consequently, if

(µs,t)06s6t is a Gaussian hemigroup in M1(G) then µs,t ∈ GP(G), i.e., µs,t is a Gaussian

measure in the sense of Parthasarathy for all 0 6 s6 t. Moreover, if (µs,t)06s6t is a

continuous convolution hemigroup in M1(G) such that µs,t ∈ GP(G) for all 0 6 s6 t

then (µs,t)06s6t is a Gaussian hemigroup (see Heyer and Pap [10, 3.12]).

8.3 Examples. If G = Rd then a family (µs,t)06s6t in M1(Rd) is a Gaussian

hemigroup if and only if there exist a continuous function a : R+ → Rd with a(0) = 0 and

a continuous function B : R+ → Rd×d with B(0) = 0 such that B(t)−B(s) is symmetric

positive semidefinite for all 0 6 s6 t, and such that

(8.4) µ̂s,t(χy) = exp

{
i
〈
y, a(t)− a(s)

〉
− 1

2

〈
y,
(
B(t)−B(s)

)
y
〉}

for all y ∈ Rd ∼= (Rd)∧ (see the notations in Example 5.1).

If G = Td then a family (µs,t)06s6t in M1(Td) is a Gaussian hemigroup if and only

if there exist a continuous function α : R+ → [0, 1)d with α(0) = 0 and a continuous
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function B : R+ → Rd×d with B(0) = 0 such that B(t) − B(s) is symmetric positive

semidefinite for all 0 6 s6 t, and such that

(8.5) µ̂s,t(χm) = exp

{
2πi
〈
m, α(t)− α(s)

〉
− 1

2

〈
m,
(
B(t)−B(s)

)
m
〉}

for all m ∈ Zd ∼= (Td)∧ (see the notations in Example 5.2).

If G = T∞ then a family (µs,t)06s6t in M1(T∞) is a Gaussian hemigroup if and only

if there exist a coordinatewise continuous function α : R+ → [0, 1)∞ with α(0) = 0 and

an entrywise continuous function B : R+ → R∞×∞ with B(0) = 0 such that B(t)−B(s)

is symmetric positive semidefinite for all 0 6 s6 t, and such that

µ̂s,t(χm) = exp

{
2πi

d∑
k=1

(
α(t)− α(s)

)
mk −

1

2

∞∑
j,k=1

(
bj,k(t)− bj,k(s)

)
mjmk

}

for all m ∈ Z(∞) ∼= (T∞)∧ (see the notations in Example 5.3).

If G = Σc then a family (µs,t)06s6t in M1(Σc) is a Gaussian hemigroup if and only

if there exist a continuous function α : R+ → [0, 1) with α(0) = 0, a coordinatewise

continuous function j : R+ → Z∞ with j(0) = 0, and an increasing continuous function

b : R+ → R with b(0) = 0 such that

µ̂s,t(χγ) = exp

{
i
(
α(t)− α(s) + j1(t)− j1(s) + · · ·+ c[1,k−1)

(
jk−1(t)− jk−1(s)

))
γ

− 1

2

(
b(t)− b(s)

)
γ2

}
for all γ ∈ (Σc)

∧ (see the notations in Example 5.4). By continuity of j we obtain j(t) = 0

for all t> 0, hence

(8.6) µ̂s,t(χγ) = exp

{
i
(
α(t)− α(s)

)
γ − 1

2

(
b(t)− b(s)

)
γ2

}
for all γ ∈ (Σc)

∧. Consequently, µs,t ∈ G(Σc), i.e., µs,t is a Gaussian measure for all

0 6 s6 t (not only in the wider sense of Parthasarathy). It is still an open question if this

holds for all locally compact Abelian groups.

It is not easy to check whether a given continuous convolution hemigroup is Gaussian.

We would like to construct Gaussian hemigroups from simpler hemigroups by deterministic

change of time. We recall the definition of diffusion hemigroups (see Heyer and Pap [10]).

8.7 Definition. Let G be a locally compact group. A continuous convolution hemigroup

(µs,t)06s6t in M1(G) is called a diffusion hemigroup if

lim
t−s→0

06s<t6T

1

t− s
µs,t(G \N) = 0

for all Borel neighbourhoods N of e and for all T > 0.
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A diffusion hemigroup is always a Gaussian hemigroup, but there exist Gaussian hemi-

groups on R which are not diffusion hemigroups (see the example in Remark 4.5 of Bingham

and Heyer [4]).

8.8 Definition. A function λ : R+ → R+ is called a deterministic change of time if

it is strictly increasing and λ(R+) = R+. The class of deterministic changes of time will

be denoted by Λ.

