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Abstract. Every ordered set can be considered as an algebra in a
natural way. We investigate the variety generated by order algebras.
We prove, among other things, that this variety is not finitely based
and, although locally finite, it is not contained in any finitely generated
variety; we describe the bottom of the lattice of its subvarieties.

0. Introduction and Preliminaries

By a conservative groupoid, we mean an algebra (A, ·) in which x · y ∈
{x, y} for all x, y ∈ A. For such an algebra, we have a reflexive binary
relation R on A defined by R(x, y) ↔ x · y = x. The structure (A,R)
is definitionally equivalent with (A, ·). We call (A, ·) the order algebra of
(A,R) if (A,R) is an ordered set—i.e., if R is reflexive, transitive and anti-
symmetric. In case R is a quasi-order on A (or an equivalence relation
on A), i.e., if R is reflexive and transitive (or respectively, reflexive and
transitive and symmetric), we call (A, ·) the quasi-order algebra of (A,R)
(or respectively, the equivalence algebra of (A,R)).
In [3] we began an investigation of the variety P generated by order al-

gebras. In the present paper we investigate the variety in more detail. We
will prove that the variety is not finitely based, answering a question raised
in [3]. We will find a lower bound and an asymptotically close upper bound
for both the free spectrum and the G-spectrum of P; it will follow that P is
not contained in any finitely generated variety. We will describe the bottom
of the lattice of subvarieties of P.
The reader is referred to [9] for the basics of universal algebra and equa-

tional theory. We will work mostly with groupoids, i.e., algebras with a
single operation, for which we use multiplicative notation. In order to
avoid too many parentheses, we adopt the following convention: a1a2 · · · an

stands for (((a1a2)a3) · · · )an, and a · bc stands for a(bc). Also, for example,
ab · cd · ef = ((ab)(cd))(ef).

This material is based upon work supported by the Grant Agency of the Czech Re-
public, grant no. 201/99/0263, by the South African National Research Foundation, and
by the National Science Foundation under grants no. DMS 9596043, DMS 9941276, and
DMS 9971352.
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This paper is also related to our previous papers [5], [7] and [6], in which
similar questions have been answered for the variety generated by tour-
naments and for the variety generated by equivalence algebras. Algebraic
treatment of oriented graphs (or reflexive binary relations) was started in
the paper [10]. Also, [11] is an earlier paper on order algebras.
For any n ≥ 1, let Pn denote the variety generated by all n-element order

algebras, and let Pn denote the variety determined by the at most n-variable
equations of order algebras. So, Pn ⊆ Pn+1 ⊆ P ⊆ Pn+1 ⊆ Pn for all n. It
is easy to see that the free algebra on n generators in P is the free algebra
on n generators in Pn, as well as in Pn. In [3] we give a description of the
free algebra on three generators in P (it has 21 elements), and we find an
independent base for the equations of the variety P3. The base consists of
the following five equations:

(E1) xx = x,
(E2) xy · x = yx,
(E3) xy · y = xy,
(E4) x(xy · z) = x · yz,
(E5) (xy · z)y = xz · y.

We will make heavy use of these equations. The following are their most
frequently used consequences:

(E6) x · xy = xy,
(E7) xy · yz = xy · z,
(E8) (x · yz)z = x · yz,
(E9) (x · yz)y = xz · y,
(E10) xy · zy = x · zy,
(E11) x · yx = yx.

They can be proved as follows.

(E6): x · xy =(E3) x · xyy =(E4) x · yy =(E1) xy

(E7): xy · yz =(E4) xy · (xyy)z =(E3) xy · xyz =(E6) xy · z

(E8): x · yz =(E3) (x · yz) · yz =(E3) (x · yz) · yzz =(E7) (x · yz)z

(E9): (x · yz)y =(E5) (xy · yz)y =(E7) xyzy =(E5) xz · y

(E10): xy · zy =(E8) (xy · zy)y =(E5) (x · zy)y =(E8) x · zy

(E11): x · yx =(E2) (yx · x) · yx =(E3) yx · yx =(E1) yx .

A more comprehensive collection of three-variable consequences of (E1)
— (E5) with proofs is given in [3].
It is also possible to describe the normal form, with respect to the equa-

tional theory based on (E1) through (E5), of a general term in three vari-
ables. The following algorithm is based on the result of [3]. Let t be a
term in precisely three variables. The normal form of t should be a lin-
ear term (i.e., a term containing no variable more than once), in the same
variables. There are twenty-one candidates for this normal form, as there
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are twenty-one linear terms in three specified variables. Let us arrange the
variables of an arbitrary term u into a sequence of pairwise different vari-
ables x1, . . . , xk in the following standard way. Let xk be the last variable
in u, let xk−1 be the last variable different from xk in u, let xk−2 be the last
variable different from both xk and xk−1 in u, and so on. Now both sides
of an arbitrary equation that is a consequence of (E1)–(E5) must have the
same sets of variables, with the same arrangement in the above standard
sense. Suppose that the given term t has its three variables arranged into
the sequence x, y, z. Since the normal form must have its variables arranged
in the same way, the search is narrowed to just two candidates: the terms
(xy)z and x(yz). Now evaluate the term t in the order algebra with three
elements a, b, c and a single covering a < b, under the interpretation x 7→ a,
y 7→ c, z 7→ b. The obtained value is always either a or b. If it is a, the
normal form of t is x(yz); if it is b, the normal form is (xy)z.

For any algebra A = (A, ·) ∈ P3 and a, b in A, we define a ≤ b if and
only if ab = a. This is a partial order on A (as follows easily from equations
(E1), (E2) and (E8).

Lemma 0.1. The following hold in P3:

(1) x ≤ y implies xz ≤ yz;
(2) always xy ≤ y; if xy ≤ x, then xy = yx is the meet of x and y;
(3) x · yz ≤ xy · z;
(4) x1x2 · · ·xi−1yxi+1 · · ·xny = x1x2 · · ·xi−1xi+1 · · ·xny for 1 ≤ i ≤ n;
(5) xy1 · · · yn ≤ y1 · · · yn for any n ≥ 1;
(6) x(xy1 · · · yn) = x(y1 · · · yn) for any n ≥ 1;
(7) t = tx for any term t with the rightmost variable x.

Proof. (1) xz · yz = x · yz = x(xy · z) = x · xz = xz.
(2) If z ≤ x and z ≤ y, then z · xy = z(zx · y) = z · zy = zz = z.
(3) (x · yz)(xy · z) =(4) x(xy · z) · (xy · z) =(3) x(xy · z) =(4) x · yz.
(4) Apply xyzy = xzy several times to insert y’s between the x’s from

right to the left and then remove them in reverse order.
(5) By induction on n, using (2).
(6) By induction on n, using (E4).
(7) We need to prove t ≤ x. This can be done by induction on t, using

pq ≤ q ≤ x. ¤

For an order algebra P and a triple a, b, c of elements of P, we denote by
P[ab = c] the algebra that differs from P only in setting ab = c. We will
also need the following from [3]:

Lemma 0.2. Let P be an ordered set and a, b, c be a triple of pairwise
different elements of P such that a is incomparable with b. The algebra
P[ab = c] belongs to P3 if and only if the following conditions are satisfied:

(1) c < b and c £ a,
(2) for any x ∈ P , x > c implies x ≥ b,
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(3) for any x ∈ P , x < a implies x < c,
(4) for any x ∈ P , x > a if and only if x > b.

1. The Variety P is not Finitely Based

For every n ≥ 3 let Q′
n be the poset with n+7 elements b, c0, . . . , cn, d, e,

f, g, h (put a = c1) and order relation described by the following coverings:

ci+2 < ci for i = 0, . . . , n− 2,

ci+3 < ci for i = 0, . . . , n− 3,

a < h, c0 < b < h, cn < d, e < d, e < f , g < f , g < h.

Denote byQn the algebraQ′
n[ab = c0]. (For example,Q9 is shown in Fig. 1.)
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Let us fix n+ 6 variables B,C1, . . . , Cn, D,E, F,G,H (put A = C1). For
any term X define terms ti = ti(X) (i = 2, . . . , n, E, F,G,H,B) as follows:

t2 = C2(AB ·X) ·AB,

ti = Citi−1 · Ci−2 (i = 3, . . . , n,)

tE = Cn(E · tnD),

tF = tE · CnF,

tG = E ·GtF ,

tH = tG · EH,

tB = G(AB · tH) ·B.

Lemma 1.1. Qn does not satisfy the equation tB(A) = tB(B).

Proof. Consider the interpretation B → b, Ci → ci, D → d, E → e, F → f ,
G→ g, H → h. If n is odd, then tB(A) evaluates to b, while tB(B) evaluates
to c0. If n is even, then tB(A) evaluates to c0, while tB(B) evaluates to b. ¤

Lemma 1.2. The equation tB(A) = tB(B) is satisfied in any quasi-ordered
set.

Proof. Suppose that in a given quasi-ordered set, there is an interpretation
of the variables A,B,C1, . . . , Cn, D,E, F,G,H under which the terms tB(A)
and tB(B) evaluate to different elements. Denote by a, b, c1, . . . , cn, d, e, f,
g, h the interpreted elements (we have c1 = a) and for each i denote by
ti(a) and ti(b) the values of ti(A) and ti(B) under that interpretation. Since
tB(a) 6= tB(b), we have ti(a) 6= ti(b) for all i.
If ab = a, then t2(a) = t2(b) = c2a, a contradiction. So, we have a £ b.

