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Résumé. The Contact Process has been studied on complex networks exhibiting different
kinds of quenched disorder. Numerical evidence is found for Griffiths phases and other
rare region effects, in Erdős Rényi networks, leading rather generically to anomalously
slow (algebraic, logarithmic,...) relaxation. More surprisingly, it turns out that Griffiths
phases can also emerge in the absence of quenched disorder, as a consequence of sole
topological heterogeneity in networks with finite topological dimension. In case of scale-
free networks, exhibiting infinite topological dimension, slow dynamics can be observed
on tree-like structures and a superimposed weight pattern. In the infinite size limit the
correlated subspaces of vertices seem to cause a smeared phase transition. These results
have a broad spectrum of implications for propagation phenomena and other dynamical
process on networks and are relevant for the analysis of both models and empirical data.

1 Introduction

Nonequilibrium systems have been a central research topic of statistical mechanics [1–3]. As in
equilibrium they exhibit various phase transitions, critical phenomena and universality classes. Since
they cannot be treated by thermodynamical formalism universality provides a guidance’s in the zoo
of models exhibiting diverging correlation length and scaling behavior [4]. Power-law scaling be-
havior has been reported in many real and model systems for spontaneous occurrence the theory of
self-organizing-criticality was proposed [5]. This, however requires the competition of a slow accu-
mulation and fast dissipation mechanism. Diverging correlation length on the other hand is generated
naturally in nonequilibrium systems by the currents or fields acting on them. Furthermore, quenched
disorder may also cause extended regions in the parameter space with non-universal power-law dy-
namics [44]. A fundamental dynamical system model is the Contact Process (CP) [6, 7], in which sites
can be either occupied (infected) or empty (susceptible). By changing the infection rate of the neigh-
bors λ/k, where k is the degree of the vertex, a continuous phase transition occurs at the λc critical
point from inactive to active steady state. The inactive state, characterized by the order parameter, the
density of infection (ρ) is zero. This is also called absorbing state, because no spontaneous activation
of sites is allowed.

In the new century the interest is shifting from models, defined on Euclidean, regular lattices to
processes defined on general networks [8, 9]. Since the introduction of a simple model describing
the emergence of scaling in random networks [10] the study of complex networks is flourishing.

a. e-mail: odor@mfa.kfki.hu

EPJ Web of Conferences
DOI: 10.1051/
C© Owned by the authors, published by EDP Sciences, 2013

,
epjconf 201/

04005 (2013)44
34404005

  
 This  is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Article available at http://www.epj-conferences.org or http://dx.doi.org/10.1051/epjconf/20134404005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/11856685?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.epj-conferences.org
http://dx.doi.org/10.1051/epjconf/20134404005


Multidisciplinary applications involve, for example, the WWW, various biological, sociological and
technological networks. These are, mostly scale-free (SF) networks, exhibiting P(k) ∼ k−γ degree
distribution of the nodes (for recent reviews see [8],[11]). Other families of complex network models
are those composed of a d-dimensional regular lattice and additional long edges [12]. These arise in
the context of conductive properties of linear polymers with cross-links that connect remote monomers
[13], in public traffic systems [14], in the case of nanowires [15], in social [16] and phone networks
[17] or to describe forest fires [18] among other examples. In these models a pair of nodes separated
by the distance l of the base lattice are re-connected by a long edge with the asymptotic probability
for large l :

p(l) = βl−s . (1)

In the special case s = 0, edges exist with a length-independent probability, as in small world net-
works, therefore these models are called Generalized Small World networks (GSW). The s = 2 case is
important from network optimization point of view [14] for example. If s ≥ 2, they are characterized
by a finite topological dimension d, i.e. N(l) ∼ ld, where N(l) is the number of nodes within the graph
distance l from a given node. Note that if the links vary quickly with respect the time scale of the dy-
namical process defined on these networks they realize Lévy flights [20, 21]. Usually these annealed
networks exhibit different behavior than the quenched ones.

Although many network models exhibit infinite topological dimension (d), simple mean-field ap-
proximations cannot capture several important features [23–28]. Very recently it has been conjectured
[29–31] that generic slow (power-law, or logarithmic) dynamics is observable only in networks with
finite d. This claim is relevant in the light of recent developments of dynamical processes on complex
networks such as the simple model of “working memory” [32], brain dynamics [33], social networks
with heterogeneous communities [34], or to understand the slow relaxation in glassy systems [35].
Slow dynamics has been shown to originate from the bursty behavior of the agents connected by
small world networks resulting in memory effects [42]. On the other hand it can also be related to
arbitrarily large (l < N), correlated rare-regions (RR), which possess long lifetime in the inactive
phase, above the pure critical point λ0

c < λ < λc. This can be understood by non-perturbative methods
[36–41].

