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Abstract. Using the Bethe ansatz we obtain in a determinant form the exact
solution of the master equation for the conditional probabilities of the totally
asymmetric exclusion process with particle-dependent hopping rates on Z. From
this we derive a determinant expression for the time-integrated current for a
step-function initial state.
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1. Introduction

In the usual one-dimensional totally asymmetric simple exclusion process
(TASEP) particles hop randomly in continuous time on the integer lattice Z.
A hopping event occurs independently for each particle after an exponentially
distributed random time with parameter 1 to its right neighboring site, provided
this site is empty; otherwise the attempted move is rejected [1, 2]. This is the
exclusion interaction between biased random walkers, which physically models
a short-range hard-core repulsion of identical driven diffusive particles. Here we
consider the case of distinct particles where each particle i has its own intrinsic
hopping rate vi.

This model has been studied earlier by other authors. To our knowledge
it was first introduced (with a random choice of rates vi, drawn from some
given distribution) by Benjamini et al. [3] who proved the existence of a prod-
uct invariant distribution (as seen from a tagged particle) above some critical
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density ρ∗ of particles. They also proved for this case the hydrodynamic limit
of an associated zero-range process (ZRP) which is obtained from the TASEP
by identifying particles with the sites of a new 1-D lattice and the interparticle
distance (number of empty sites between particles i, i + 1) as occupation num-
ber at site i of that lattice. Subsequently it was shown for periodic boundary
conditions that below the critical density ρ∗ a macroscopic traffic jam, trailing
the slowest particle, develops [4,5]. The macroscopic dynamical signature of the
transition under Eulerian scaling is a discontinuity in the coarse-grained density
at the front of a rarefaction wave that develops out of an initial step function
profile [6]. The stationary distribution of an open system where particles are
injected and extracted was obtained numerically [7]. Somewhat surprisingly, the
theory of boundary-induced phase transitions developed by Kolomeisky et al. [8]
accounts for the stationary phase diagram of the system as a function of the
effective boundary densities.

The jamming transition occurring in this model is a classical analog of Bose –
Einstein condensation and one of the motivations to study this system in more
detail. An analogous transition occurs also if the rates are identical for each
particle, but dependent on the lattice distance to the next particle, see [9] for a
recent review (in terms of the ZRP) and [10–15] for the current developments.
A second motivation comes from the recent interest in particle systems with
several conservation laws [16]. By choosing the vi in some way out of p distinct
values the model indeed becomes a particle system with p conservation laws
where, unlike in a similar class of models introduced by Karimipour [17–19],
no overtaking of particles is permitted. Exact results for such multi-component
systems are scarce. Our contribution aims at providing some tools for future
exact and rigorous analysis. We first solve the master equation for an N -particle
system defined on Z with the Bethe ansatz generalizing the approach taken by
one of us earlier [20]. This yields a determinant formula for the conditional
probabilities which we then use to derive an exact expression for the distribu-
tion of the time-integrated current for the step initial configuration envisaged
in [6]. Our result generalizes that obtained recently for the TASEP with con-
stant rates [21, 22].

2. Solution of the master equation

We consider initial states such that there is no particle beyond a lattice point
xmax < ∞ at time t = 0. Since the process is totally asymmetric and defined
on Z the N rightmost particles are not influenced by particles to their left.
Without loss of generality we may therefore consider N -particle initial states
where the particles are labelled from 1 through N from left to right. Therefore
at any finite time t ≥ 0 a configuration of the system can be represented by an
increasing sequence of integer numbers (x1, x2, · · · , xN ), xi denoting the position
of the ith particle with hopping rate vi. We assume 0 < vi ≤ vmax where
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vmax < ∞ sets the microscopic time scale. We remark that allowing for vmax

= ∞ is equivalent to considering particles covering more than 1 (neighboring)
site [23–28]. Such a system can be mapped to an exclusion process with standard
particles (of lattice size 1) by an appropriate coordinate shift. The case vi = 0
is trivial in so far as this amounts to cutting the lattice Z into finite segments in
which after some time all particles pile up at the right boundary of the segment
and the dynamics freeze.