If ba = b, then t2(a) = t2(b) = c2b, a contradiction. Hence b £ a. We see
that a||b (by which we mean a £ b and b £ a). We have t2(a) = c2a · b
and t2(b) = c2b. Since these are different elements, we get c2a = a 6= c2 and
c2b = c2 6= b. Put c0 = ab = b. We have c1||c0, c2||c1 (since c1 ≤ c2 would
imply c1 ≤ c0 by transitivity), c2 < c0 and {t2(a), t2(b)} = {c0, c2}.
Let us prove by induction on i = 2, . . . , n that ci−1||ci−2, ci||ci−1, ci < ci−2

and {ti(a), ti(b)} = {ci−2, ci}. This has been verified for i = 2. Now
suppose that the assertion has been proved for some i < n. If ci+1ci =
ci+1, then ci+1 ≤ ci ≤ ci−2 imply ci+1ci−2 = ci+1 = ci+1ci by transi-
tivity, so that ti+1(a) = ti+1(b), a contradiction. Hence ci+1 £ ci. We
get {ti+1(a), ti+1(b)} = {ci+1ci−2 · ci−1, ci−1}. This forces ci+1ci−2 = ci+1

and ci+1ci−1 = ci+1 6= ci−1, so that ci+1 < ci−1 and {ti+1(a), ti+1(b)} =
{ci+1, ci−1}. We also have ci+1||ci, since ci ≤ ci+1 would imply ci ≤ ci−1 by
transitivity.
In particular, cn < cn−2 and {tn(a), tn(b)} = {cn−2, cn}. Now we are

going to prove that e||cn and {tE(a), tE(b)} = {e, cn}. Consider two cases.
Case 1: cn−2 ≤ d. Then tE(a) 6= tE(b) means cn · ecn−2 6= cn · ecn, from

which we get e £ cn, e < cn−2, cn £ e and {cn · ecn−2, cn · ecn} = {e, cn}.
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Case 2: cn−2 £ d. Then tE(a) 6= tE(b) means cn(ed) 6= cn(e · cnd), from
which we get cn < d and ed 6= ecn. Thus cn · ed 6= cn · ecn. We cannot have
e ≤ cn (this would imply e ≤ d and then ed = ecn), and we cannot have
both ed = d and ecn = cn (this would imply cn · ed = cn · ecn). The only
remaining possibility is that e < d and e £ cn. Now tE(a) 6= tE(b) means
cne 6= cn, so that cne = e 6= cn.
We have obtained e||cn and {tE(a), tE(b)} = {e, cn} in both cases. We

have {tF (a), tF (b)} = {e · cnf, cn · cnf}. If cnf = cn, this would be a one-
element set {cn}. Hence cn £ f , e < f and {tF (a), tF (b)} = {e, f}.
Now from tG(a) 6= tG(b) we easily obtain that g||e, g < f and {tG(a),

tG(b)} = {e, g}. Then from tH(a) 6= tH(b) we obtain e £ h, g < h and
{tH(a), tH(b)} = {g, h}.
Finally, tB(a) 6= tB(b) says (g · bg)b 6= (g · bh)b. If b ≤ g, then also b ≤ h

and both sides are equal to b. Hence bg = g. Consequently, (g · bg)b = gb.
But also (g · bh)b = gb: this can be easily checked by considering two cases,
corresponding to either bh = b or bh = h. So we get tB(a) = tB(b), a
contradiction. ¤

Lemma 1.3. The algebra Qn, (n ≥ 3), is generated by n + 6 elements.
Every subalgebra of Qn generated by at most n + 1 elements is either an
order algebra or is isomorphic to a subalgebra of the direct product of two
order algebras. Consequently, Qn satisfies all the equations of P in at most
n+ 1 variables.

Proof. A subalgebra generated by at most n+1 elements cannot contain all
the elements a, b, c2, . . . , cn, d. Put cn+1 = d. By removing either a or b from
Qn, we obtain an order subalgebra. By removing an element ci with i ≥ 2,
we obtain a subalgebra with two congruences intersecting to the identity,
one relating b with c0 and the second relating the elements c0, . . . , ci−1, such
that both factors are order algebras. ¤

Theorem 1.4. The variety P is not finitely based. Moreover, there is no
finitely based variety containing P and contained in the variety generated by
quasi-ordered sets.

Proof. It is a combination of lemmas 1.1, 1.2 and 1.3. ¤

Theorem 1.5. The equation xyzx = x(zy)zx is satisfied in all order alge-
bras and also in all equivalence algebras, but not in the three-element quasi-
order algebra with one greatest and two least elements. Consequently, the
join of P with the variety generated by equivalence algebras is a proper sub-
variety of the variety generated by quasi-order algebras.

Proof. It is easy to check all the statements. ¤

2. The Variety is not Finitely Generated

Theorem 2.1. Let F be the order algebra of a finite crown or fence, with at
least three maximal elements. If F lies in the variety generated by a family
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U of algebras in P, then F is a homomorphic image of a subalgebra of an
algebra from U.

Proof. We can assume that we have a surjective homomorphism ϕ : S→ F,
where S is a subalgebra of P1 × · · · × Pn, n finite, and all Pi are finite
subalgebras of algebras in U. Choose and hold fixed five distinct elements
b0, b1, b2, a0, a1 ∈ F with b0 > a0 < b1 > a1 < b2. For f, g ∈ S, denote by
[|f = g|] the equalizer set {i : f(i) = g(i)}.
Claim 1: Suppose we have an element β1 which is minimal in ϕ−1(b1),

β2 minimal in ϕ−1(b2), and elements α0 ∈ ϕ−1(a0), δ ∈ ϕ−1(a1), and γ ∈
ϕ−1(b1). Then where τ = (δβ1)β2, we have τ ∈ ϕ−1(a1) and [|α0 = β1|] ∪
[|δ = γ|] ⊆ [|τ = β2|].
Indeed, suppose α0(i) = β1(i) for some i. Note that the element (δα0)β2

belongs to ϕ−1(b2) and is ≤ β2, and so (δα0)β2 = β2. Then τ(i) =
(δ(i)α0(i))β2(i) = β2(i). Next, suppose that δ(i) = γ(i). Note that by min-
imality of β2, we have (γβ1)β2 = β2. Thus τ(i) = (γ(i)β1(i))β2(i) = β2(i).
Claim 2: For any two distinct elements x, y of F, there are polynomial

functions p and q of F such that {p(x), p(y)} = {a0, b1} and {q(x), q(y)} =
{a1, b1}. The proof is easy and is left to the reader.
Claim 3: If f, g ∈ S and ϕ(f) 6= ϕ(g), then there exist a minimal element

β1 ∈ ϕ−1(b1) and elements α0 ∈ ϕ−1(a0), γ ∈ ϕ−1(b1), δ ∈ ϕ−1(a1) such
that [|f = g|] ⊆ [|α0 = β1|] and [|f = g|] ⊆ [|δ = γ|].
For the proof, use polynomials p and q, as in Claim 2, to move {ϕ(f), ϕ(g)}

to {a0, b1} and {a1, b1}. Without loss of generality, we can assume that
p(ϕ(f)) = a0 and p(ϕ(g)) = b1. There is a polynomial p

′ of S such that
ϕ(p′(x)) = p(ϕ(x)) for all x ∈ S. Let β1 be minimal in ϕ−1(b1). Then
p′(g)β1 = β1 and we can take α0 to be p′(f)β1. Then clearly [|f = g|] ⊆
[|α0 = β1|]. A similar construction gives δ and γ.
Claim 4: If f, g, h, k are elements of S such that ϕ(f) 6= ϕ(g) and ϕ(h) 6=

ϕ(k), then there exist elements u, v ∈ S such that ϕ(u) 6= ϕ(v) and [|f =
g|] ∪ [|h = k|] ⊆ [|u = v|].
Claim 4 is obtained easily by applying Claims 1 and 3. By repeatedly

applying Claim 4, we obtain two elements u, v ∈ S such that ϕ(u) 6= ϕ(v)
and [|f = g|] ⊆ [|u = v|] for all f, g ∈ S with ϕ(f) 6= ϕ(g). Since u 6= v,
there exists an i /∈ [|u = v|], and hence f(i) 6= g(i) for all f, g ∈ S with
ϕ(f) 6= ϕ(g). For this i, it is easy to see that F is a homomorphic image of
a subalgebra of Pi. ¤

Corollary 2.2. The variety P is not finitely generated.

Theorem 2.3. The variety P has uncountably many subvarieties. The lat-
tice of subvarieties of P contains a subset, order isomorphic to the lattice of
all subsets of a countably infinite set.

Proof. For any subset S of {3, 4, . . . } denote by VS the variety generated by
the crowns C such that the number of maximal elements of C belongs to S.
It follows from 2.1 that these varieties are pairwise distinct. (Observe that
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order algebras corresponding to crowns are simple and an order algebra of
a crown of cardinality k is not a homomorphic image of a subalgebra of one
of cardinality n for n 6= k.) ¤

3. The Bottom of the Lattice of Subvarieties

Denote by

PS the variety of semilattices,
PA the variety of antichains (groupoids satisfying xy = y),
P∨ the variety generated by the order algebra O∨ with elements a, b, c

and coverings a < b and a < c,
P∧ the variety generated by the order algebra O∧ with elements a, b, c

and coverings a < c and b < c,
P2+1 the variety generated by the order algebra O2+1 with elements a, b, c

and a single covering a < b.

Theorem 3.1. The variety P∧ is the intersection of P3 with the variety
of semigroups. It is just the variety of idempotent semigroups satisfying
xyx = yx. It has three proper nontrivial subvarieties: PS, PA, and their
join, P∨. The variety P∨ is the variety of idempotent semigroups satisfying
xyz = yxz; also, it is the intersection of P3 with the variety of medial
groupoids (groupoids satisfying xy · zu = xz · yu).