More recently the possibility of power-law dynamics of CP has been investigated on different BA
networks with γ = 3 [28, 45]. Extensive simulations showed ρ(t) ∝ 1/(t ln(t)) density decay and
ρ(λ, t → ∞) ∝ |λ − 1| steady state behavior with logarithmic corrections in agreement with the HMF
approximations. On loop-less BA trees the epidemic propagation slows down and a nontrivial critical
density decay emerges ρ(t, λc) ∝ t−0.5. Additionally, when k dependent weighting was applied, which
suppress hubs or make the network disassortatative GP-like dynamics was observed in the simula-
tions. However, systematic finite scaling study revealed that these power-laws saturate in the N → ∞
thermodynamic limit, suggesting smeared phase transitions known from Euclidean, regular systems
if the correlated subspaces can undergo phase transitions themselves, when they are effectively above
the lower critical dimension of the problem : dRR > d−c [44]. In this case, the dynamics of the locally
ordered RR-s completely freezes, and they develop a truly static order parameter. Clearly in infinite
dimensional networks such RR-s can be embedded as a percolation analysis confirmed this [45].

2 Optimal fluctuation theory

The basic idea of the optimal fluctuation theory is that the long-time decay of the order parameter
(ρ(t)) is dominated by the regions of size l, which are rare in general : P(l) ∝ exp(−cl), but can exhibit
exponentially long lifetimes τ(l) ∝ exp(bl). In particular for the the density of infected sites of CP,
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Figure 1: (a) Topological view of a marginal GSW network [46] with parameters β = 1 and N = 256
nodes. (b) Local slopes of the density decay in such networks with β = 0.2 and N = 105 nodes.

RR-s provide the leading order contribution in the inactive phase :

ρ(t) ∼
∫

lP(l) exp(−t/τ)dl , (2)

which in the saddle point approximation results in ρ(t) ∼ t−c/b decay, with a non-universal, λ de-
pendent exponent [29]. This is the so called Griffiths Phase (GP) [43, 44], bordered by a stretched
exponential decay law at the critical point λ0

c of the clean system, and by the dirty critical point
λc > λ

0
c , where the evolution becomes logarithmically slow

ρ(t) ∼ ln(t/t0)−α̃ , (3)

thanks to limλ→λc b = 0. The α̃ and other activated scaling exponents are described by the strong
disorder universality fixed point in the renormalization sense. Extensive numerical simulations in [31]
provided estimates for them in case of GSW-s.

3 Griffiths phases in Generalized Small World network models

GSW-s in one dimension have the intriguing feature that in the marginal case (s = 2) intrinsic
properties exhibit power-law behavior and the corresponding exponents vary continuously with the
prefactor β. First it was shown that the topological dimension of such networks (see Fig. 1a) depends
on β [46–48]. It has been claimed in a recent letter [29] and in [30, 31] that if d(β) is finite, GP-s and
similar rare-region effects can also appear. Density decay simulations, started from fully active state
(ρ(0) = 1), have been presented in [31]. The effective decay exponents, defined as the local slope of
ρ(t) :

αeff(t) = −
ln[ρ(t)/ρ(t′)]

ln(t/t′)
, (4)

saturate to λ dependent constant values in the long time limit (Fig. 1b), although logarithmic correc-
tions arise.
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Figure 2: (a) Picture of an ER network exhibiting RR-s. (b) Density decay of the CP in ER below the
percolation threshold. Dashed lines : power-law fits.

Interestingly such GP-s have also been found in 3-regular random networks, constructed as shown
[49]. For larger values of s the long-ranged links are irrelevant and d(β) = 1, while for s < 2 the
topological dimension diverges and mean-field behavior emerges.

4 Griffiths phases in Erdős Rényi network models

The CP on Erdős Rényi (ER) graphs [51] with a quenched disordered infection rates (QCP) has
been studied in [29–31]. A fraction q of the nodes (type-II) propagate infection with a reduced value
λr, with 0 ≤ r < 1, while the remaining fraction 1 − q (type-I nodes) take their "clean" value λ. Pair
mean-field approximations lead to the following critical threshold :

λc(q) =
〈k〉
〈k〉 − 1

1
1 − q

. (5)

Type-I nodes experience a percolation transition, where the type I-to-type I average degree is 1, i.e.
at qperc = 1 − 〈k〉−1. For q > qperc activity cannot be sustained : type-I clusters are finite and type-II
ones do not propagate activity. Optimal fluctuation theory and simulations show that in this case the
absorbing phase of QCP splits and a GP with power-law dynamics appears for λ > λ0

c .
In fact in fragmented ER networks, where d is zero the intrinsic disorder of λ-s is not necessary, but

the topological heterogeneity itself is enough for the occurrence of GP-s as shown in Fig. 2b. Density
decay simulations from fully active state of the CP on ER graphs with 〈k〉 = 0.15 up to sizes N = 106

confirm this. For high values of λ one can see plateaus on the ρ(t) curves, similarly as reported in [27].
These are the consequence of the metastable local active domains.