8.9 Remark. If (µs,t)06s6t is a convolution hemigroup in M1(G) such that there exists

λ ∈ Λ with

(8.10) lim
t−s→0

06s<t6T

1

λ(t)− λ(s)
µs,t(G \N) = 0

for all Borel neighbourhoods N of e and for all T > 0 then (µs,t)06s6t is a Gaussian

hemigroup. Moreover, we have

lim
t−s→0

06s<t6T

1

t− s
µλ−1(s),λ−1(t)(G \N) = 0

for all Borel neighbourhoods N of e and for all T > 0, hence (µλ−1(s),λ−1(t))06s6t is

a diffusion hemigroup. In other words, if (8.10) holds with an appropriate λ ∈ Λ then

(µs,t)06s6t is a deterministically time–changed diffusion hemigroup. If G = Rd then

any Gaussian hemigroup is a deterministically time–changed diffusion hemigroup (see Heyer

and Pap [10, 3.10]). It is still an open question whether this holds for an arbitrary locally

compact Abelian group.

8.11 Remark. Let G be a locally compact group with countable basis of its topology.

If (νt)t>0 is a Gaussian semigroup in M1(G) then µs,t := νt−s, 0 6 s6 t is a diffusion

hemigroup. Moreover, if (νt)t>0 is a convolution semigroup in M1(G) such that µs,t :=

νt−s, 0 6 s6 t is a Gaussian hemigroup then (νt)t>0 is a Gaussian semigroup. (See Heyer

and Pap [10, 3.11].)

What hemigroups can be obtained from Gaussian semigroups by a deterministic change

of time? First consider a symmetric Gaussian hemigroup (µs,t)06s6t in M1(R). By (8.4),

there exists an increasing continuous function b : R+ → R+ with b(0) = 0 such that

µ̂s,t(χy) = exp

{
−1

2

(
(b(t)− b(s)

)
y2

}
, for all y ∈ R ∼= (R)∧

(see the notations in Example 5.1). Let (νt)t>0 be the Gaussian semigroup in M1(R)

given by

ν̂t(χy) = exp

{
−1

2
(t− s)y2

}
, for all y ∈ R ∼= (R)∧.

Then for all 0 6 s6 t and y ∈ R ∼= (R)∧ we have µ̂s,t(χy) = ν̂b(t)−b(s)(χy), hence

µs,t = νb(t)−b(s).

In a similar way, if (µs,t)06s6t is a symmetric Gaussian hemigroup in M1(T) then by

(8.5), there exists an increasing continuous function b : R+ → R+ with b(0) = 0 such that

µ̂s,t(χm) = exp

{
−1

2

(
(b(t)− b(s)

)
m2

}
, for all m ∈ Z ∼= (T)∧
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(see the notations in Example 5.2), and µs,t = νb(t)−b(s) for all 0 6 s6 t, where (νt)t>0

denotes the Gaussian semigroup in M1(T) given by

ν̂t(χm) = exp

{
−1

2
(t− s)m2

}
, for all m ∈ Z ∼= (T)∧.

Moreover, if (µs,t)06s6t is a symmetric Gaussian hemigroup in M1(Σc) then by (8.6),

there exists an increasing continuous function b : R+ → R+ with b(0) = 0 such that

µ̂s,t(χγ) = exp

{
−1

2

(
(b(t)− b(s)

)
γ2

}
, for all γ ∈ (Σc)

∧

(see the notations in Example 5.2), and µs,t = νb(t)−b(s) for all 0 6 s6 t, where (νt)t>0

denotes the Gaussian semigroup in M1(Σc) given by

ν̂t(χγ) = exp

{
−1

2
(t− s)γ2

}
, for all γ ∈ (Σc)

∧.

If b is strictly increasing with limt→∞ b(t) = ∞ then b ∈ Λ, and in each of the above

cases G = R, G = T and G = Σc we have µb−1(s),b−1(t) = νt−s for all 0 6 s6 t, i.e.,

the Gaussian hemigroup (µs,t)06s6t can be transformed into a Gaussian semigroup by a

deterministic change of time.

In connection with the above results we mention a structural theorem that one does not

find explicitly in the literature.

8.12 Theorem. Let G be a locally compact Abelian group. Then the following statements

are equivalent:

(i) G is connected and one–dimensional;

(ii) G is topologically isomorphic to R, T or to Σc for some c = (c1, c2, . . .) ∈ N∞

with ck > 2 for all k ∈ N.

For the proof we need two propositions.

8.13 Proposition. Let H be a subgroup of Q, H 6= {0}. Then H is isomorphic to

Z or to Σc for some c = (c1, c2, . . .) ∈ N∞ with ck > 2 for all k ∈ N.