Proof. It is easy to check that the intersection V of P3 with the variety
of semigroups is the variety of idempotent semigroups satisfying xyx =
yx. The lattice of varieties of idempotent semigroups has been described
in [1]. From the description it follows that the lattice of subvarieties of V

has precisely five elements: the atoms are the varieties PS and PA, and the
coatom is the variety of idempotent semigroups satisfying xyz = yxz. One
can easily check that O∧ belongs to V, but does not satisfy xyz = yxz. It
follows that V = P∧. Now it is easy to see that the largest proper subvariety
of P∧ is P∨. Medial groupoids belonging to P3 are associative: xy · z =
xy · zz = xz · yz = x · yz. ¤

It has been proved in [2] (for a more complete proof see [4]) that every
semigroup from P∧ can be embedded into a subdirectly irreducible semi-
group in P∧. Hence the variety P∧ is residually large. It will follow easily
from 3.3 and 3.7 that the variety P2+1 is also residually large.

Theorem 3.2. An algebra A ∈ P3 belongs to P∧ if and only if it does not
contain a three-element subalgebra isomorphic to O2+1.

Proof. For the direct implication, it is sufficient to check that O2+1 is not
a semigroup. Now let A be a non-associative algebra in P3. By 0.1(3),
A contains three elements a, b, c such that a · bc < ab · c. Put a′ = a · bc,
b′ = ab · c and c′ = ac · b. One can easily verify that a′c′ = b′c′ = c′, c′a′ = a′

and c′b′ = b′. Consequently, c′ is different from both a′ and b′ and {a′, b′, c′}
is a subalgebra isomorphic to O2+1. ¤
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Theorem 3.3. The following are equivalent for an algebra A ∈ P3:

(1) A satisfies x · yz = y · xz;
(2) A does not contain a three-element subalgebra isomorphic to O∧;
(3) for any a ∈ A, the set {x ∈ A : x ≤ a} is a subsemilattice.

Proof. (1) implies (3): If x ≤ z and y ≤ z, then xy · x = xy · xz = y · xz =
x · yz = xy, so that xy ≤ x and then xy = yx is the meet of x and y
according to 0.1(2).
Clearly, (3) implies (2). It remains to prove that (2) implies (1). Let

A ∈ P3 contain elements a, b, c such that a · bc 6= b · ac. It is easy to see that
{a · bc, b · ac, c} is a subalgebra isomorphic to O∧. ¤

Let us denote by Γ0 the equational theory based on the five equations (E1)
through (E5), and by Γ1 the equational theory based on Γ0 and x·yz = y ·xz.
We are going to prove in 3.7 that Γ1 is the equational theory of O2+1. We
need some lemmas.

Lemma 3.4. The following equations belong to Γ1:

(1) x(yzu)(yuz) = x(yu)z;
(2) xz(yzu) = x(yz)u;
(3) x(yu)zu = x(yz)u;
(4) (ay)(by)x = (ayx)(byx);
(5) yu(zx) ≤ yzux;
(6) (yux)(zvx) ≤ yzuvx;
(7) (yk · · · y1x)(yk+1z1 · · · zmx) ≤ yk+1yk · · · y1x for any {z1, · · · , zm} ⊆

{y1, · · · , yk}.

Proof. We will try to indicate in subscripts for each step in the following
derivations, which equation or which lemma has been used. Here (∗) stands
for x · yz = y · xz. We have

(1) x(yzu)(yuz) =(E5) x(yzu)(yzuz) =(E7) x(yzu)z =(∗) (yz)(xu)z

=(E5) y(xu)z =(∗) x(yu)z

(2) xz(yzu) =(E4) xz(xz(yz)u) =(E10) xz(x(yz)u) =(∗) x(yz)(xzu)

=(E5) x(xzu)(yz)(xzu) =(E4) x(zu)(yz)(xzu)

=(∗) y(x(zu)z)(xzu) =(E9) y(xuz)(xzu) =(3.4.1) y(xz)u

=(∗) x(yz)u

(3) x(yu)zu =(3.4.2) xu(yuz)u =(E5) x(yuz)u =(∗) yu(xz)u

=(E5) y(xz)u =(∗) x(yz)u

(4) (ay)(by)x =(E10) a(by)x =(3.4.2) ay(byx) =(E10) (ayx)(byx)

(5) yu(zx) =(E5) y(zx)u(zx) =(E10) y(zx)ux(zx) ≤(3.3.3) y(zx)ux

=(3.4.3) y(zu)x ≤(0.1.1,0.1.3) yzux

(6) (yux)(zvx) =(E10) yu(zvx) ≤(0.1.3) yu(zv)x ≤(3.4.5,0.1.1) yzuvx
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It remains to prove (7). By 0.1.4, the left side is

(x · · ·xyk · · · y1x)(yk+1z1 · · · zmx · · ·x)

with both blocks of x’s sufficiently long. By repeated applications of (6)
we get that this term is ≤ yk+1z1 · · · zmyk · · · y1x. Since every zi is identical
with some one of yk, · · · , y1, by 0.1.4 we can successively remove every zi,
obtaining yk+1yk · · · y1x. ¤

By an x-normal constituent (where x is a variable) we mean a term
y1y2 · · · ykx where k ≥ 0 and y1, . . . , yk, x are pairwise different variables. By
an x-normal term we will mean a product of x-normal constituents contain-
ing the same sets of variables. (Notice that the multiplication of x-normal
constituents, for a fixed x, is both commutative and associative with respect
to Γ1.)

Lemma 3.5. With respect to the equational theory based on Γ0 and 3.4(2),
every term t is equivalent to an x-normal term, where x is the last variable
in t.

Proof. Since (xz)(yz·uz) =(3.4(2)) (x·yz)(uz) =(E11) (xz·yz)(uz), it is easy to
see that if t1, . . . , tn are any terms such that the last variables in t1, . . . , tn are
all equal, then the product t1 · · · tn is associative (does not depend on the ar-
rangement of parentheses). It is not difficult to see that if a = (a1x) · · · (anx)
is a product of x-normal constituents and b = (b1y) · · · (bmy) is a product
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of y-normal constituents, then ab is a product of y-normal constituents: ab
is equivalent to (a1xy) · · · (anxy)(b1y) · · · (bmy). (To prove this, we use in-
duction on n. If n = 1, use (E14). If n ≥ 2, then (a′ · anx)b =(3.4(2))

a′x · (anx · b) = a′(anx · b) and this can be reduced to n = 1, as a′x = a′.)
Now using 0.1(6), 0.1(4) and the associativity, we can easily get a product
of x-normal constituents into the normal form. ¤

Lemma 3.6. Let w = (a1x) · · · (anx) be an x-normal term and let bx =
y1 · · · ykx be an x-normal constituent. Then w ≤ bx is satisfied in O2+1

if and only if for every 1 ≤ j ≤ k there is an i ∈ {1, . . . , n} such that ai

can be written as z1 · · · zs · · · zm for some 1 ≤ s ≤ m, where zs = yj and
{zs+1, . . . , zm} ⊆ {yj+1, . . . , yk}.

Proof. Denote the elements of O2+1 by 0, 1, and c (where 0 < 1). If w ≤ bx
is satisfied, then consider the interpretation yj 7→ 0, yj′ 7→ 1 for any j′ > j,
x 7→ 1 and v 7→ c for any other variable v. Under this interpretation, bx
evaluates to 0, so that w also must evaluate to 0. From this it follows that
for every j there exists an i as above. The converse is easy. ¤

Theorem 3.7. The equations (E1) through (E5), together with the equation
x · yz = y · xz, constitute a base for the equational theory of O2+1.

Proof. In view of 3.5, it is sufficient to show that if w = (a1x) · · · (anx) is
an x-normal term and bx = ym · · · y1x is an x-normal constituent such that
w ≤ bx is satisfied in O2+1, then w ≤ bx belongs to Γ1. We will prove by
induction on k that w ≤ yk · · · y1x belongs to Γ1. For k = 0 it is evident.
Suppose we already know that w ≤ yk · · · y1x belongs to Γ1 for some k < m.
By 3.6, there is an i such that ai ends with yk+1z1 · · · zm, where m ≥ 0 and
{z1, . . . , zm} ⊆ {y1, . . . , yk}. By 0.1.5 we have w ≤ aix ≤ yk+1z1 · · · zmx.
Since also w ≤ yk · · · y1x, we get w ≤ (yk · · · y1x)(yk+1z1 · · · zmx), so that
w ≤ yk+1yk · · · y1x by 3.4.7. ¤

Theorem 3.8. The lattice of subvarieties of P3 has seven elements (see Fig.
2). Every subvariety of P3 either contains, or is contained in P3.

Proof. It follows from 3.1, 3.2, 3.3 and 3.7. ¤
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4. Further Results about the Bottom

In this section we will prove that the variety P3 has precisely three covers
in the lattice of subvarieties of P, and we will find a finite equational base for
P3 and for one of these covers. In the derivations of equations we freely make
use of simple consequences of the equations (E1)–(E5) and of lemmas 0.1
and 0.2.
Denote by

PD the variety generated by the order algebra D with elements a, b, c, d
and coverings a < b and c < b,
PN the variety generated by the order algebra N with elements a, b, c, d
and coverings a < b, c < b and c < d,
PL the variety generated by the order algebra L with elements a, b, c, d and
coverings a < b and d < c < b.