In case of equal hopping rates the exchange of particles is irrelevant as they
are indistinguishable. However, in this generalized version one has to define
the corresponding exchange rules separately since the particles have their own
identity. In our model particles cannot exchange so one can interpret it as a
one-lane traffic model with cars having their own preferred speed.

The master equation for the probability of finding particles at sites xi is the
following (the t-dependence is dropped for simplicity of notation):

d

dt
P (x1, x2, · · · , xN ) (2.1)

= v1 P(x1 − 1, x2, · · ·xN ) + v2(1 − δx2−1,x1
) P(x1, x2 − 1, . . . , xN ) + · · ·

+ vN (1 − δxN−1,xN−1
) P(x1, x2 − 1, . . . , xN − 1)

− (v1(1 − δx2−1,x1
) + v2(1 − δx3−1,x2

) + · · · + vN ) P(x1, x2, . . . , xN ),

where P(x1, x2, · · · , xN ) is the probability of the configuration (x1, x2, · · · , xN ).
In the spirit of [20] we extend the range of definition of P(x1, x2, · · · , xN ) from
the physical domain xi < xi+1 to ZN . By requiring the boundary condition

vk+1 P (x1, · · · , xk−1, xk, xk, xk+2, · · · , xN ) (2.2)

= vk P(x1, · · · , xk−1, xk, xk + 1, xk+2, · · · , xN )

to be valid for all t > 0 the master equation (2.1) reduces to the simple form

d

dt
P (x1, x2, · · · , xN ) (2.3)

=

N
∑

i=1

vi P(x1, . . . , xi−1, xi − 1, xi+1, · · · , xN ) −

N
∑

i=1

vi P(x1, x2, . . . , xN )

≡ − Ĥ P(x1, x2, · · · , xN ).

The second equality defines the linear operator Ĥ generating the time evolution
of the probability distribution. For given initial configuration (y1, y2, · · · , yN)
this quantity is the conditional probability P(x1, · · · , xN | y1, · · · , yN ; t).

It is obvious that (2.3) can be solved by Fourier transformation with a “mo-
mentum” variable ki associated with each particle coordinate xi. However, a
straightforward Fourier ansatz does not satisfy the boundary condition (2.2).
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This problem can be resolved by noting that there is some freedom by choosing
a linear combination of Fourier transforms over all permutations of the dummy
momentum variables ki with complex coefficients (wave amplitudes) that de-
pend on the ki. It is the essence of the Bethe ansatz to take this approach
and to implement it by factorizing the wave amplitudes for the N -particle prob-
lem into amplitudes for the two-particle problem. It is done such that for each
permutation of the momentum variables the N -particle amplitude picks up the
corresponding two-particle amplitude as extra factor.

In the present case this strategy also turns out to be successful, but requires
some modification due to the occurrence of the different hopping rates vi. In
order to obtain the eigenvalues and eigenfunctions of the “Hamiltonian” Ĥ with
the boundary condition (2.2) we write

d

dt
Pk(x1, · · · , xN ) = −Ek Pk(x1, · · · , xN ). (2.4)

where k represents the conjugate momenta k1, . . . , kN . Modifying the Bethe
ansatz to account for the vi leads to eigenfunctions of the form [18]

Pk1,··· ,kN
(x1, · · · , xN ) =

N
∏

i=1

vi
xi

∑

π

Sπ exp

(

i

N
∑

j=1

xjkπ(j)

)

, (2.5)

where the sum is taken over all permutations π of (1, 2, 3, · · · , N). The above
eigenfunctions correspond to the eigenvalues

Ek1,··· ,kN
=

N
∑

j=1

(

vj − exp(−ikj)
)

. (2.6)

With the inverse Fourier transformation

P(x1, · · · , xN ) =

N
∏

i=1

∫

dki

2π
exp(−Ekt) Pk(x1, · · · , xN ) (2.7)

it is trivial to show that this ansatz satisfies (2.3) with arbitrary wave amplitudes
Sπ(k) .

