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Abstract

There is growing interest in sperm senescence, both in its underlying mechanisms and evolutionary consequences, because
it can impact the evolution of numerous life history traits. Previous studies have documented various types of sperm
senescence, but evidence of post-meiotic intra-testicular sperm senescence in wild animals is lacking. To assess such
senescence, we studied within-season changes in sperm motility in the common toad (Bufo bufo), where males produce all
sperm prior to the breeding season. We found that males exposed to experimentally induced re-hibernation at the start of
the breeding season, that is to experimentally lowered metabolic rates, stored sperm of significantly higher motility than
males that were kept under seminatural conditions without females throughout the breeding season. This finding indicates
that re-hibernation slows normal rates of sperm ageing and constitutes the first evidence to our knowledge of post-meiotic
intra-testicular sperm senescence in a wild vertebrate. We also found that in males kept in seminatural conditions, sperm
motility was positively related to the number of matings a male achieved. Thus, our results suggest that post-meiotic intra-
testicular sperm senescence does not have a genetically fixed rate and may be modulated by temperature and possibly by
mating opportunities.
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Introduction

Senescence, which is reduced survival or fertility with increasing

age, has been a fundamental problem in evolutionary biology for

decades [1–4] and there is growing interest in sperm senescence

[5–6]. Sperm senescence can reduce sperm quality, which in turn

can lower fertilization success and offspring viability, resulting in

important consequences for individual fitness [6,7]. Senesced

sperm can be the result of two contrasting processes: senescence

before and after meiosis. Pre-meiotic sperm senescence is the result

of damage accumulated in diploid somatic and germ-line cells with

advancing male age. The proximate causes include the accumu-

lation of deleterious mutations and a shortening of telomeres in

male germ-line cells due to frequent mitosis, the degeneration of

nurse cells and other accessory tissue, and a decline in androgen

levels or receptor activity [8,9]. Pre-meiotic sperm senescence

results in older males having lower quality sperm. Post-meiotic

sperm senescence progresses during the life of the individual

haploid gamete and can occur both during sperm storage within

the male and, after sperm transfer, outside of the male in the

fertilization environment or in the sperm storage organ of the

female. Post-meiotic sperm senescence is caused by various factors,

including toxic residues, free radicals and osmotic and thermody-

namic stress [10–13]. Damage is done to chromatin, mitochondria

or membranes, and accumulates quickly due to high metabolic

activity, while repair is limited due to relatively little cytoplasmic

content of the sperm cell [14,15]. Post-meiotic sperm senescence

causes individual sperm that had undergone meiosis earlier to be

of lower quality.

There is substantial evidence of various kinds of sperm

senescence occurring in insects, some domestic animals (birds

and mammals) and humans, but studies of these model organisms

may not be appropriate for understanding sperm ageing in wild

vertebrates due to large differences in life histories, human-

induced artificial selection for early maturation and high re-

productive output, and an artificial environment containing

(hormonal) pollutants [16]. We know of no previous reports on

post-meiotic intra-testicular sperm senescence in wild vertebrates

[6,17], even though this form of sperm senescence may have

several significant evolutionary consequences, such as affecting

mating preferences of females [14,18–21], habitat choice and

reproductive behavior of males [22–24] and timing of reproduc-

tive activities in both sexes [25]. Species in which the spermato-

genic cycle is discontinuous and sperm production ceases before

the onset of the reproductive season provide excellent model

systems for examining post-meiotic intra-testicular sperm senes-

cence. In such species ageing sperm do not become diluted by

freshly produced sperm in the testes, which maximizes the

detectability of potential effects of post-meiotic sperm senescence

on sperm quality, without the need of tracking individual

spermatozoa. In males of some anuran amphibians, and of

common toads (Bufo bufo) in particular, there is no sperm
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replenishment during the reproductive season and males can only

use the sperm they accumulated before the onset of the

reproductive period [26–28].