Also, consider the following equations:

(e0) x(y(zw)) = x(yw)(zw),
(e1) x(zy)u = (xy)(zyu),
(e2) (xz)(yz)((yz)(xz)uv) = (yz)(xz)(uv),
(e3) x(yz)wz = x(yzw)z,
(e4) xz(yzw)zw = xz(yzw),
(e5) (vux)(wzux)(zx) = (vux)(wuzx)(zx),
(e6) zx(vux)(wzux)(ux) = zx(vux)(wuzx)(ux),
(e7) z(vu(zux)) = vu(z(ux)).

Theorem 4.1. A subvariety of P satisfies (e0) if and only if it does not
contain the algebra L.

Proof. The equation (e0) can be equivalently written as (xw)((yw)(zw)) =
(xw)(yw)(zw). From this we can see that a subvariety V of P satisfies (e0)
if and only if for any algebra A ∈ V, the down-set of any element of A is
a subsemigroup. According to 3.1 and 3.2, this means that the down-set of
any element of A must not contain O2+1 as a subalgebra. But, clearly, this
is equivalent to saying that A does not contain L. ¤

We denote by Γ2 the equational theory based on Γ0 and (e1), and by Γ3
the equational theory based on Γ0, (e1) and (e2).
Under (e0), the product of any terms with the same last variables is

associative. The equation (e1), identical with 3.4(2), is stronger than (e0).
According to 3.5, every term t is Γ2-equivalent to an x-normal term, where
x is the last variable in t.

Lemma 4.2. Γ0 contains the equation (e4). Moreover, Γ0 contains the
equations
(e4a) x(yzw)z = xw(ywz),
(e4b) xwz(yw) = xz(yw).
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Proof. We have

x(yzw)z = x(yzw)(yzwz) = x(ywzw)(ywz) = xw(ywz),

xwz(yw) = xwzw(yw) = xzw(yw) = xz(yw),

xz(yzw)zw = x(yzw)zw =(e4a) xw(ywz)w =(e4a) xwz(yzw) =(e4b) xz(yzw).

¤

Lemma 4.3. Modulo Γ0, the equation (e3) is equivalent to (e1). In partic-
ular, (e3) is contained in Γ2.

Proof. To derive (e3) from (e1),

x(yz)wz = xz(yz)wz =(e1) xz(yzw)z =(e4) x(yzw)zwz = x(yzw)z.

To derive (e1) from (e3),

x(yz)w = x(yz)zwzw = x(yz)wzw =(e3) x(yzw)zw

= xz(yzw)zw =(e4a) x(ywz)wzw = x(ywz)w =(e4a) xz(yzw).

¤

Lemma 4.4. Γ2 contains the equation (e5).

Proof. We have

(vux)(wzux)(zx) = vu((wzux)(zx)) = vu((wzu)(wzuzx))

= vu((wzu)(wuzx)) = vu(wzu(wuzx)x)

= vu(wuzxu(wuzx)) = vu(u(wuzx))

= vu(wuzx) = vux((wuzx)(zx)),

the last because bzx ≤ zx. ¤

Lemma 4.5. Γ2 contains the equation (e7).

Proof. We have

x(yz(xzu)) = xu(yuz(xuzu)) =(e1)

= xu(yuz(xuz)u)

= xu(yu(xuz)u) =(e1)

= xu(yu(xu)zu)

= (yu(xu)zu)(xu)(yu(xu)zu)

= yuzu(xu)(yu(xu)zu)

= yuz(xu)(yuz(xu)zu)

= yuz(xu)(zu)

= yuzu(xu)(zu) =(e0)

= yuzu((xu)(zu))

= yz(x(zu)).

¤
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Lemma 4.6. Γ2 contains the equation (e6).

Proof. We have

zx(vux)(wuzx)(ux) = z(vu(wuzx(ux)))

= z(vu(wuzx(wuzxux)))

= z(vu(wzuxzx(wzux)))

= z(vu(wzuxz(wzux)))

= z(vu(z(wzux))) = vu(z(wzux))

= vux(zx(wzux)) = vux(zx)(wzux)(ux).

This shows that (e6) is equivalent to the equation

(E) vux(zx)(wzux) = zx(vux)(wzux),

since modulo Γ0, both sides of (E) are ≤ ux. Since wzux = zux(wzux) and
in (E) we can replace w by z, it follows that (e6) is equivalent to

vux(zx)(zux) = zx(vux)(zux),

or to
vu(z(zux)) = z(vu(zux)),

or to the equation (e7). It remains to apply 4.5 ¤

Lemma 4.7. (ax · bx · cx)((bx · ax · cx)uv) = bx · ax · cx · uv belongs to Γ3.

Proof. We have ax·bx·cx = (ax·cx)(bx·cx) and bx·ax·cx = (bx·cx)(ax·cx),
so (e2) can be used. ¤

Lemma 4.8. The equation

(yi1 · · · yimx)(zx)(y1 · · · ynx) = (zx)(yi1 · · · yimx)(y1 · · · ynx)

belongs to Γ3 whenever i1, . . . , im ∈ {1, . . . , n}.

Proof. This is clear for m = 0. Let us proceed by induction on m. Put
j = i1 and

px = yi1 · · · yimx, qx = yi2 · · · yimx,

rx = yj · · · ynx, sx = y1 · · · ynx.

By induction, qx · zx · sx = zx · qx · sx. Clearly, px = px · qx and sx =
sx · rx = rx · sx. Put

wx = px · zx · qx, w′x = zx · px · qx.

Clearly, qx · yjx = px · yjx, and we have

wx · yjx · yj+1 = px · zx · qx · yjx · yj+1 = px · zx · px · yjx · yj+1

= zx · px · qx · yjx · yj+1 = w′x · yjx · yj+1.

Then by (e1), wx·(yjx·yj+1) = w′x·(yjx·yj+1). Multiplying this equation by
yj+2 from the right and then by w′x from the left, we get wx ·yjxyj+1yj+2 =
w′x · yjxyj+1yj+2 by 4.7 and (E4). We can continue similarly, until we get
wx · yjxyj+1 · · · ynx = w′x · yjxyj+1 · · · ynx, so that wx · rx = w′x · rx. Then
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wx · rx · sx = w′x · rx · sx, i.e., wx · sx = w′x · sx. Hence px · zx · qx · sx =
zx · px · qx · sx. From this and from qx · zx · sx = zx · qx · sx (the induction
assumption) we get

px · zx · sx = px · qx · zx · sx = px · zx · qx · sx

= zx · px · qx · sx = zx · px · sx,

the required equation. ¤

Theorem 4.9. Γ3 is a base for the equational theory of P3.

Proof. Of course, the equations of Γ3 are satisfied in all three-element order
algebras. It remains to prove that (w,w′) ∈ Γ3 whenever (w,w′) is satisfied
in P3 and w,w′ are two normal terms. The two terms must be x-normal
for the same variable x, they must contain the same variables, and they
must have the same rightmost constituent. According to 4.8, the order of
all constituents but the last can be permuted at will in any x-normal term.
Thus w = (Πici)c and w′ = (Πjdj)c where c = y1 · · · ynx. Since the

rightmost constituents are the same, the equality in P3 means just two
things: first, whenever e′ = z1 · · · znx is a constituent of w

′ and 1 ≤ i ≤ n,
then there is a constituent e of w, equal to some cj or c, and some 1 ≤ k ≤ n
such that e = u1 · · ·unx, uk = zi and {uk+1, . . . , un} ⊆ {zi+1, . . . , zn}. The
other thing is that the symmetric condition with w,w′ interchanged, holds.
Using the first condition, we shall show that for all j, w = djw is provable

from the equations of Γ3. Then it follows that

w = (Πjdj)(Πici)c = (Πici)(Πjdj)c.

The symmetric condition will then yield that w′ is equal to this product,
and so we will be done.
So, put the first condition to work. Let di be one of the constituents of w

′

other than c, di = z1 · · · znx. The induction is on j, 1 ≤ j ≤ n+ 1, with the
reverse order on the interval, to prove that w = (zj · · · znx)w. The ground
step, j = n+1, is trivial. Suppose that we have it for j+1 ≤ n+1, and let us
derive it for j. Well, just choose a constituent e of w (it may be e = c) and
a k such that e = u1 · · ·unx, uk = zj and {uk+1, . . . , un} ⊆ {zj+1, . . . , zn}.
By induction, we have

w = (zj+1 · · · znx)w = (zj+1 · · · znx)ew

= (zj+1 · · · znx)(uk · · ·unx)ew

= uk · · ·unxzj+1 · · · znx(uk · · ·unx)w

= (ukzj+1 · · · znx)w = (zj · · · znx)w.

Thus our proof is finished. ¤

Theorem 4.10. Let V be a variety of groupoids satisfying Γ0 and (e1).
Then either D ∈ V or V ⊆ P3.
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Proof. Let F be the free algebra in V generated by x, y, z, w. Let

w1 = (xy)(zy)w,

y1 = w1y,

x1 = (zy)(xy)((xy)(zy)wy),

z1 = (xy)(zy)((xy)(zy)wy).

Using the three-variable equations and (e1), we deduce that

w1 = y1w1 = x1w1 = z1w1,

y1 = w1y1,

x1 = w1x1 = z1x1 = x1y1,

z1 = w1z1 = x1z1 = z1y1.

