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Abstract

Diffraction peak profile analysis (or Line Profile Analysis, LPA) has recently been developed to
such an extent that it can be applied as a powerful method for the characterization of
microstructures of crystalline materials in terms of crystallite size-distribution and dislocation
structures. Physically based theoretical functions and their Fourier coefficients are available for
both, the size and the strain diffraction profiles. Strain anisotropy is rationalized in terms of the
contrast factors of dislocations. The Fourier coefficients of whole diffraction profiles are fitted
by varying the following fundamental parameters characterizing the microstructure: (i) m and
(i1) o, the median and the variance of the log-normal size distribution function, (iii) p and (iv)
M, the density and the arrangement parameter of dislocations and (v) g or ¢; and ¢, for the
average dislocation contrast factors in cubic or hexagonal materials, respectively. The method
will be illustrated by showing results on ECA pressed copper and titanium.
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1. Introduction

Grains, subgrains or dislocation cells and the dislocation structure in crystalline materials can
directly be observed in micrographs of transmission electron microscopy (TEM). These
observations provide details on the micron or submicron scales. Average properties of the
microstructure, especially on the hundreds of microns up to millimeters scale like crystallite
size-distributions [1-3] or specific properties of dislocations as long range internal stresses [4-
7], dislocation densities [8-10], arrangement parameters [11,12] or statistical fluctuations [13-
15] are better obtained by diffraction peak profile analysis [16].

Diffraction peaks broaden when crystallites are small or the material contains lattice defects.
The diffraction order dependence of the two effects is different enabling their separation. The
two classical methods for this are: (i) the Williamson-Hall [17] and (ii) the Warren-Averbach
[18] procedures. The first is based on the Full Widths at Half Maximum (FWHM) or the
integral breadths while the second on the Fourier coefficients of diffraction profiles. Both
methods provide apparent size parameters of coherently scattering domains and values of the
mean square strain. Strain anisotropy [19] and sometimes shape anisotropy [20] make the
evaluation complicated. Strain anisotropy means that neither the breadth nor the Fourier
coefficients of the diffraction profiles are monotonous functions of the diffraction angle or g
where g is the absolute value of the diffraction vector [18-27]. Further difficulty is encountered
by the fact that the mean square strain, <8L,g2>, is never a constant, neither as a function of L nor
g, where L is the Fourier length [2,5-16,18,21-24]. In order to separate strain and size
broadening correctly strain anisotropy has to be treated properly. Two different models have
been developed so far: (i) the phenomenological model based on the elastic anisotropy of
crystals [27] and (i1) the dislocation model [22] based on the mean square strain of dislocated
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crystals [8,9,11,12]. Latter takes into account that the effect of dislocations on strain broadening
depends on the relative orientations of the line and Burgers vectors of dislocations and the
diffraction vector, similarly as the contrast effect of dislocations in electron microscopy.
Anisotropic contrast can be summarised in contrast factors, C, which can be calculated
numerically on the basis of the crystallography of dislocations and the elastic constants of the
crystal [11,21-24,28]. Using the average contrast factors the modified Williamson-Hall and the
modified Warren-Averbach procedures have been suggested [22], enabling to determine (i)
different averages of crystallite sizes, (ii) the density and (iii) the effective outer cut off radius
of dislocations [22,29]. A method has recently been developed to determine (a) crystallite size
distribution and the dislocation structure in terms of (b) density, (c) arrangement parameter and
(d) character of dislocations [29,30]. In the present work diffraction peak profile analysis is
outlined briefly and applied to characterise the size distribution of crystallites and the
dislocation structure in submicron grain size copper and titanium.