5 Slow dynamics in Barabási-Albert network models

After showing the rare-region effects and the possibility of GP-s on GSW and ER networks let us
turn towards the results on the most common type of scale-free (SF) networks. CP have been simulated
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and analyzed by mean-field methods on BA networks, in particular for loop-less and weighted cases as
described in [45]. BA construction is a simple and fast way to generate SF networks, in contrast with
other standard models, e.g [52]. The BA growth starts with a fully connected graph of small (N0 = 10)
nodes. Following that at each generation step s, a new vertex with m edges is added to the network and
connected to an existing vertex s′ of degree ks′ with probability Πs→s′ = ks′/

∑
s′′<s ks′′ . This process is

iterated until reaching the desired network size N. The resulting network has a SF degree distribution
P(k) ≃ k−3 and for m = 1 we obtain a BA tree (BAT) topology, while for the looped case m = 3
is used. Binary (non-weighted) BA networks can be transformed into weighted ones by assigning to
every edge connecting vertexes i and j a symmetric weight ωi j. In [45] two different network topology
dependent weight assignment strategy was introduced in order to slow down and localize epidemics.

(i) Weighted BA tree I (WBAT-I) : Multiplicative weights, suppressing the infection capability of
highly connected nodes

ωi j = ω0(kik j)
−ν, (6)

where ω0 is an arbitrary scale and ν is a characteristic exponent with ν ≥ 0. This can model internal
limitations of hubs, like the sub-linear Heap’s law [54].

(ii) Weighted BA tree II (WBAT-II) : Disassortatative weighting scheme according to the age of
nodes in the network construction

ωi j =
|i − j|x

N
, (7)

where the node numbers i and j correspond to the time step when they were connected the network.
Since the degree of nodes decreases as ki ∝ (N/i)1/2 during this process, this selection with x > 0
favors connection between unlike nodes and suppresses interactions between similar ones.

The presence of these weights affects the dynamics of the CP. Thus, the rate at which a healthy
vertex i becomes ill on contact with an infected (active) vertex j is proportional to λωi j, therefore the
epidemic can in principle become trapped in isolated connected subsets. Density decay simulations
[45], started from fully active state show GP like regions both in the WBAT-I and WBAT-II cases. For
WBAT-II the scaling appears for t > 104 MCs in the region λ > 9.5, even in case of networks with
x = 3 as shown on Fig. 3a. The effective decay exponents, using t/t′ = 8, saturate to λ dependent
constant values in the long time limit (see inset in Fig. 3a). However, by increasing N at a given λ the
decay curves saturate asymptotically, suggesting a smeared phase transition as shown on Fig. 3b.

6 Discussion and Conclusions

I have overviewed the effects of quenched heterogeneity on the dynamics of the Contact Process
in different network models. In finite topological dimensional cases slow dynamics (power-law, log-
arithmic, stretched exponential ... etc) and Griffiths Phases can be observed, which is very important
for understanding spreading-like phenomena of real world networks. In these cases topological dis-
order of the network can result is GPs. Similarly, in models where the roles of space and time are
exchanged “temporal Griffiths phases” have been found in various systems near their phase transition
points [58, 59].

On the other hand on graphs of infinite topological dimensions like in weighted SF trees, the net-
work heterogeneity can again cause slow dynamics of the CP. However, in the thermodynamic limit
the power-laws saturate and the locally active, high dimensional subspaces cause smeared phase tran-
sitions [45]. Very recently slow dynamics has also been reported in case of the Susceptible-Infected-
Susceptible model defined on the (SF) flower model [27], weigthed BA trees [28] and on ER graphs
with exponential weights [60]. Spectral analysis of the quenched mean-field theory [26, 28] and sim-
ulations confirm the presence of epideimc localization effects in such models. Further studies of dif-
ferent models and networks are currently under way.
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Figure 3: (a) Density decay as a function of time in CP defined on WBAT-II trees, with exponent
x = 3. Network size : N = 4×105. Different curves correspond to : λ = 9.4, 9.5, 9.6, 9.65, 9.7, 9.8, 9.9
(from bottom to top). Inset : the corresponding local slopes (b) Density decay as a function of time in
CP on a weighted WBAT-II trees with exponent x = 2 at λ = 6.8. Different curves correspond to sizes
N = 4 × 103, 4 × 104, 2 × 105, 106, 107 (from bottom to top). Inset : the corresponding local slopes.
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