Proof. Let P denote the set of all primes and let α : P → Z ∪ {−∞} be the mapping

defined by

α(p) := inf{vp(x) : x ∈ H},
where vp signifies the multiplicity of p. Then (by algebraic arguments)

(8.14) H = {x ∈ Q : vp(x) > α(p) for all p ∈ P}.

We set

P+ := {p ∈ P : α(p) > 0},
P0 := {p ∈ P : α(p) = 0},
P− := {p ∈ P : −∞ < α(p) < 0},

P−∞ := {p ∈ P : α(p) = −∞}.
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Since for x ∈ H, x 6= 0 and almost all p ∈ P we have vp(x) = 0, P+ is finite. Let

` :=
∏
p∈P+

pα(p)

and

M :=
{
p−α(p) : p ∈ P−

}
∪
{
pk : p ∈ P−∞, k ∈ N

}
.

If M is finite, then P−∞ = ∅, and P− is finite. In this case we put

`′ :=
∏
p∈P−

pα(p).

By (8.14) we obtain that H = ` · `′ · Z ∼= Z. Otherwise, let c = (c1, c2, . . .) ∈ N∞ be

generated by counting the elements of M . Then, again by (8.14)

H =

{
` · m

c1 · . . . · cn
: m ∈ Z, n ∈ N

}
∼= Σc

and the proof is complete. 2

8.15 Proposition. Every torsion–free Abelian group D of rank 1 is isomorphic to some

subgroup of Q.

Proof. Let D̃ denote the minimal divisible extension of D (Hewitt and Ross [11, A.15]).

By Hewitt and Ross [11, A.16], D̃ is also torsion-free of rank 1. As a torsion-free divisible

group D̃ is isomorphic to QI for some index set I, and from 1 = rank D̃ = |I| the

assertion follows. 2

Proof of Theorem 8.12. (ii) =⇒ (i). It is clear for R and T . Since Σc is a subgroup of

Q and 6= {0}, hence torsion-free of rank 1, its dual Σ̂c is a compact connected (Abelian)

group of dimension 1 (Hewitt and Ross [11, 25.25 and 24.28]).

(i) =⇒ (ii). The group G is topologically isomorphic to Rd ×K, where K denotes

a connected compact (Abelian) group. Since

1 = dimG = dim(Rd ×K) = dim Rd + dimK = d+ dimK

(see Hofmann and Morris [12, 8.25 and 8.26]) we have either d = 1 and K 0–dimensional,

hence connected and totally disconnected, hence G ∼= R, or d = 0 and K connected

(compact, Abelian), one–dimensional. In the latter case G ∼= K and K̂ is a torsion-free

discrete group of rank 1 (Hewitt and Ross [11, 24.25 and 24.28]), hence by Proposition 8.15

isomorphic to a subgroup 6= {0} of Q. If K̂ is isomorphic to Z, then

G ∼= K ∼= K∧∧ ∼= T

(where Pontryagin’s duality theorem has been applied). Otherwise, Proposition 8.13 yields

K ∼= K∧∧ ∼= Σ̂c
∼= Σc

(Hewitt and Ross [11, 25.3]) for an appropriate c = (c1, c2, . . .) ∈ N∞ with ck > 2 for all

k ∈ N. 2
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We have the conjecture that a locally compact Abelian group G is one–dimensional (i.e.

G is isomorphic to R, T or to Σc for some c = (c1, c2, . . .) ∈ N∞ with ck > 2 for all

k ∈ N) if and only if all Gaussian hemigroups (µs,t)06s6t in M1(G) can be represented in

the form µs,t = νb(t)−b(s) for all 0 6 s6 t, where (νt)t>0 denotes some Gaussian semigroup

in M1(G) and b : R+ → R+ is an increasing continuous function with b(0) = 0.

8.16 Remark. Let G be a locally compact group. Let (µs,t)06s6t be a Gaussian

hemigroup in M1(G). What extra property would garantee that (µs,t)06s6t is a diffusion

hemigroup? If G is a locally compact Abelian group and (µs,t)06s6t is Lipschitz continuous

in the sense of finite variation with respect to the identity mapping then (µs,t)06s6t is a

diffusion hemigroup (see Bingham and Heyer [4, Theorem 4.1]), but this condition is too

strong even in the case G = R (see the example in Remark 4.5 of Bingham and Heyer

[4]). Our conjecture is that each Gaussian hemigroup of finite variation can be obtained

as a time–changed diffusion hemigroup. (For information concerning hemigroups of finite

variation see also Heyer and Pap [7], [8].)
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