2. Evaluation of broadened diffraction peak profiles
2.1. Fundamental equations

In the kinematical theory of diffraction the Fourier coefficients of the physical profiles of Bragg
reflections can be given by the Warren-Averbach equation [18]:

A=A A4 = A exp [- 2012 <g, 1> ] (1)

where L is the Fourier variable: L=nas;, n are integers and a3 is the unit of the Fourier length in
the direction of the diffraction vector g: a;=A/[2(sinB,-sinB,)], the diffraction profile is mesured
in the angular range from 0, to 0, and A is the wavelength of the X-rays (or neutrons). In
dislocated crystals the mean square strain is [11,12]:

<gg1>>= - (b12n)’'npC A7) , )

where p is the dislocation density, b and C are the Burgers vector and the contrast factor of
dislocations, respectively, 7=L/R., R, is the effective outer cut-off radius of dislocations and
f(n) is a function derived explicitely by Wilkens for dislocations, see equations A.6 to A.8 in
[12] or egs. (22) and (23) in [29]. For small values of 77 the Wilkens function can be
approximated by a logarithmic function [6, 11,12]:

2
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Inserting (3) into the Warren-Averbach equation in (1) the modified Warren-Averbach equation
can be obtained [22]:

In4(L) = In45(L) - pBL’In(R/L) (K°C) + O(K*C?) , 4)

O stands for higher order terms in K?C. The full width at half maximum (FWHM) or the
integral breadths of profiles can be plotted versus K=2sin&/A (where @ 1is the diffraction angle
and A is the wavelength of X-rays or neutrons) in the classical Williamson-Hall plot [17]. The
intercepts and the slopes of the regressions through the mesured data should provide apparent
size parameters and values of the mean square strain, respectively. Due to strain anisotropy,
however, the data points usually do not follow smoth curves making reliable regressions



impossible. It can be shown that the anisotropic contrast of dislocations enables the
rationalisation of strain anisotropy in terms of the modified Williamson-Hall plot [22]:

AK = a/D + (nTh*2) p* K*°C +OKK*C?), (5)
where AK is either the FWHM or the integral breadth of profiles, D is the so called apparent
size parameter, a is 0.9 or 1 for the FWHM or the integral breadth, respectively, and T is a
constant depending on the effective outer cut-off radius of dislocations [22].

2.2. The contrast factors of dislocations

In a texture free cubic or hexagonal polycrystal or if the Burgers vector population on the
different slip systems is random the contrast factors of dislocations C can be averaged over the

permutations of the 44/ indices and the so called averaged contrast factors, C,are [31]:

C = C oo (1-qgH?), (6)

or

[A(h* +k* + (h +k)*) + BI* I
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C

; (7)

respectively, where Croo and C o are the average dislocation contrast factors for the 200 and
hk0 reflections, respectively, H=(h*k*+ h*I*+ I*IP)/(h*+k*+1%)*; g, A and B are parameters
depending on the elastic constants and on the character of dislocations (e.g. edge or screw type)
in the crystal and a and ¢ are the two lattice constants in the hexagonal crystal.

The expression (7) can be rewritten as [33]:

C=Cm[l+gx+qx], (8)

where

2
ST

g is the absolute value of the diffraction vector and ¢;=4 and ¢,=B-(3/2)4 (a/c)’ [33].
2.3. The size Fourier coefficients

Log-normal is one of the most commonly used size distribution density function:

_ 11 ] [In(x/m)]
fx) ﬂaxexp{ Tg? } (10)




where x is the grain or crystallite size and ¢ and m are the variance and the median of the size
distribution function, respectively. Assuming spherical crystallite shape the size Fourier
coefficients in eq. (1) can written as [29,30]:
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where erfc is the complementary error function. Hinds has shown that the area-, volume- and
arithmetically weighted mean crystallite sizes can be obtained from m and ¢ in a
straightforward manner [32]:

<X>area= M exp(2.5<52) , (12)
<X>yo= M exp(3.562) , (13)
<X>arithm= M exp(O.SGZ) . (14)