We investigated within-seasonal changes in sperm quality of

male B. bufo and expected to find evidence of post-meiotic intra-

testicular sperm senescence. We studied sperm quality in isolation

from ova because patterns in fertilization success or offspring

viability can be confounded by variation in female gamete quality,

maternal environmental effects, maternal genetic effects and, most

importantly, by variation in the compatibility between male and

female gametes [29–31]. We tested for signs of pre-meiotic sperm

senescence and of a rarely investigated interaction between pre-

meiotic and post-meiotic sperm senescence [32,33]. We also

studied potential effects of the presence of females on the rate of

post-meiotic sperm senescence. Previous studies were concerned

with species exhibiting continuous sperm production, where an

increase in motility of stored sperm after ejaculation could be

explained by dilution (in the case of sperm mixing) or removal (in

the case of sperm stratification) of senesced sperm (for references

see [6]), whereas in our model species, where sperm production

ceases long before the onset of reproductive activities [26–28], any

effect of female presence or of the act of repeated matings on

sperm motility would clearly suggest the presence of physiological

effects on the rate of post-meiotic intra-testicular sperm senes-

cence.

Materials and Methods

We collected B. bufo males from a population in the Pilis

Mountains, Hungary (47u429N, 19u029E) at the start of the

breeding season in 2008. We measured snout to vent length (SVL)

with a plastic ruler (to the nearest 1 mm) and used it as a measure

of body size. We also weighed animals with a digital scale (to the

nearest 0.1 g). Over the course of one night, we collected 100

males and released the three largest, the three smallest and 46

medium-sized males to obtain a sample of 48 males containing

males of varying sizes while excluding extreme-sized individuals.

We randomly assigned males to three treatments, each

comprising 16 individuals. Males assigned to treatment 1, from

here on referred to as ‘re-hibernated males’, were immediately

transported to the laboratory where they were stored individually

in opaque plastic boxes at 5uC. Anurans are inactive and in

a hibernation-like state when kept at 5uC in the dark. Hibernation

has been shown to slow ageing-related processes in vertebrates in

general [34,35] and we found that this procedure slowed post-

meiotic sperm senescence in our study species (see Results),

presumably due to a close relationship between environmental

temperature and metabolic rate in the poikilothermic amphibians

[36], and a severe decrease of physiological activities during

hibernation [37]. A comparison between this treatment, where the

rate of senescence was lowered, and the other two treatments,

where senescence could progress normally, thus, allowed us to look

for signs of post-meiotic sperm senescence. Males assigned to

treatment 2 and 3 were kept individually under semi-natural

conditions in large plastic containers (90 cm in diameter, 80 cm

deep) placed outdoors and holding 15 cm (100 litres) of pond

water. Males in treatment 2 were deprived of females to allow us to

study potential changes in sperm quality due to post-meiotic intra-

testicular sperm senescence over the course of the reproductive

season. Males in treatment 3 were repeatedly offered gravid

females for mating, to assess potential changes in sperm quality

due to repeated matings. From here on, we refer to males in

treatment 2 as ‘‘unmated males’’ and males in treatment 3 as

‘‘mated males’’.

We collected females from the same pond as males, and from

two nearby ponds. After capture, we housed females in large

plastic boxes (1 m61 m, 40 cm high) filled with moistened leaves

until we used them in the experiment. Once we placed females

into experimental containers holding a male, we monitored trials

every 2 hours. When a pair completed egg-laying, we removed the

egg-string and the spent female and, one day later, placed a new,

gravid female into the experimental container. There was wide

among-pair variation in the interval between the formation of

amplexus and the end of egg-deposition (range: 8–168 hours),

allowing males to mate for a varying number of times (one male

mated once, five males mated twice, seven males mated three

times and three males mated four times). We terminated the

experiment 300 hours after commencement, approximately 130

hours after introducing the last available gravid female into a trial.

One pair was still in amplexus (for 150 hours) at termination. The

time span of our experiment was comparable to the length of the

breeding season in nature, where peak reproductive activity spans

about one week, with a few more matings occurring some days

before and after that period [27,38–40]. After termination, we

released all females and embryos and transported males to the

laboratory, where we stored them the same way as re-hibernated

males, i.e. individually in opaque boxes at 5uC.