Indeed,

y1w1 = w1yw1 = yw1 ≥ (xy)w1 = (xy)((xy)(zy)w)

= (xy)(x(zy)w) = (xy)((xy)(zyw)) =

= (xy)(zyw) = x(zy)w = (xy)(zy)w = w1,

x1w1 = (zy)(xy)y1w1 ≥ y1w1 = w1,

z1w1 = (xy)(zy)y1w1 ≥ y1w1 = w1

and the other ones are consequences of Γ0.
Thus {x1, y1, z1, w1} constitutes an order algebra isomorphic to D, unless

some of these elements are equal. All equalities imply that x1 = z1.
So suppose that x1 = z1; i.e., V satisfies the equation

(zy)(xy)((xy)(zy)wy) = (xy)(zy)((xy)(zy)wy).

In this equation, replace y by v, w by u, and then replace x by xy and z by
zy. This yields

(zyv)(xyv)((xyv)(zyv)uv) = (xyv)(zyv)((xyv)(zyv)uv).

Using (e1) and three-variable equations, the left side equals

(zy)(xy)v((xy)(zy)vuv) = (zy)(xy)((xy)(zy)uv).

Of course, the right side equals

(xy)(zy)((xy)(zy)uv) = (xy)(zy)(uv).

So we see that if x1 = z1 then V satisfies (e2), and hence V ⊆ P3 by 4.9. ¤

Theorem 4.11. Let V be a variety satisfying the equations Γ0 together
with (e0). Then V satisfies (e1) if and only if N /∈ V.

Proof. It is easy to check that N does not satisfy (e1). (Just evaluate x = c,
y = b, z = a and u = d, as represented in Fig. 3.) Now according to 4.3, it is
sufficient to prove that V either contains N or satisfies (e3). We work in the
free algebra F over {x, y, z, w} in the variety defined by Γ0 plus (e0). Let ϕ
be the homomorphism of F onto N mapping x 7→ a, y 7→ b, z 7→ c, w 7→ d.
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We will first find a six-element subalgebra which maps onto N under ϕ.
Define

b = z(xy)wy,

a = z(xyb),

d = a(y(z(xy)w)).

There should result no confusion from using the same symbols for these
elements of F as for their images under ϕ.

Claim 1: a < b, a||d (i.e., ad = d and da = a), and b||d. Moreover, za = a.
In proving this, note first that it is obvious that a < b and ad = d. We

see as follows that da = a:

da = (y(z(xy)w))a = (y(z(xy)w))ay

= z(xy)way = z(xy)wyay

= z(xy)wya = ba = a.

Next,

bd = (z(xy)w)y · a(y(z(xy)w)) = qy · a(yq)

= qy · a(qy · yq) = a · yq = d.

Next,

a = z(xyb) = z(z(xy)b)

= z(z(xy)(z(xy)wy)) = z(z(xy)(wy))

= z((xy)(wy)) = z(x(wy)).

Finally, let u = z(xy)w. Then

db = a(yu)(uy) = ay(yu)(uy) = ayu(uy)

= ayuy = auy = z(x(wy))uy

= uyz((xy)(wy))uy = uyz(uyz(xy)(wy))uy

= uyz(uyz(z(xy))(wy))uy

= uyz(uyz(z(xy))(z(xy)(wy)))uy

= uyz(uyz(z(xy))(z(xy)(z(xy)wy)))uy

= uyz(uyz(z(xy))(z(xy)(uy)))uy

= uyz(uyz(z(xy))(uy))uy

= uyz(z(xy)(uy))uy

= z(z(xy)(uy))uy = z((xy)(uy))uy

= (zy)((xy)(uy))uy = (zy)(xy)(uy)uy

= z(xy)(uy)uwy = z(xy)w(uy)uwy

= z(xy)w(uy)uy = u(uy)uy = uyuy = uy = b.

It follows that {a, b, d} is a subalgebra of F. Moreover, since ba = da =
za = a, we have pa = a for every p in the subalgebra generated by {a, b, d, z}.
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We now consider the subalgebra S generated by {a, b, d, zbd}. We have
pa = a for all p ∈ S. And it is easy to see that, for H = S ∩ϕ−1(c), we have
S = H ∪ {a, b, d}.

Claim 2: H is identical with the set

H ′ = {zbd, zdb, a · zdb}.

To prove it, we must show that

H ′d ∪H ′b ⊆ H ′,

and that

aH ′ ∪ bH ′ ∪ dH ′ ∪H ′H ′ ⊆ H ′.

Here is a sample of the calculations to show that H ′ is closed under
multiplying on the left by a, b, d and on the right by d, b.
We have

a(zdb)d = adb(zdb)d = b(zdb) = zdb,

and

d(a(zdb)) = db(a(zdb)) = b(a(zdb)) = a(zdb).

Other calculations are very similar.
The proof that H ′ is closed under multiplication is very easy. We have

zdb(zbd) = zdbd(zbd) = zbd(zbd) = zbd

and analogously, zbd(zdb) = zdb. Obviously, a(zdb)(zdb) = a(zdb) and
zdb(a(zdb)) = a(zdb). We have

a(zdb)(zbd) = ad(zdb)(zbd) = d(zdb)(zbd) = (zdb)(zbd),

and

zbd(a(zdb)) = zdbd(a(zdb)) = zdb(a(zdb)) = a(zdb).

So S = H ′ ∪ {a, b, d} is the universe of a subalgebra of F.
If V does not contain N, then the kernel of the map of S into the free

algebra in V generated by x, y, z, w must not be contained in the kernel of
ϕ restricted to S. This means that V must identify two members of S not
both of which are in H ′. Considering the way the operation works in the
factor of S through the kernel of ϕ (restricted to S), we see that V satisfies
some equation b = γ where γ ∈ H ′. Now b = zbd implies b = zbdb = zdb.
Also, b = a(zdb) implies b = bdb = a(zdb)db = zdbdb = zdb.
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Thus we have the equation b = zdb. We shall show that this is equivalent
to (e3). Recall that a = z(x(wy)) and d = a(y(z(xy)w)). We calculate

zd = z(z(x(wy))(y(z(xy)w)))

= z(x(wy)(y(z(xy)w)))

= z(x(wy)y(y(z(xy)w)))

= z(x(wy)y(z(xy)w))

= z(x(wy)(z(xy)w))

= z(x(wy)(z(xy)w)w)

= z(xw(wy)(z(xy)w)w)

= z(xwy(z(xy)w)w)

= z(xy(z(xy)w)w)

= z(z(xy)(z(xy)w))

= z(z(xy)w)

= z(xyw).

And then

zdb = z(xyw)(z(xy)wy)

= z(z(xy)w)(z(xy)wy)

= z(z(xy)w)y

= z(xyw)y.

Thus the equation b = zdb is equivalent to z(xy)wy = z(xyw)y, or,
changing variables, to x(yz)wz = x(yzw)z, which is the equation (e3). ¤

Theorem 4.12. The equations of Γ0, together with the equation (e1), are
a base for the equational theory of D.

Proof. We have to prove that every equation which is satisfied in D, belongs
to Γ2. If two terms w,w′ are Γ2-equivalent, we will also say that w is
reducible to w′. We already know that every term is reducible to an x-
normal term w′, for some variable x. (This has been proved in 3.5.) We
can use the associative law at will within an x-normal term, treating the
constituents as indecomposable variables.
If D satisfies w = w′ where w,w′ are x-normal, y-normal, respectively,

then x and y are the same variable, and the terms contain the same variables,
and in fact, the dominant (rightmost) constituents in w,w′ are equal. Our
task is to show that assuming D |= w = w′ with w,w′ both x-normal, then
w is reducible to ww′ (which is x-normal) and w′ is reducible to w′w.
This reduces to: If w(ax), w′ are x-normal in the same variables with ax

the dominant constituent of w(ax) and ifD |= w(ax)w′ = ww′ then w(ax)w′

is Γ2-equivalent to ww′.
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Now if D |= w(ax)w′ = ww′ then where a = y1 · · · yn and b = yi · · · yn,
since ax = ax(bx) and axw′ = axw′(bx)w′ hold in P3, we have that in D,

ww′ = ww′(ax)w′ = ww′(bx)w′ = w(bx)w′ .

This means that our task reduces to the following:

(D1) Suppose that w,w′ are x-normal with the same variables and cx is
left associated without repeats, z is a variable, var(c) ∪ {z} ⊆ var(w), and
c′ = zyi · · · yn where c = yi · · · yn. Then if D |= w(cx)w′ = w(c′x)w′, the
two terms are Γ2-equivalent.