Here we make the following note on the interpretation of crystallite size as determined by X-
rays. Size broadening is caused by the column length of coherently scattering domains where
this length is parallel to the diffraction vector. As stressed above, an assumption is made first on
the shape and on the size distribution of the coherently scattering domains. In the present case
the crystallite shape is considered as spherical and the crystallite sizes are supposed to fulfil a
log-normal distribution. Hence the average diameters and the parameters of the size distribution
function can be determined. These parameters, especially the average diameter, need not be
identical with other length scales such as for example, the grain size or the particle size
provided by scanning or transmission electron microscopy (SEM or TEM). Coherently
scattering domain means the region wherein the amplitudes of the scattered X-rays sum up.
When the crystallographic orientation between regions exceed a few degrees the amplitude
summation ends and intensities are summing up. This means that the X-ray crystallite size
corresponds to domains or regions wherein the variations of orientations are smaller than a few
degrees. This type of regions may belong to the same grain or particle in a SEM or TEM
micrograph. It is important to note, however, that single dislocations do not disturb the
coherency of X-ray scattering since the misorientation they cause is of the order of bpl/ 2
Taking typical values for 4 and p in plastically deformed copper, 0.26nm and 1x10"°m™, this
misorientation is of the order of ~0.5°. Special arrays or bundles of dislocations can easily
create misorientations of a few degrees thus creating boundaries of the coherently scattering
regions. There may be some sort of proportionality between the X-ray crystallite size and the
grain or particle size determined by SEM or TEM. However, to the best knowledge of the
authors this has not yet been studied and goes beyond the scope of this work. From these
considerations it is concluded thereafter that: (i) the dislocation density (or, in other words,
microstrain) is a microstructural parameter independent of crystallite size (domain size) and
neither can be deduced from each other, (i1) the X-ray crystallite size can never be larger than
the grain or particle size obtained by SEM or TEM.

2.4. The fitting procedure [30]

A numerical procedure has been worked out for fitting the Fourier coefficients of the
experimentally determined physical profiles by the Fourier coefficients of the theoretical size



and strain functions as given in egs. (1), (2), (6),(7) and (11), respectively. The measured
profiles must first be corrected for background, instrumental effects and overlapping peaks. The
numerical procedure is as follows: 1) the Fourier coefficients of the measured physical profiles
are computed making the instrumental correction by using the Stokes method, ii) the Fourier
coefficients of the size and strain profiles are calculated by using eqgs. (1) and (2) and (11), (iii)
the calculated Fourier coefficients are fitted to the experimental values using the nonlinear
Marquardt-Levenberg least squares procedure (Gnuplot program package under Unix system).
The program for the fitting procedure is available on the web: Attp//www.renyi. hu/mwp, for
more details see [30]. The following five or six fitting parameters are used: (i) m and (ii) o, the
median and the variance of the log-normal size distribution density function in the size profile,
(ii1) p and (iv) M, the density and the arrangement parameter of dislocations in the strain profile
and (v) g or g; and ¢, for the average dislocation contrast factors as in egs. (6) or (7) for cubic
or hexagonal crystals, respectively. The values of Cjpp or Cpip are not fitting parameters since
they are only multiplicative factors in the Fourier coefficients of the strain profiles. From egs.

(1) and (2) it can be seen that the value of p can only be determined if the values of Cj9 or Cpio
are known. The values of ¢ have been compiled in [28] for different dislocation types and
elastic constants in cubic crystals. A similar compilation will be available for hexagonal crystals
in [33]. A typical example of the fitting of the Fourier coefficients of the measured physical
profiles (open circles) by the theoretical Fourier transforms (solid lines), where latter are given
in egs. (1), (2) and (11) together with the contrast factors defined in eq. (7), are shown in Fig. 1.
for ECA pressed titanium.
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Figure. 1: The measured and fitted Fourier coefficients normalised to unity of ECA pressed

titanium. The differences between the measured and fitted values are also shown in the lower

part of the figure. The scaling of the differences is the same as in the main part of the figure.
The indices of the reflections are also indicated.