Three, four, five and six days after termination of the first part

of the study, we over-anaesthetized three re-hibernated males, four

unmated males and four mated males with tricaine (MS-222),

removed their testicles and macerated them in 10 ml of

reconstituted soft water (RSW, [41]). The release of anuran sperm

into water, which is hypoosmotic compared to the intracellular

environment, leads to sperm activation [42,43]. One, 10, 30, 60

and 120 minutes after sperm activation, we took 10 ml samples

from the sperm suspensions, further diluted them by adding 40 ml

RSW (to enhance consequent readability) and pipetted the

resulting 50 ml onto specially prepared microscope slides (for

details see [44]). We recorded sperm movements with a micro-

scope-attached video camera at x200 magnification in four

different areas of the slides for 30 s each. Subsequently, to obtain

estimates of sperm motility, we counted the active and total

number of sperm visible on each screen and calculated mean

values per sperm suspension per time point. Sperm with un-

dulating tail membranes were considered motile, while those with

motionless membranes were considered inactive [45]. Although in

amphibians sperm may be re-activated to some degree by

molecules diffusing from the egg-jelly [46,47], we assumed that

the decreases in sperm motility we estimated with the above

method correlated with permanent reductions in sperm quality.

Sperm motility has indeed been shown to affect fertilization

success in another externally fertilizing frog species [48] and in

other taxa as well [49,50]. Counts were done blind, without

knowing to which treatment the observed male had been assigned.

Measurements were taken in the laboratory at a constant

temperature of 20uC. While 20uC may be higher than average

temperatures experienced in the field, all sperm may be similarly

affected and matings have been observed in the field at this water

temperature (A. Hettyey, unpublished data).

In a related study [28], we also measured testes mass and

counted the number of sperm stored in the testes in the same

individuals. There we found that the number of sperm stored in

the testes was highest in re-hibernated males (mean6SE;

1.36610861.136107), somewhat lower in unmated males

(1.23610868.746106) and lowest in mated males

(4.94610766.836106) [28]. Sperm store size did not differ

between re-hibernated and unmated males, but mated males

had significantly smaller sperm stores than males in the other two
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treatments (Bonferroni-corrected pairwise comparisons of estimat-

ed marginal means; re-hibernated vs. unmated males, P= 1; re-

hibernated vs. mated males, P,0.001; unmated vs. mated males,

P,0.001) [28]. If males of B. bufo produced sperm during the

breeding season, we should have observed higher numbers in

males kept at ambient temperatures and deprived of females than

in re-hibernated males. These results decisively supported the

conclusion of a previous study [27] on a lack of sperm production

during the reproductive season in this species.

Two re-hibernated males died before dissection, probably due

to overcooling, and we could not estimate sperm motility for

another two due to logistical difficulties, resulting in a sample size

of 44 males available for analysis: 12 re-hibernated males, 16

unmated and 16 mated males. Males did not differ in body size or

in body condition (residuals from a regression of body mass on

SVL) among the three treatments (one-way ANOVA; body size:

F2,41 = 0.13, P= 0.88; body condition: F2,41 = 0.63, P= 0.54) and

the distribution of body size was continuous and did not deviate

from normality (Kolmogorov-Smirnov test; all males: Z= 0.11,

df= 44, P.0.20; re-hibernated males: Z= 0.17, df= 12, P.0.20;

unmated males : Z= 0.20, df= 16, P= 0.091; mated males:

Z= 0.15, df= 16, P.0.20).

The Közép-Duna-Völgyi KTVF issued the permission to collect

samples and conduct the experiment (No. 13369-2/2008). This

experiment belongs to a wider study of common toads for which

we obtained a general permit from the ‘Munkahelyi Állatvédelmi

Bizottság’ (Animal Welfare Committee) of the Eötvös Loránd

University, Budapest. The toads were housed in the Ecology

laboratory of the Department of Systematic Zoology and Ecology

of the Eötvös Loránd University, Budapest, and the animals were

treated in accordance with the Hungarian Act of Animal Care and

Experimentation (1998. XXVIII. Section 243/1998).