Claim 1: Suppose that w,w′, cx, z, c′x are as above and D |= w(cx)w′ =
w(c′x)w′. Then either (i) w has a constituent ax = u1 · · ·uazv1 · · · vbx such
that {v1, . . . , vb} ⊆ var(c); or else (ii) w′ has a constituent ax with this
property. Moreover if (ii) fails and we write w′ = w′′(ax)w′′′ where we
have exposed the rightmost such constituent ax satisfying (i), then D |=
(ax)w′′′(cx)w′ = (ax)w′′′(c′x)w′.
To prove the first subclaim, suppose that (i) and (ii) fail. Then evaluate

the variables in D by mapping z to a, x to b, all variables of c to b, and all
remaining variables to d. Then w(cx)w′ will evaluate as b, while w(c′x)w′

evaluates as a. So either (i) or (ii) holds. Now suppose that (ii) fails, (i)
holds, and w = w′′(ax)w′′′ as indicated in the second subclaim. Suppose that
we have an evaluation p of variables in D under which λ = axw′′′(cx)w′ and
γ = axw′′′(c′x)w′ return different values. This means, among other things,
that p(x) = b and p(w′) = b and p(c) 6= p(c′). Then p(u) = b for all
variables u ∈ c, else p(c) = p(c′). Thus p(cx) = b and p(c′x) ∈ {a, c, d}
and so p(z) 6= d and we get p(z) = p(c′x) ∈ {a, c}. Then p(c′xw′) =
p(z) = p(axw′′′(c′x)w′) = p(w(c′x)w′) since the elements a, c are right zeros
in D. Since p(λ) 6= p(γ) while p(w(cx)w′) = p(w(c′x)w′), we have that
p(λ) 6= p(w′′)p(λ). Thus p(λ) is not a right zero, so it can only be b. But
then p(w′′′(cx)w′) = b. However, we have p(ax) = p(z) since the variables
to the right of z in a are all getting the value b. This implies p(λ) = p(z)b =
p(z) 6= b. The contradiction proves the claim.
In case (ii) of the claim, we easily see that w(cx)w′ is Γ2-equivalent

to w(c′x)w′, as follows. We have w′ = axw′. Thus (where = denotes
Γ2-reducibility, c = y1 · · · yn as above, a = u1 · · ·uazv1 · · · vb, and c′′ =
ay1 · · · yn)

w(cx)w′ = w((cx)(ax))w′

= w(c′′x)(ax)w′

= w(u1 · · ·uazy1 · · · ynx)(ax)w
′

= w(axzy1 · · · ynx)(ax)w
′

= w(c′x)(ax)w′

= w(c′x)w′ .
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Thus we are reduced to proving the special case of (D1) where

w = u1 · · ·uazv1 · · · vbxw
′′′

with {v1, . . . , vn} ⊆ var(c), and we have exposed the leftmost constituent of
w. It is easy to see that in this case,

D |= zv1 · · · vbxw
′′′(cx)w′ = zv1 · · · vbxw

′′′(c′x)w′ .

Thus we are reduced to proving equations of this sort. Moreover, when D

satisfies such an equation, as above, then where w′′′ = a1x(a2x) · · · (amx) in
x-normal form and ax denotes zv1 · · · vbx, we have that the terms

axw′′′(cx)w′,

ax(cx)(a1x)(cx) · · · (amx)(cx)w′,

ax(c′x)(a1x)(cx) · · · (amx)(cx)w′

are D-equivalent; the terms

c′x(a1x)(cx) · · · (amx)(cx)w′,

c′x(a1x)(c
′x)(a2x)(cx) · · · (amx)(cx)w′

are D-equivalent; the terms

c′x(a2x)(cx)(a2x)(cx) · · · (amx)(cx)w′,

c′x(a2x)(c
′x)(a3x)(cx) · · · (amx)(cx)w′

are D-equivalent; and so on, up to the D-equivalence of c′x(amx)(cx)w′ and
c′x(amx)(c′x)w′. If we can prove that all of these are Γ2-equivalences, then
we can conclude that axw′′′(cx)w′ is Γ2-equivalent to

ax(c′x)(a1x)(c
′x) · · · (amx)(c′x)w′

and thence to axw′′′(c′x)w′, as desired.
So our task reduces to

(D2) Show the Γ2-equivalence of terms ax(a′x)(cx)w′ and ax(a′x)(c′x)w′

where their equality holds in D, and where a′xw′ is an x-normal form which
contains all the variables of a′ and c′, and a = zv1 · · · vm, c = y1 · · · yn,
c′ = zy1 · · · yn and {v1, . . . , vm} ⊆ {y1, . . . , yn}.

Now, in this situation, we can write a′ = qzu1 · · ·uk and then the equa-
tions ax(a′x)(cx)w′ = ax(a′x)(zu1 · · ·uky1 · · · ynx)w

′ and ax(a′x)(c′x)w′ =
ax(a′x)(u1 · · ·ukzy1 · · · ynx)w

′ are provable in P3; and each of the equations

ax(a′x)(u1 · · ·uizui+1 · · ·uky1 · · · ynx)w
′ =

= ax(a′x)(u1 · · ·uiui+1zui+2 · · ·uky1 · · · ynx)w
′

with i = 0, . . . k − 1 is true in D. Hence our task reduces to proving these
equations. This is formulated as
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(D3) To show the Γ2-equivalence of terms

zv1 . . . vmx(puu1 · · ·ukx)(qzuy1 · · · ynx)w ,

zv1 . . . vmx(puu1 · · ·ukx)(quzy1 · · · ynx)w

when they are D-equivalent, and {v1, . . . , vm, u1, . . . , uk} ⊆ {y1, . . . , yn}.
Here, w is an x-normal term containing all the variables appearing in these
terms, and all expressions (· · ·x) are left-associated without repeating vari-
ables.

Now in the situation of (D3), assuming the equality holds in D, there
must be some constituent

ax = t1 · · · ti−1uti · · · tj−1ztj · · · tkx

or
ax = t1 · · · ti−1zti · · · tj−1utj · · · tkx

of w such that{tj , . . . , tk} ⊆ {y1, . . . , yn}—else by evaluating in D with
x = b = y1, . . . , yn, u = a, z = c, and all other variables equal to d, we show
that D does not satisfy the equation. Just as above, this reduces us to

(D4) Show the Γ2-equivalence of terms

zv1 . . . vmx(puu1 · · ·ukx)(qzuy1 · · · ynx)(rt1 · · · t`x) ,

zv1 . . . vmx(puu1 · · ·ukx)(quzy1 · · · ynx)(rt1 · · · t`x)

where r = u or r = z and where {v1, . . . , vm, u1, . . . , uk, t1, . . . , t`} ⊆ {y1, . . . , yn}.
Note that the equality of these terms is an identity of D. Also, if r = z, we
can omit the initial zv1 · · · vmx and the equation still holds in D.

Here is how we conclude the proof. Consider the case r = u in (D4).
Write the equation as

α · β · γ · δ = α · β · γ ′ · δ .

Transform the left-side via

LS = (αβ)((qzu)xy1 · · · ynx)δ

= (αβ)(([αβ(qzux)]y1 · · · ynx)δ)

= (αβ)([αx(βx)(qzux)(δx)]y1 · · · ynx)δ

= (αβ)([αy1 · · · ynx][βy1 · · · ynx]γ[δy1 · · · ynx])δ

This is by equation (e1). Now αy1 · · · ynx reduces to zxy1 · · · ynx, βy1 · · · ynx
reduces to puxy1 · · · ynx, δy1 · · · ynx reduces to uxy1 · · · ynx. We make these
transformations and then pull y1, · · · yn back out to get

= (αβ)((zx)(pux)(qzux)(ux)y1 · · · ynx)δ .

Now it suffices to transform zx(pux)(qzux)(ux) into zx(pux)(quzx)(ux) and
then undo all the above transformations, keeping (quzx) intact, in order to
arrive at α ·β · γ ′ · δ , showing that the two terms are Γ2-equivalent. But the
equation

zx(pux)(qzux)(ux) = zx(pux)(quzx)(ux)
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is a variant of (e6).
The other possibility, r = z, yields to the same process, using ultimately

(pux)(qzux)(xz) = (pux)(quzx)(zx)

which is a variant of (e5).
Since (e5) and (e6) belong to Γ2 (by 4.4 and 4.6), we are done. ¤

Theorem 4.13. The varieties PL, PN and PD are three different covers of
the variety P3. Every subvariety of P properly containing P3 contains one
of these three covers. Also, the equations of Γ0 together with (e2) are a base
for the equational theory of P3.

Proof. Where a = xz·yz, b = yz·xz, c = (x·yz)(x·wz) and d = (x·wz)(x·yz),
consider the equations

(e2.1) (a · buv)(b · uv) = (b · uv)(a · buv),
(e2.2) d(cx · dxz) = c(dxz).

It is easy to verify that

L 6|= (e0) L 6|= (e1) L 6|= (e2) L |= (e2.1) L |= (e2.2)

N |= (e0) N 6|= (e1) N 6|= (e2) N 6|= (e2.1) N |= (e2.2)

D |= (e0) D |= (e1) D 6|= (e2) D 6|= (e2.1) D 6|= (e2.2)

Clearly, PL, PN, PD contain P3 and since they do not satisfy (e2), by 4.9
they properly contain P3. It follows from above that these three varieties are
pairwise incomparable. Then it follows from 4.1, 4.10 and 4.11 that every
subvariety of P properly containing P3 contains at least one of them. The
last statement follows from 4.9 and the fact that these three covers do not
satisfy (e2). ¤

5. Simple Order Algebras

Theorem 5.1. Every finite order algebra with n elements (n ≥ 4) can be
embedded into a simple order algebra with 2n+ 1 elements.

Proof. Let A be an order algebra with elements a0, . . . , an−1. We can sup-
pose that ai ≤ aj implies i ≤ j. Let F be the fence with elements b0, . . . , bn

and coverings b0 < bn > b1 < bn−1 > b2 < · · · . Define an order algebra
on B = A ∪ F in such a way that both A and F are subalgebras, ai £ bj

for all i, j, and bi ≤ aj if and only if i ≤ j. One can easily prove that B is
simple. ¤

6. Free Spectra

For a variety V we let fV(n) = |FV(n)| be the cardinality of the free
algebra on n generators. The function fV is called the free spectrum of V.
In this section we will show that fP(n) has an upper and lower bound both
of the form

22
n2

4 +o(n2)
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We also prove the same result for the variety generated by tournaments
except n2/4 is replaced with n2/2.
Herein all logarithms are base 2.

Theorem 6.1. The free spectrum of P satisfies

22
n2

4 −
5n
2 −2 log n

≤ fP(n) ≤ 2
2

n2

4 +n log n+3n/2+o(n)

for large numbers n, where o(n) denotes a function g(n) such that
limn→∞ g(n)/n = 0.