3. Experimentals
3.1. Samples

A copper and a titanium sample having cubic and hexagonal crystal structure, respectively,
were investigated. A 99.98% copper and titanium specimens (kindly provided by Professor R.
Valiev and Prof. Y. T. Zhu) were deformed by ECA (equal-channel angular pressing)
producing submicron average crystallite size [34,35]. In order to avoid machining effects an
approximately 100 um surface layer was removed from the specimen surface by chemical



etching before the X-ray experiments.
3.2. X-ray diffraction technique

The diffraction profiles for copper were measured by a special double crystal diffractometer
with negligible instrumental broadening (Wilkens & Eckert, 1964). A fine focus rotating cobalt
anode (Nonius FR 591) was operated as a line focus at 36 kV and 50 mA (A=0.1789 nm). The
symmetrical 220 reflection of a Ge monochromator was used in order to have wavelength
compensation at the position of the detector. The Ko, component of the Co radiation was
eliminated by an 0.16 mm slit between the source and the Ge crystal. The profiles were
registered by a linear position sensitive gas flow detector, OED 50 Braun, Munich. In order to
avoid air scattering and absorption the distance between the specimen and the detector was
overbridged by an evacuated tube closed by mylar windows.

The diffractogram for titanium specimen was measured by a Philips X’pert diffractometer using
Cu anode and pyrolitic graphite secondary monochromator. The instrumental peak broadening
was corrected by the measurement of the Si standard (NBS 640) using the Stokes method [36].

3.3. Transmission electron microscopy

Transmission electron microscopy (TEM, JEOL JEM200CX) has been used for direct
measurement of the size distribution of crystallites in copper sample. Bright field images were
used to measure the crystallite size in the samples.

4. Results and discussions

4.1. The size distribution of grains or subgrains and the dislocation structure in ECA pressed
copper

The median, m, and variance, o, of the crystallite size distribution, the dislocation densitiy, p,
the arrangement parameter of dislocations, M, obtained for copper are listed in Table 1. It can
be established that nanocrystalline materials was formed due to large deformation. The
crystallite size distribution density function obtained from m and o is plotted as a solid line in
Fig. 2. For the ¢ parameter in the contrast factors 1.90+£0.03 has been obtained. In a previous
work the values of g have been calculated for the most common dislocation slip system in
copper with the Burgers vector b=a/2<110> [28]. It was found that for pure screw or pure edge
dislocations the values of ¢ are 2.37 or 1.68, respectively. The experimental value obtained in
the present case is somewhat below the arithmetic average of the two limiting values of ¢g. From
this we conclude that the character of the prevailing dislocations is more edge than screw. This
is in good agreement with previous theoretical and experimental observations which has
revealed that in fcc metals during large deformations at low temperatures screw dislocations
annihilate more effectively then edge dislocations [37].

The crystallite size distribution obtained from X-rays is compared with size distribution
determined from TEM micrographs of the plastically deformed bulk copper specimen. In the
TEM micrographs the crystallite sizes were determined by the usual method of random line
section. As a first approximation the grains, which are in contrast, were selected and the sizes of
them were measured in the micrographs. The distribution of these sizes is shown in Fig. 2 by
open squares. As it can be seen the grain sizes obtained from TEM are considerably larger than
the sizes of crystallites (coherently scattering domains) determined from X-rays. A more
careful evaluation of the magnified TEM micrographs reveals that the grains can be divided

into smaller subgrains. The size distribution corresponding to the subgrains is shown as a bar



graph in Fig. 2. The size distribution of subgrains is close to that of crystallites, however a small
difference can be established in Fig.2. In the copper specimen investigated here the average
dislocation distance is p'l/ =36 nm. The volume and the area weighted mean crystallite size
values (see eqs. (12) and (13)) are: 147 and 113 nm, respectively. These crystallite size values
are 3-4 times larger than the average dislocation distance indicating that the coherent domain
size is definitely different from the dislocation distance. These experimental observations are in
good correlation with the theoretical considerations in paragraph 2.3.