Statistical Analyses
We conducted four analyses. First, to determine whether post-

meiotic intra-testicular sperm senescence occurs and causes

reduced sperm quality, we compared sperm motility in re-

hibernated males with that of unmated males. We used a linear

mixed effects model (LMM), entering individual as a random

factor, treatment as a fixed factor and time since sperm activation,

body size and body condition as covariates. To avoid potential

problems arising when ratios or residuals are used [51], we entered

the number of motile sperm as the dependent variable into the

model, together with total sperm number as a covariate to control

for variation in sperm density. Second, we tested whether the

presence of females affects sperm quality by comparing sperm

motility in unmated versus mated males using another LMM with

the number of motile sperm as the dependent variable, individual

as a random factor, treatment as a fixed factor, and time since

sperm activation, body size, body condition and total sperm

number as covariates. Third, to investigate potential changes in

sperm motility over the course of repeated matings, we used

another LMM, with the number of motile sperm obtained from

mated males entered as the dependent variable, individual as

a random factor, time since sperm activation, body size, body

condition, the number of matings a given male engaged in and

total sperm number as covariates. Fourth, to assess whether

varying numbers of matings affected sperm quality or, alterna-

tively, whether males that engaged in repeated matings may

simply also have had higher sperm motility, we compared

variation in sperm motility between unmated and mated males

immediately after sperm activation using Levene’s test of equality

of error variances. Similar variation would suggest that motility

was not affected by the number of matings, whereas larger

variation in mated males would suggest that the varying numbers

of matings had an effect on sperm motility and resulted in

increased variation among males. Whenever applicable, we

entered all two-way interactions into initial models (except

interactions with total sperm number, because this variable was

only entered to statistically control for variation in sperm density).

We applied a backward removal of terms with P.0.05 to avoid

problems potentially arising from the inclusion of non-significant

effects. We obtained statistics for removed variables by re-entering

them one by one to the final model [52]. Model residuals were

normally distributed in all tests. Statistics were calculated using

PASW Statistics 18.

Results

Presence/absence of Post-meiotic Sperm Senescence
In the analysis testing for post-meiotic sperm senescence,

comparing sperm motility in re-hibernated males with that of

unmated males, three variables: treatment, time since sperm

activation and total sperm number, had significant effects on the

number of motile sperm (LMM; treatment: F1,69.3 = 15.48,

P,0.001; time since sperm activation: F1,111.2 = 277.42,

B=20.082, SE= 0.008, P,0.001; total sperm number:

F1,50.5 = 144.69, B= 0.508, SE= 0.042, P,0.001). Sperm motility

decreased over time from 62.5162.97% (mean6SE) immediately

after sperm activation to 3.7460.6% two hours later (Fig. 1). The

main effects of body size and body condition were non-significant

(body size: F1,26.6 = 0.24, P= 0.63; body condition: F1,23.5 = 1.06,

P= 0.31). The interaction between treatment and body size was

marginally non-significant (F1,23.8 = 4.02, P= 0.057; re-hibernated

males: B= 0.1; SE= 0,195; unmated males: B=20.069;

SE= 0,126), whereas all other interactions involving body condi-

tion or body size remained non-significant (all P.0.11). The

interaction between treatment and time since sperm activation was

significant (F1,112.2 = 14.87, P,0.001; Fig. 1), we therefore further

analyzed the effects of treatment on the five sampling events

separately using General Linear Models [52]. We applied

Bonferroni-correction to control for the increased likelihood of

reporting false positives due to multiple testing.

Most importantly, we found a significant effect of male

treatment on sperm motility immediately following sperm

activation (GLM on data from 1 min sampling period;

F1,25 = 16.53, P= 0.002): sperm motility was higher by 30% in

re-hibernated males (mean % motile sperm6SE: 72.0463.23%)

compared with unmated males (55.3663.75%). In contrast, sperm

motility was comparable between the two treatments at all other

sampling intervals (all P.0.13). We also found a significant

positive relationship between total sperm number and the number

of motile sperm 1, 10, 30, and 60 minutes after sperm activation

(all P,0.001). This relationship was not observed 120 minutes

after sperm activation (F1,26 = 3.83, P= 0.31).