On the other hand from the boundary condition (2.2) it follows that

STkπ = −
1− vk exp(ikπ(k+1))

1 − vk exp(ikπ(k))
Sπ, (2.8)

where the operator Tk changes the kth and k + 1st element of π and S(1,2,...,N)

is an arbitrary function defined by the initial condition to be satisfied at t = 0,
see next section.
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In order to obtain the N -particle amplitude Sπ for a given permutation π
one has to decompose this permutation into a sequence of nearest neighbour
exchanges and take the product of factors appearing in (2.8). Although this
decomposition is not unique the resulting Sπ is well-defined if certain relations,
known as Yang –Baxter equations, are satisfied. Instead of checking this explic-
itly one can easily show that the r.h.s. of (2.5) with an Sπ satisfying (2.8) can
be written in the following determinant form

Pk1,··· ,kN
(x1, · · · , xN ) (2.9)

= S(1,...,N)

N
∏

i=1

vi
xi det

[ n−1
∏

j=1

(1 − vje
ikm)−1

m−1
∏

j=1

(1 − vje
ikm)eikmxn

]

m,n

.

This verifies uniqueness by construction and therefore also implies the Yang –
Baxter equations.

3. Conditional probability

In order to obtain the conditional probability for the initial configuration
(y1, · · · , yN ) we require

P(x; t = 0) = δx,y. (3.1)

In the following we show that the choice

S(1,...,N) = exp

(

− i

N
∑

j=1

yjkj

) N
∏

i=1

v−yi

i (3.2)

with an appropriate (see later) definition of the contours of integration in the
complex ki planes (2.7) indeed reproduces the required initial condition.

In order to write the conditional probability in a compact form we define
the functions

Fk,l(x, t) =
1

2πi

∮

et/zzx−1
l−1
∏

i=1

(1 − viz)−1
k−1
∏

i=1

(1 − viz) dz. (3.3)

Here, as throughout this paper, the empty product is defined as unity. The
integral has to be taken along a circle of radius ε around the origin of the
complex plane. Notice that if all the rates are less than a given number vmax

(as we assume here) then the integral can be taken just as well along the circle
with radius 1/vmax − 0. Now we exploit the determinant expression (2.9) to
obtain

Theorem 3.1 (Conditional probability). Let P(x | y; t) be the conditional

probability for the TASEP with N particles on the infinite one-dimensional
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lattice with right hopping rates v1, v2, · · · , vN (from left to right), starting at

sites y1, y2, · · · , yN at time t = 0. The conditional probability of finding these

particles on sites x1, x2, · · · , xN at time t can be written as the determinant

P(x | y; t) =
N
∏

i=1

(

e−tvivi
xi−yi

)

(3.4)

×

∣

∣

∣

∣

∣

∣

∣

∣

∣

F1,1(x1 − y1, t) F1,2(x2 − y1, t) · · · F1,N (xN − y1, t)
F2,1(x1 − y2, t) F2,2(x2 − y2, t) · · · F2,N (xN − y2, t)

...
...

...

FN,1(x1 − yN , t) FN,2(x2 − yN , t) · · · FN,N(xN − yN , t)

∣

∣

∣

∣

∣

∣

∣

∣

∣

Remark 3.1. The expression (3.4) is a generalization of the result found in [20]
for the case of equal hopping rates vi = 1. The functions Fk,l(x, t) then reduce
to exp(t)Fl−k(x, t) of that work.

Proof. One has to show that P (x | y; t) satisfies (2.2), (2.3) and (3.1). Using
the specific form of Pk given by (2.9) and (3.2) the inverse Fourier transforma-
tion (2.7) leads to

N
∏

i=1

vi
xi−yi

∫

dki

2π
exp{−Ekt} (3.5)

× det

[ n−1
∏

j=1

(1 − vj exp{ikm})−1
m−1
∏

j=1

(1 − vj exp{ikm}) exp{ikmxn}

]

m,n

.

This expression satisfies (2.2) and (2.3) by construction, independently of the
contour of integration. Notice that the different rows of the determinant con-
tain different k variables which enables us to perform the integration over ki

separately on each element of row i. After changing the variable k to z =
exp(ik) (3.5) indeed reduces to the r.h.s. of (3.4). By adopting the argument
of [20] one can easily show that the specific choice of the contour of integration
in (3.3) indeed yields (3.1). 2

In the following F (x) has to be understood as F (x, t).