Table 1. The median, m, and the variance, o, of the crystallite size distribution functions, the
densities, p, and the arrangement parameters, M, of dislocations and the parameters of the
dislocation contrast factors, q, or q; and q,, obtained for copper and titanium by X-ray
diffraction peak profile analysis.

sample | m [nm] c p [10° m?] M q q1; 92
copper 59+5 0.51+0.05 1.6+0.2 2.8+1 | 1.940.1 -
titanium 3843 0.49+0.05 0.86+0.08 6.512 - -0.05%0.02;
0.184+0.02
0.02
X-Rays
TEM (subgrains)
f(x)
<X>
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Figure. 2: The size distribution density of grains and subgrains measured by TEM and the size
distribution density function of coherently scattering domains or crystallites measured by X-
rays for ECA pressed copper sample. The area and volume average crystallite sizes, <X>4req

and <x>,,, respectively, corresponding to the X-ray size distribution function, f(x), and defined

in egs. (10) and (11) are also indicated in the figure.

4.2. The size distribution of grains or subgrains and the dislocation structure in ECA pressed
titanium

The measured and the fitted Fourier coefficients of titanium sample are shown in Fig. 1. The
difference between the measured and the fitted values are also shown in the figure. The



microstructural parameters obtained from X-ray peak profile analysis are listed in Table 1. It
can be established that the severe plastic deformation of titanium resulted in nanocrystalline
material. The volume- and the area-weighted mean crystallite sizes are 88 and 69 nm,
respectively. The ¢; and ¢, parameters of the contrast factors depend on the character of
dislocations therefore enable the determination of the prevailing dislocation slip systems in the
sample. The ¢; and ¢, values were calculated for the most common slip systems in 4cp metals.
Due to the linear superposition of the displacement fields of different dislocations the contrast
factors for dislocation population containing two or more slip systems can be calculated as the
composition-weighted average of contrast factors of individual slip systems. It can be shown
that the experimentally measured ¢; and ¢, values in titanium match only the weighted sum of
specific pairs of the g; and ¢, values calculated theoretically for the different slip systems. This
is the consequence of the fact that only a few well defined and specific dislocation slip system
are activated during deformation [38]. Table 2. shows those calculated ¢g; and ¢, values which
correspond to the active slip systems in Ti. A complete list of the most common slip systems
together with the corresponding ¢ factors can be found in [33]. The calculated weighted
averages of these three slip systems and the experimental contrast factors for titanium are
matched by varying the composition of the dislocation population. A more detailed account of
the matching procedure of the theoretical ¢; and ¢, values with the meaured data can be found
in [39]. As a result of this calculation the following composition of dislocation slip systems was
obtained: 67+5% (pyramidal edge 4) + 22+5% (prismatic edge 1) + 11+5% (basal screw). The
dominance of the “pyramidal edge 4” system and the negligible presence of the "basal slip"
system in titanium is in good agreement with previous TEM observations [38].

Table 2.: The values of q; and q; parameters in the dislocation contrast factors calculated for
the three active slip systems in titanium [33].

slip system qi q>
basal screw <1 1§0> 0.5949 -0.7104
prismatic edge 1 <1 1§0>{1 T()()} -1.1927 0.3556
pyramidal edge 4 <1 1§3>{1 121} 1.5270 0.1462

5. Conclusions

The crystallite size distribution and the dislocation structure of nanocrystalline copper and
titanium produced by severe plastic deformation were studied by X-ray peak profile analysis.
The crystallite size distribution obtained from X-rays are in good agreement with the subgrain
size distribution determined by TEM. It was found that the dominant dislocation slip system in
titanium is “pyramidal edge 4 which correlates with previous TEM observations.
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