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Abstract. If the Universe is described by the Friedmannian model,
then the objects located at redshifts larger than z ~ 0.1 should be
distributed isotropically on the sky. In order to fulfil the Cosmological
Principle for these redshifts, the objects should be distributed homoge-
neously and isotropically. Various statistical isotropy tests are surveyed.
Spherical tesselation, graph theoretical and multiscale methods are used
to test the intrinsic isotropy of GRBs. The long gamma-ray bursts —
being at these redshifts — show the isotropy; however, the conclusion is
not decisive yet. Contrary to this, the short and intermediate bursts
are not distributed isotropically; however, the redshifts are not known
for these objects yet.
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1. INTRODUCTION

The cosmological distance scale of gamma-ray bursts (GRBs) is
compatible with their isotropic sky distribution. In previous studies
we applied spherical harmonics (SH) (Baldzs et al. 1999, Mészaros
et al. 2000a), the so-called counts in cells method (CC) (Mészédros
et al. 2000b) and the two-point correlation (TC) (Mészéros et al.
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Fig. 1. Voronoi tesselation (a) and minimal spanning tree (b). Dots
represent the locations of GRBs in the 2 s < Ty, < 10 s intermediate
group.

2001) in order to test the isotropy of GRBs. In this paper we col-
lect and compare all our results on the topic. Since accuracy and
sensitivity against anisotropy are method-dependent, it is usually
recommended to use different tools simultaneously in order to verify
the null-hypothesis of intrinsic isotropy of the burst angular distri-
bution.

2. SURVEY OF FURTHER METHODS

The spherical Voronoi cell corresponding to a given point in a
point pattern on the sphere is defined as the region of sphere closer
to the given point than to any other point of the sample (e.g., Stoyan
& Stoyan 1994). The set of Voronoi cells for a point pattern, called
the spherical Voronoi diagram, provides a partition of the sphere
according to the structure of the pattern as shown in Figure la. The
behavior of any tesselation method on the sphere is quite different
than on the infinite plane. Since the 47 surface of the sphere is
given, the Voronoi polygon areas will not be independent of each
other. Clearly, the tails of the cell area frequency distribution are
the most affected in the case of anisotropy. This feature makes a
very efficient use of the spherical Voronoi tesselation (VT) to detect
clustering over a wide range of spatial frequencies. Besides cell areas
we examine the cell perimeter, roundness, inner angle distributions
and their combinations.

For a given spherical point pattern, the minimal spanning tree
(MST) is defined as the unique graph connecting all the points (Epp-
stein 2000), with no closed loops and having minimal length (see Fig-
ure 1b). For this reason, the total length of its edges form a minimal
covering of the set. This graph contains N(N — 1)/2 edges, where
N is the number of nodes (the number of points in the set). We
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calculate the statistics of the MST edge length and angle (between
two edges) frequency distributions. The dual graph of the Voronoi
diagram is a triangulation of the sites. This graph is the so-called
Delaunay triangulation, built up by a set of lines connecting points
whose Voronoi diagrams share an edge. Furthermore, the MST of a
point set forms a subgraph of the Delaunay triangulation, hence VT
and MST are not completely independent structures. Their sensi-
tivity on different signs of anisotropy (e.g., clustering or filamentary
structures) is clearly different.

Multifractality is a generalization of the monofractal properties
(e.g., Paladin & Vulpiani 1987) that arise naturally in case of self-
similar point fields. A monofractal set is characterized by a single
measure (usually the capacity dimension), however, it is possible that
self-similarity is only local and different scaling laws are observed at
different scales and locations. The term multifractal (MFR) on a
point is applied when many fractal subsets with different scaling
properties coexist simultaneously. If we denote a measure as u, the
Holder exponent at x; is pug, () oc 74,

fla) =dp({zi € A| a(zi) = a}). (1)

This singularity or MFR spectrum of point set A associates a frac-
tal dimension dg of any point x; with a(x;). The function f(«) is
a single-peaked convex function with maximum max,[f(a)] = D,
where D is the monofractal dimension of the point set. In case of
D = 2 (what is applicable for GRB groups) the MFR spectrum is
not necessarily reduced into a single point but characterizes the en-
tire structure of the point pattern and remains highly sensitive to
anisotropy.

3. DETECTION OF ANISOTROPY

The above outlined methods were applied for subgroups of GRBs
(short: Ty < 2 s, intermediate: 2 s < Tgy < 10 s, long: Tyg > 2 8)
and for Monte-Carlo simulated random patterns. In the production
of the 3 x 1000 random samples the BATSE non-uniform sky expo-
sure function was taken into account. Confidence levels are derived
from Kolmogorov-Smirnov tests where the observed distributions (or
MFR spectra) are tested against the mean of the 1000 simulated dis-
tributions (spectra). A high confidence level means that we reject
the null-hypothesis of intrinsic isotropy of GRBs angular distribu-
tion. The results of tests with the highest obtained confidence levels
are collected in Table 1. The following conclusions can be made: (1)
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the null-hypothesis of the randomness of long subgroups holds; (2)
the randomness in the intermediate subclass is rejected at least on
the >96.4% confidence level; (3) the short subgroup seems to be also
anisotropic and the minimum >96.0% confidence level is reached.
Applying a surface density estimator, Litvin et al. (2001) concluded
on similar results (99.99% for the short and 99.89% for the interme-
diate group).

Table 1. Confidence levels of intrinsic anisotropy.

Group SH CC TC VT MFR  MST
Short - - 99.2% 99.9% 96.0% 99.9%
Intermediate 97.0% 96.4% 99.8% 99.8% 98.2% 97.1%
Long - - 99.8% - — 97.0%
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