Corollary 3.1. Consider the probability

P̃(z | y; t) = Prob(x1 ≥ z1, x2 ≥ z2, · · · , xN ≥ zN | y; t)
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that all N particles, starting on y, have reached “at least” the configuration z
where z1 < z2 < · · · < zN . This quantity can be written as a determinant

P̃(z | y; t) =

N
∏

i=1

(

e−tvivi
zi−yi

)

(3.6)

×

∣

∣

∣

∣

∣

∣

∣

∣

∣

F1,2(z1 − y1) F1,3(z2 − y1) · · · F1,N+1(zN − y1)
F2,2(z1 − y2) F2,3(z2 − y2) · · · F2,N+1(zN − y2)

...
...

...

FN,2(z1 − yN ) FN,3(z2 − yN ) · · · FN,N+1(zN − yN )

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Proof. One has to write P̃(z | y; t) in the form

P̃(z | y; t) =
∞
∑

xN=zN

xN−1
∑

xN−1=zN−1

· · ·

x4−1
∑

x3=z3

x3−1
∑

x2=z2

x2−1
∑

x1=z1

P(x,y; t) (3.7)

then use (3.4). Applying the identities

x2
∑

x=x1

vl
xFk,l(x) = vl

x1Fk,l+1(x1) − vl
x2+1Fk,l+1(x2 + 1) (3.8)

x2
∑

x=x1

vk−1
xFk,l(x) = vk−1

x1Fk−1,l(x1) − vk−1
x2+1Fk−1,l(x2 + 1) (3.9)

and standard determinant-manipulations then leads to (3.6). The identities
(3.8,3.9) follow by straightforward computation from the definitions (3.3). 2

4. Current distribution

We consider now the step function initial state where the lattice is fully
occupied up to the lattice site x = 0 and empty for x > 0. The time evolution
of the mean density (under Eulerian scaling) has been obtained in [6] for a
large class of random distributions of rates vi. An interesting problem are the
fluctuations of the current which were first obtained in [29] for the homogeneous
system with vi = 1. As a step towards characterizing the long-time properties
of these fluctuations (which we do not consider) we derive here for finite times
an exact expression for the probability that the time-integrated current across
a given bond (i.e. the number of particles that have crossed that bond up to
time t) equals some number N . This quantity is related to the distribution of
the distance travelled by the first particle with the initial condition where N
particles sit on consecutive sites. More precisely,
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Theorem 4.1 (Current distribution). Choosing as initial sites the set yN =
(1 − N, · · · , 0) the probability that all particles have crossed the bond x − 1, x
up to time t can be written as

QN (x, t) =
N
∏

i=1

(

e−tvivi
x+N−1

)

(4.1)

×

∣

∣

∣

∣

∣

∣

∣

∣

∣

F1,2(x + N − 1) F1,3(x + N) · · · F1,N+1(x + 2N − 2)
F2,2(x + N − 2) F2,3(x + N − 1) · · · F2,N+1(x + 2N − 3)

...
...

...

FN,2(x) FN,3(x + 1) · · · FN,N+1(x + N − 1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Remark 4.1. In the case of the initial condition y∞ when the lattice is fully
occupied on the left and empty on the right of the origin QN (x, t) is the proba-
bility that at least N particles have crossed the bond x − 1, x up to time t. On
the other hand this is equal to the probability that the Nth particle (from the
right) reached at least the site x up to time t.

Proof. Notice that QN (x, t) = P̃(x, x + 1, · · · , x + N − 1 | yN; t). By using (3.6)
one arrives at (4.1). 2

Remark 4.2. The determinant appearing in (4.1) has several equivalent forms.
One can derive these by using the identities

Fk,l(x) = Fk,l+1(x) − vlFk,l+1(x + 1) (4.2)

Fk,l(x) = Fk−1,l(x) − vk−1Fk−1,l(x + 1), (4.3)

which are special cases of (3.8,3.9) corresponding to x1 = x2. An example is
the following

QN (x, t) =

N
∏

i=1

(

e−tvivi
x+N−1

)

(4.4)

×

∣

∣

∣

∣

∣

∣

∣

∣

∣

F1,2(x + N − 1) F1,3(x + N) · · · F1,N+1(x + 2N − 2)
F1,2(x + N − 2) F1,3(x + N − 1) · · · F1,N+1(x + 2N − 3)

...
...