Proof. We begin with the upper bound. Since an n-generated order algebra
has at most n elements, FP(n) can be represented as a subdirect product
of the free algebras FV(A)(n), taken over nonisomorphic order algebras A

with at most n elements. Each of these free algebras satisfies |FV(A)(n)| ≤

nnn
= 22

n log n+log log n
. Thus

|FP(n)| ≤ (2
2n log n+log log n

)N

where N is the number of isomorphism classes of ordered sets with at most n
elements.
By the theorem of Kleitman and Rothschild [8] there are at most

2n
2/4+3n/2+b logn

ordered sets on an n element set, for some constant b. Multiplying this

by n only has the effect of increasing b by 1 so N ≤ 2n2/4+3n/2+c logn with
c = b+ 1. Thus (for a slightly larger c)

|FP(n)| ≤ (2
2n log n+log log n

)N ≤ 22
n2/4+3n/2+n log n+c log n

proving the upper bound.

For the lower bound let n = k + 5 where k = 2m is even and let X =
{x0, . . . , xk−1} ∪ {y, z, u, v, w}. For each subset S of m×m we can order X
by putting w > v < u > z < y, y > xi for i < m, and xi < xm+j if (i, j) ∈ S.
We let AS be the corresponding order algebra.
Define terms τij = z(xixm+jy)u. When evaluated in AS (with the vari-

ables mapping to themselves) τij = u if (i, j) ∈ S and τij = z otherwise.
For T a nonvoid subset of m ×m put λT =

∏

(i,j)∈T τij . The product is

the left associated product of these terms in some order. In AS we have
λT = u if T ⊆ S and is z otherwise. Thus if we let λ′

T = vλTw then in AS ,
λ′T = v if T ⊆ S and is w otherwise.
Let A be the largest size antichain in the lattice of subsets of m×m. Note

|A| ≥ 2m
2
/m2. For every nonempty subset B of A put µB =

∏

T∈B
λ′T .

Notice that if S ∈ A then µB evaluates in AS to w if S /∈ B and to v
otherwise. If B and B′ are distinct subsets of A choose S in one but not the
other; say S ∈ B′ − B. Then in AS the term µB evaluates to w while the
term µB′ evaluates to v. Hence the terms µB are distinct. Putting µ∅ = y
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we obtain 2|A| distinct elements of FP(n). Using this it is easy to get the
lower bound of the theorem.
When n− 5 is odd we can write n− 5 = 2m+ 1. In this case we can use

subsets of m× (m− 1) and prove the same lower bound. ¤

A tournament is a commutative, idempotent groupoid such that xy ∈
{x, y}. Tournaments can also be described as groupoids in which every two
element subset forms a subgroupoid isomorphic to the two element semilat-
tice. For a, b in a tournament we let a < b denote the fact that ab = ba = a.
The next theorem achieves bounds on the free spectrum of the variety T

generated by tournaments similar to what we obtained for P.

Theorem 6.2. The free spectrum of the variety T generated by tournaments
satisfies

22
n2

2 −n log n−6n

≤ fT(n) ≤ 2
2

n2

2 +n log n+o(n)

for large numbers n, where o(n) denotes a function g(n) such that
limn→∞ g(n)/n = 0.

Proof. The number of (labeled) tournaments on a set with n elements is

2(
n
2) and so arguments as in the last theorem give the upper bound.
For the lower bound let k be an integer, r = dlog ke and let

X = {x0, . . . , xk−1} ∪ {y0, . . . , yr−1} ∪ {z, u, v, w}

Let P = {(i, j) : 0 ≤ i < j < k}. For T ⊆ P define a tournament BT on
{x0, . . . , xk−1} by specifying, for i < j, xi < xj if (i, j) ∈ T and xj < xi

otherwise. Extend this to an algebra AT on X by specifying, for i < k and
t < r,

z < yt

z < u

v < u

v < w

z < v

w < z

xi < z

u < xi

We write i base 2 as i = i0 + i12 + · · ·+ it2
t + · · · and define

xiyt =

{

xi if it = 0

yt if it = 1

For 0 ≤ i < j < k define τij = xixjytzu, where t is the largest integer
such that it 6= jt, that is, the most significant bit where they differ. In AT ,
τij evaluates to u if (i, j) ∈ T and to z otherwise. For S a nonvoid subset
of P , put λS =

∏

(i,j)∈S τij and put λ′S = λSvw. In AT , λ
′
S = v if S ⊆ T

and is w otherwise. Just as in the proof of Theorem 6.1 this can be used

to prove the existence of 22
(k2)−log (k2)

distinct elements of FT(n). Taking
k = n−dlog ne− 4, we have k+ dlog ke+4 ≤ n, and the lower bound given
in the theorem follows easily. ¤
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Of course the lower bounds of these theorems grow faster than the free
spectrum of any finitely generated variety and so we obtain the next corollary
which strengthens Corollary 2.2.

Corollary 6.3. Neither P nor T is a finitely generated variety. In fact
neither variety is contained in a finitely generated variety.

The G-spectrum of a variety V is the function gV(n) which is the number
of nonisomorphic n-generated algebras in V.

Theorem 6.4. The G-spectra of P and T satisfy

22
n2/4+o(n2)

≤ gP(n) 22
n2/2+o(n2)

≤ gT(n)

Proof. We give the proof for P; the proof for T is similar. Let A be the
antichain used in the proof of Theorem 6.1. For B ⊆ A with |B| ≥ 2 let θB

be the congruence on FP(X) generated by identifying all λ
′
S , for S ∈ B. If

S, T ∈ B then, in AS , λ
′
S = v while λ′T = w. Thus the natural map from

FP(X) to AS does not factor through FP(X)/θB. On the other hand, if
S /∈ B then it does. Thus θB 6= θB′ for distinct subsets of A, each with at
least two elements.
In FP(X) the elements of X are irreducible in the strong sense that if

x = uv then u = x and v = x. This can be seen by looking at the natural
map from FP(X) onto the free semilattice over X. Since T also contains the
variety of semilattices, FT(X) also has this property. Consequently if x ∈ X
then its θB class contains only itself. Thus the image of X in FP(X)/θB is
precisely the set of irreducible elements. It follows that any isomorphism be-
tween FP(X)/θB and FP(X)/θB′ is induced by an automorphism of FP(X)
which permutes X and carries θB onto θB′ . There are at most n! such
automorphisms. Thus the number of non-isomorphic algebras among the
algebras FP(X)/θB is at least the number of subsets of A with at least two
elements, divided by n!. The theorem follows from this. ¤

7. The Equational Theory of Order Algebras

A term t is said to be linear if every variable has at most one occurrence
in t.

Theorem 7.1. Let u, v be two linear terms such that the equation (u, v) is
satisfied in all order algebras. Then u = v.

Proof. Because the equation is satisfied in O∧, the two terms are equivalent
with respect to the equational theory of semigroups. Let us proceed by
induction on the length of u. If u is a variable, there is nothing to prove. Let
u = u1u2 and v = v1v2. If u1 is shorter than v1, consider the interpretation
in O2+1, sending each variable in u1 to a, the last variable of u to b, and the
remaining variables to c (we have a < b, while c is incomparable with both
a and b); under this interpretation, u is evaluated to a, while v is evaluated
to b. If u1 is longer than v1, we obtain a contradiction symmetrically. Hence
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u1 is of the same length as v1, and the two terms contain the same variables.
LetA be an order algebra and let f be an interpretation of the variables of u1

in A. Extend A to an order algebra A′ by adding a new largest element e,
and extend f to f ′ by sending all the variables of u2 to e. Clearly, u1
evaluates to the same element under f as u under f ′, and the same is true
for v1 and v. We conclude that the equation (u1, v1) is satisfied in A. By
induction, u1 = v1. We can prove u2 = v2 in the same way, if we extend A

to A′ by adding a new element incomparable to all the elements of A. ¤

Modulo the equational theory of order algebras, each term in at most
three variables is equivalent to precisely one linear term. This is not true
for terms in a larger number of variables: the free four-generated algebra in
P has 1456 elements, while there are just 184 linear terms in four variables.
(For more details see Example 8.7.)
We do not know whether there is an equational theory E of groupoids

with the property that every term is E-equivalent to precisely one linear
term.

8. Examples

Example 8.1. Let A0 = P0[ab = c], where P0 = {a, b, c, d, e, f, g, h} is the
order algebra with coverings a < h, d < c < b < h, d < e, f < g, f < h.
(See Fig. 4.) Then A0 /∈ P.

Proof. Suppose A0 ∈ P, so that A0 = ϕ(S) for a homomorphism ϕ of a sub-
algebra S of the product of finitely many finite order algebras P1, . . . ,Pn.
Take a minimal element H in ϕ−1(h), a minimal element E in ϕ−1(e), and a
minimal element G in ϕ−1(g). There exists a minimal element A in ϕ−1(a)
such that A < H (if A′ is any element of ϕ−1(a), take A to be a minimal
element of ϕ−1(a) such that A ≤ A′H). Similarly, choose minimal elements
B,D,F in ϕ−1(b), ϕ−1(d), ϕ−1(f) such that B < H, D < AB and F < G;
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and put C = AB. It follows from the minimality of these elements that if
X,Y are the selected elements in ϕ−1(x), ϕ−1(y) where x, y are incompa-
rable, then XY = Y , unless either (x, y) = (a, b) or y = c. For example,
HG = G and EA = A.
If i ∈ {1, . . . , n} is such that Ai ≤ Bi, then Di = Ai. In fact, we have

DA = A, so that DiAi = Ai; but Di ≤ AiBi = Ai, so that DiAi = Di.
Put

β = (A · FH)B, γ = A(β(F ·DEH)GH)B.