The Effect of Female Presence on Sperm Motility
When testing for an effect of female presence by comparing

sperm motility in unmated vs. mated males, we again observed

a significant decrease in the percentage of motile sperm over time

(LMM; F1,136.3 = 356.58, B=20.042, SE= 0.005, P,0.001;

Fig. 1), and an effect of treatment (F1,63.7 = 4.7, P= 0.034), where

the percentage of motile sperm was on average somewhat lower in

unmated males than in mated males (Fig. 1). However, the

interaction between time since sperm release and treatment was

also significant (F1,127.2 = 45.68, P,0.001; Fig. 1). The effect of

total sperm number was again significant (F1,81.8 = 90.48,

B= 0.368, SE= 0.039, P,0.001), whereas main effects of body
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size and body condition (body size: F1,31.1 = 1.81, P= 0.19; body

condition: F1,29.4 = 0.26, P= 0.61), or any interaction terms

involving these two variables remained non-significant (all

P.0.21). Separate analyses conducted on the five sampling events

using General Linear Models and subsequent Bonferroni-correc-

tion revealed no significant effects of treatment at any single

sampling event (all P.0.3) and a diminishing effect of total sperm

number (immediately at sperm activation and 10, 30 and 60 min:

P,0.001; at 120 min: P= 0.46).

The Effect of the Number of Matings on Sperm Motility
When analyzing potential effects of repeated mating on sperm

motility in mated males, sperm motility again decreased with time

since sperm activation (LMM; F1,64.9 = 111.32, B=20.039,

SE= 0.004, P,0.001; Fig. 2). More importantly however, we

found a significant positive correlation between sperm motility and

the number of matings a given male had performed (F1,16.3 = 7.92,

B= 0.93, SE= 0.331, P= 0.012; Fig. 2). Total sperm number also

had a significant positive effect (F1,38.4 = 101.06, B= 0.555,

SE= 0.055, P,0.001), whereas the main effects of body size and

body condition were non-significant (body size: F1,11.9 = 2.14,

P= 0.17; body condition: F1,11.3 = 0.68, P= 0.43). All two-way

interactions were non-significant (all P.0.2).

The Effect of Matings on Among-male Variation in Sperm
Motility

When comparing variation among unmated vs. mated males to

assess whether it was the presence of females that resulted in the

previously described correlation between the number of matings

and sperm motility, we obtained significantly lower variation in

sperm motility immediately after sperm activation among the 16

unmated males than among the 16 males that had mated a varying

number of times (Levene’s test of equality of error variances;

F1,30 = 4.88, P= 0.035).

Discussion

Our study provides the first evidence to our knowledge of post-

meiotic intra-testicular sperm senescence in a wild vertebrate.

Male toads held under semi-natural conditions over the course of

the breeding season (presumably suffering normal rates of sperm

senescence) stored sperm with lower motility than males that were

re-hibernated at the onset of the season (exhibiting experimentally

lowered rates of sperm senescence). Strikingly, this difference was

detectable immediately after sperm activation, which is within the

time-frame when most fertilizations occur in externally fertilizing

animals with simultaneous and syntopic gamete release [53–55].

Figure 1. Sperm motility sampled 1, 10, 30, 60 and 120 min after activation in experimentally re-hibernated males (treatment 1),
unmated males (treatment 2) and mated males (treatment 3). We show all three treatments to allow direct comparison. Means6SE of
untransformed percentage data are shown, sample sizes are indicated.
doi:10.1371/journal.pone.0050820.g001

Figure 2. Sperm motility sampled 1, 10, 30, 60 and 120 min after activation in mated males (treatment 3) in relation to the number
of times they mated. Means6SE of untransformed data are shown, sample sizes are indicated.
doi:10.1371/journal.pone.0050820.g002
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Sperm senescence can have important evolutionary conse-

quences by reducing fertilization success and embryo viability [7].

Females may be selected to avoid males with senesced sperm or to

select sperm for fertilization that are still of high quality [14,18–

21]. Males on the other hand may be selected to choose certain

(i.e., thermal) environments that slow sperm senescence, and to

shorten periods of sexual rest by also accepting matings with low-

quality females or by discharging aged sperm [22–24]. Sperm

senescence can also lead to sexual conflict if females avoid

fertilizations by senesced sperm by inducing polyandry or via

cryptic female choice [56] or if males exhibiting senesced sperm

can enforce matings [57]. In species where sperm production

ceases before the onset of the reproductive season (e.g., insects

(Plodia interpunctella): [58]; fishes (Gasterosteus aculeatus): [59]; anuran

amphibians (B. bufo): [27,28]), females can only avoid fertilizations

by senesced sperm by mating early in the season. Thus, as in

marine free-spawners [25] post-meiotic gamete senescence may

constitute one reason for the evolution of synchronized arrival of

males and females at breeding sites and of a short and intensive

breeding season, termed ‘explosive breeding’ in anurans [38].