...
F1,2(x) F1,3(x + 1) · · · F1,N+1(x + N − 1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

.
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Another equivalent expression is

QN (x, t) (4.5)

=

N
∏

i=1

(

e−tvivi
x+N−1

)

×

∣

∣

∣

∣

∣

∣

∣

∣

∣

F1,N+1(x + N − 1) F1,N+1(x + N) · · · F1,N+1(x + 2N − 2)
F1,N+1(x + N − 2) F1,N+1(x + N − 1) · · · F1,N+1(x + 2N − 3)

...
...

...
F1,N+1(x) F1,N+1(x + 1) · · · F1,N+1(x + N − 1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

5. Final remarks

The study of current fluctuations provides insight into universal properties of
far-from-equilibrium systems and therefore has attracted a considerable amount
of attention in recent years [14, 21, 22, 29–37]. There is, however, to our knowl-
edge no work on current fluctuations in particle systems with more than one
conservation law. The result (4.5) is a first step in this direction. The form
of (4.5) indicates that the distribution QN (x, t) is independent of the order of
the hopping rates of particles (e.g. v1 = a, v2 = b, v3 = c would lead to the
same QN (x, t) as v1 = c, v2 = a, v3 = b) since these hopping rates enter sym-
metrically in F1,N+1(x, t). This at first sight perhaps counterintuitive property
becomes obvious in the growth presentation of the exclusion process [6] and
also in the last passage percolation picture [29, 33] where the hopping rates vi

represent line defects with a different distribution of random energies. For the
statistical weight of paths crossing these defects it is clearly irrelevant in which
order they occur. In the interpretation of the TASEP with particle-dependent
rates as an N -component lattice gas this means that the nonergodicity of the
process implied in the absence of passing is irrelevant for the fluctuations of the
total current.

A next step would be to study the long time behaviour of the current fluctu-
ations. This was calculated recently for the homogeneous ASEP [21, 22, 29, 33,
35, 37] and the polynuclear growth model (PNG) [32,34, 36]. It was found that
the current fluctuations in the long time limit are characterized by universal
scaling forms, which are given explicitly in terms of Tracy– Widom distribu-
tions known from random matrix theory. It would be of interest to see whether
this universality is preserved in the case of particle-wise disorder.

Recently Priezzhev [38] has extended the Bethe ansatz solution for the usual
TASEP on Z to periodic boundary conditions. It would be interesting to gener-
alize this analysis to the present case. It would also be interesting to investigate
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whether determinant solutions can be obtained for integrable models with pass-
ing [17–19,39].
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Note added

After acceptance of the manuscript two recent papers [40, 41] on the long
time asymptotics of current distributions of closely related systems were brought
to our attention.
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[2] G.M. Schütz (2001) Exactly solvable models for many-body systems far from
equilibrium. In: Phase Transitions and Critical Phenomena 19, C. Domb and
J. Lebowitz (eds.), Academic, London.

[3] I. Benjamini, P.A. Ferrari and C. Landim (1996) Asymmetric conservative
processes with random rates. Stoch. Process. Appl. 61 (2), 181–204.

[4] M.R. Evans (1996) Bose – Einstein condensation in disordered exclusion models
and relation to traffic flow. Europhys. Lett. 36 (1), 13–18.

[5] J. Krug and P.A. Ferrari (1996) Phase transitions in driven diffusive systems
with random rates. J. Phys. A: Math. Gen. 29 (18), L465–L471.

[6] T. Seppälainen and J. Krug (1999) Hydrodynamics and platoon formation for
a totally asymmetric exclusion model with particlewise disorder, J. Stat. Phys.

95 (3-4), 525–567.

[7] M. Bengrine, A. Benyoussef, H. Ez-Zahraouy, J. Krug, M. Loulidi and

F. Mhirech (1999) A simulation study of an asymmetric exclusion model with
open boundaries and random rates. J. Phys. A: Math. Gen. 32 (13), 2527–2540.
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[40] J. Baik, G.B. Arous and S. Péché (2005) Phase Transition of the Largest
Eigenvalue for Nonnull Complex Sample Covariance Matrices. Ann. Prob. 33

(5), 1643–1697.
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