Clearly, ϕ(β) = b and ϕ(γ) = c, so that β 6= γ. Easy computation shows
that if i ∈ {1, . . . , n} is such that Ai ≤ Bi and Fi £ Hi, then βi = γi = Ai.
For all other numbers i ∈ {1, . . . , n} one can verify that βi = γi = Bi (the
verification should be divided into cases, corresponding to whether or not
Ai ≤ Bi, Di ≤ Ei, Fi ≤ Hi). So, we get βi = γi for all i, contradicting
β 6= γ.
Observe that the same proof shows A0 /∈ P if we add either g < e or

f < e to the list of coverings in A0. ¤

Theorem 8.2. Let A ∈ P3 be a groupoid containing precisely one triple
a, b, c of elements such that ab = c /∈ {a, b}. Suppose that both a and b are
maximal in A, and that x < b implies x ≤ c. Then A ∈ P.

Proof. Put P = A − {x : x ≤ c}, and consider P as an order algebra with
respect to the ordering x ≤P y iff either x ≤A y or (x, y) = (a, b). Let Q

be the order algebra on A− {c}. Denote by S the set of all (x, y) ∈ P ×Q
satisfying the following four conditions:

y = a implies x = a;
y = b implies x ∈ {a, b};
x = a implies either y = a or y ≤ b;
x = b implies y ≤ b.

Note that lemma 0.2 implies that for all x ∈ A, x > c only if x ≥ b, and
x < a only if x < c. Using this, it is not difficult to check that S is a
subgroupoid of P×Q. Define a mapping ϕ of S into A by ϕ(a, b) = c and
ϕ(x, y) = y in all other cases. It can be verified that ϕ is a homomorphism
of S onto A. ¤

An infinite fence is an example of an infinite simple algebra in P. We do
not know if such an example can be found among the algebras of P that are
not order algebras. However, we are able at least to give an example of an
infinite subdirectly irreducible algebra in P which is not an order algebra:

Example 8.3. Let A = P[ab = c] where P is the order algebra with infin-
itely many elements a, b, c, d, e, f, xi, yi (i = 1, 2, . . . ) and coverings a < f ,
d < c < b < f , e < f , d < y1, xi < yi and xi < yi+1. (See Fig. 5.) Then A

is subdirectly irreducible and belongs to P.

Proof. The monolith of A has only one non-singleton block {b, c}. Let P

be the order algebra with elements a, b, f, e, xi, yi and coverings a < b < f ,
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xi < yi, xi < yi+1. Let Q be the order algebra with the same elements and
one more covering e < f . Let R be the order subalgebra of A on A − {c}.
Denote by S the subgroupoid of P×Q×R generated by the elements (a, a, d)
and (x, x, x) where x = a, b, e, f, xi, yi. One can easily check that there is a
homomorphism ϕ of S onto A, where

ϕ−1(a) = {(a, a, a)},
ϕ−1(b) = {(b, b, b), (a, b, b)},
ϕ−1(c) = {(a, a, b)},
ϕ−1(d) = {(a, a, d), (a, b, d), (b, b, d), ((f, f, d), (a, e, d), (b, e, d), (c, e, d),

(y1, y1, d), (x1, x1, d)},
ϕ−1(e) = {(a, e, e), (b, e, e), (e, e, e), (f, e, e)},
ϕ−1(f) = {(f, f, f)},
ϕ−1(xi) = {(xi, xi, xi)} for i odd,
ϕ−1(xi) = {(xi−1, xi−1, xi), (yi, yi, xi), (xi, xi, xi), (yi+1, yi+1, xi),

(xi+1, xi+1, xi)} for i even,
ϕ−1(yi) = {(yi, yi, yi), (xi, xi, yi)} for i odd,
ϕ−1(yi) = {(yi, yi, yi), (xi−1, xi−1, yi)} for i even.

(This also gives us the list of elements in S.) ¤

Example 8.4. Similar constructions (we can do with the product of two
order algebras) show that the subdirectly irreducible algebras P1[ab = c],
P2[ab = c] and P3[ab = c], where P1, P2, P3 are the three order algebras
shown in Fig. 6, belong to P.

Example 8.5. The five-element algebra in Fig. 7 does not belong to P. It
does not satisfy the equation xw(x(zy)(wy)) = x(z(wy)) (evaluate x = c,
y = b, z = d and w = a), which is satisfied in all order algebras (the proof
is not short, but can be done mechanicaally.)
Another proof is to suppose that the algebra is a homomorphic image,

under a homomorphism h, of a subalgebra of a product of finitely many
finite order algebras. Let α be a minimal element of h−1(a), β be a minimal
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element of h−1(b), γ be a minimal element of h−1(c) such that γ < αβ, and δ
be a minimal element of h−1(d) such that δ < β. The two distinct elements,
γ(δ(αβ)) and δ(αβ), are easily seen to be equal at each coordinate, which
gives the contradiction.
By adding two elements to this algebra, one above a and b and the other

above c and d, we obtain a simple algebra belonging to P3 (but not to P).

Example 8.6. It can be proved that there are just five five-element, subdi-
rectly irreducible algebras in P3 that are not order algebras. They are the
algebra from example 8.5, and the four algebras pictured in Fig. 8. These
four algebras belong to P. In fact, the first one generates the same variety
as OL.

Example 8.7. We can precisely describe the free algebra in P over four
generators {x, y, z, w}. The algebra contains 1456 elements. Sixty of them
have z as the last variable, y as the next to the last variable, and x as the
next to the next to the last variable. Here is the list of these sixty elements:

t1 = xyz t2 = wxyz
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t3 = w(xz)(xy)z t4 = w(xz)(x(zy))z
t5 = w(xz)yz t6 = w(x(yz))(xy)z
t7 = w(x(yz))(x(zy))z t8 = w(x(yz))yz
t9 = x(yz) t10 = wyx(yz)
t11 = w(xy)(xz)(yz) t12 = w(x(zy))(xz)(yz)
t13 = wy(xz)(yz) t14 = w(xy)(x(yz))
t15 = w(x(zy))(x(yz)) t16 = wy(x(yz))
t17 = w(yx)(yz) t18 = w(xy)(w(yx)z)(yz)
t19 = w(x(zy))(w(yx)z)(yz) t20 = wy(w(yx)z)(yz)
t21 = w(xy)(w(yx)(yz)) t22 = w(x(zy))(w(yx)(yz))
t23 = wy(w(yx)(yz)) t24 = w(y(zx))(yz)
t25 = w(xy)(w(y(zx))z)(yz) t26 = w(x(zy))(w(y(zx))z)(yz)
t27 = wy(w(y(zx))z)(yz) t28 = w(xy)(w(y(zx))(yz))
t29 = w(x(zy))(w(y(zx))(yz)) t30 = wy(w(y(zx))(yz))
t31 = wx(yz) t32 = w(xy)(wxz)(yz)
t33 = w(x(zy))(wxz)(yz) t34 = wy(wxz)(yz)
t35 = w(xz)(yz) t36 = w(xy)(wx(yz))
t37 = w(x(zy))(wx(yz)) t38 = wy(wx(yz))
t39 = w(x(yz)) t40 = w(xy)z
t41 = x(w(xy)z) t42 = w(yx)(w(xy)z)
t43 = w(y(zx))(w(xy)z) t44 = wx(w(xy)z)
t45 = w(x(zy))z t46 = x(w(x(zy))z)
t47 = w(yx)(w(x(zy))z) t48 = w(y(zx))(w(x(zy))z)
t49 = wx(w(x(zy))z) t50 = w(xzy)z
t51 = x(w(xzy)z) t52 = w(yx)(w(xzy)z)
t53 = w(y(zx))(w(xzy)z) t54 = wx(w(xzy)z)
t55 = w(x(w(xy)z)) t56 = w(xyz)
t57 = x(yw)(xyz) t58 = x(y(zw))(xyz)
t59 = xw(xyz) t60 = x(w(xyz))

They are precisely the elements below xyz. We have obtained them by
running a computer program, which was designed so that the resulting terms
are not equivalent to any shorter terms. The less-than relations between
these terms are shown in Fig. 9. All the other elements of the free algebra,
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except variables and products of two variables, can be obtained from the
listed ones by renaming variables.

9. Open Problems

Problem 9.1. Is it true that every subvariety of P is generated by its order
algebras?

Problem 9.2. Is every finite order algebra finitely based?

Problem 9.3. Is the variety P inherently nonfinitely based?

Problem 9.4. Are there any simple algebras in P that are not order alge-
bras?

Problem 9.5. Characterize varieties of ordered sets. By a variety of ordered
sets we mean an intersection of the class of all ordered sets (or order algebras)
with a variety of groupoids.
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Based on the previous results, we are able to give the following examples
of varieties of ordered sets. First of all, the class of all ordered sets, the
trivial class of one-element ordered sets, the class of chains and the class of
antichains are varieties of ordered sets. According to 3.3, the class of down-
rooted forests, i.e., ordered sets A such that {x ∈ A : x ≤ a} is a chain for
any a ∈ A, is a variety of ordered sets. One can easily prove (or see [4] for a
more general result) that an ordered set belongs to P∧ if and only if it is an
ordinal sum of antichains. So this class is a variety of ordered sets. Also, the
intersection of the last two varieties is the variety, consisting of the ordered
sets that are an ordinal sum of a chain and an antichain, with the antichain
sitting at the top.
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