Nonetheless, the opposite evolutionary pathway is equally likely: if

there are few opportunities for mating after peak spawning, there

is little value in investing into sperm maintenance and repair

mechanisms, so that an explosive breeding pattern may result in

fast post-meiotic gamete senescence. However, it is important to

note, that changes in sperm quality are only expected to have

evolutionary consequences if they affect fertilization success or

offspring fitness. Further studies are needed to test whether post-

meiotic intra-testicular sperm senescence has the potential to affect

these parameters.

Given that body size is related to age in animals with

indeterminate growth, such as B. bufo [60], the observation that

sperm motility increased with body size in re-hibernated males,

whereas it decreased in unmated males suggests a possible

interaction between pre- and post-meiotic sperm senescence.

The positive relationship between body size and sperm motility in

re-hibernated males may have indicated that older males have

higher quality sperm at the onset of the reproductive season than

younger males. However, this relationship turned negative by the

end of the breeding season, suggesting that sperm of older males

senesce quicker than sperm of younger males. A potential

explanation is that pre-meiotically senesced sperm may carry

more mutations that make them vulnerable to post-meiotic

damage (sensu [61]). Also, older males may invest more resources

into bodily maintenance, which has negative tradeoffs with the

production of sperm withstanding post-meiotic stress (sensu [62]).

However, since the relationship between body size and age is not

strong in B. bufo and the tendency we observed relied on one data

point, this result remains inconclusive. Observations on similar

interactions between pre-and post-meiotic sperm senescence are

scarce and deserve more attention [6].

We also observed a positive relationship between sperm motility

and the number of matings. It is unlikely that this relationship

resulted from higher quality males producing higher quality sperm

and also achieving elevated mating success, because while this

explanation would assume no difference in variation between

unmated and mated males, variation in sperm motility was

significantly higher in mated males. Instead, this result suggests

that the presence of several females, or the act of repeated mating,

may somehow lead to retarded senescence of sperm. Previous

studies have shown that male vertebrates can adjust sperm quality

to their social status [63–65], female quality [66] and mate

availability [67]. It is possible that the presence of potential mating

partners or actual matings activated hormonal signals that lowered

rates of sperm senescence (e.g., by enhancing local antioxidative

enzyme expression [68]). Alternatively, limited resources (energy,

extracellular repair mechanisms, anti-oxidants, etc.) may allow

better maintenance of fewer sperm. Hypothetically, post-hiberna-

tion spermatogenesis may have also resulted in the observed

relationship between the number of matings and sperm motility:

Males that mated more times may have had a somewhat lower

proportion of old sperm, resulting in increased overall motility.

However, previous studies showed that in B. bufo sperm production

ceases before the onset of the breeding season [27,28], which

refutes this hypothesis.

The observed among-treatment differences in sperm motility

(see Fig. 1) may partly be explained by a decline in sex-hormone

levels over the mating period [69,70]. However, this interpretation

cannot fully explain the observed patterns in sperm motility; males

that had mated once or twice showed lower sperm motility than

unmated males (males kept without females). Consequently, as in

mated males with females present, hormone levels should have

been maintained at a higher level, which in turn should have

resulted in higher sperm motility relative to unmated males, where

females were not present. Also, even though males that mated 3–4

times should have had higher sex-hormone concentrations, their

sperm had lower motility than those of males that were re-

hibernated. Consequently, changes in sperm motility do not seem

to be reversible all together by mating. Thus, the most likely

explanation is that sperm senesced over the reproductive season

and this process was influenced by the social environment. It

remains to be explored which mechanism was important in

creating the observed patterns, and how much of the variation in

sperm motility they explained.

In summary, we found evidence of post-meiotic intra-testicular

sperm senescence in B. bufo, and conclude that this type of sperm

senescence, like other forms of sperm ageing [5], does not have

a rigid, genetically fixed rate, but may also be affected by

environmental conditions, such as temperature and availability of

mating partners. Future studies should investigate how generally

post-meiotic intra-testicular sperm senescence occurs in wild

animals, what factors affect the rates of senescence and by which

mechanisms they do so, and to what extent this type of sperm

senescence affects reproductive behaviour, fertilization ability and

offspring viability.
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