Extensions of the representation modules of a prime order group ${ }^{*}$

V.A. Bovdi ${ }^{\text {a,b,* }}$, V.P. Rudko ${ }^{\text {c }}$
${ }^{\text {a }}$ Institute of Mathematics, University of Debrecen, PO Box 12, H-4010 Debrecen, Hungary
${ }^{\mathrm{b}}$ Institute of Mathematics and Informatics, College of Nyíregyháza, Sóstói út 31/b, H-4410 Nyíregyháza, Hungary
${ }^{\text {c }}$ Department of Algebra, University of Uzhgorod, 88 000, Uzhgorod, Ukraine

Received 15 September 2004

Communicated by Efim Zelmanov
Dedicated to Professor Kálmán Győry on his 65th birthday

Abstract

For the ring R of integers of a ramified extension of the field of p-adic numbers and a cyclic group G of prime order p we study the extensions of the additive groups of R-representations modules of G by the group G. © 2005 Elsevier Inc. All rights reserved.

Let \mathfrak{T} be the field of fractions of a principal ideal domain R, F a field which contains R, let G be a finite group and Γ a matrix R-representation of G. Let M be an $R G$-module, which affords the R-representation Γ of G, and $F M=F \otimes_{R} M$ the smallest linear space over F which contains M and $\widehat{M}=F M^{+} / M$, the factor group of the additive group of the space $F M$ by the additive group of M. Clearly, the group \widehat{M} and the space $F M$ are $R G$-modules. Put $\widehat{F}=F^{+} / R$.

[^0]Let $\mathfrak{f}: G \rightarrow \widehat{M}$ be a 1-cocycle of G with values in \widehat{M}, i.e.

$$
\mathfrak{f}(x y)=x \mathfrak{f}(y)+\mathfrak{f}(x) \quad(x, y \in G) .
$$

Define $[g, x]$ by $\left(\begin{array}{ll}g & x \\ 0 & 1\end{array}\right)$ and set

$$
\mathfrak{C r y s}(G, M, \mathfrak{f})=\{[g, x] \mid g \in G, x \in \mathfrak{f}(g)\},
$$

where x runs over the cosets $\mathfrak{f}(g) \in \widehat{M}$ for any $g \in G$.
Clearly, $\mathfrak{C r y s}(G, M, \mathfrak{f})$ is a group, where the multiplication is the usual matrix multiplication. Of course $K_{1}=\{[e, x] \mid e$ is the unit element of $G, x \in \mathfrak{f}(e)\}$ is a normal subgroup of $\mathfrak{C r y s}(G, M, \mathfrak{f})$ such that $K_{1} \cong M^{+}$and $\mathfrak{C r y s}(G, M, \mathfrak{f}) / K_{1} \cong G$. The group $\mathfrak{C r y s}(G, M, \mathfrak{f})$ is an extension of the additive group of the $R G$-module M by G.

We are using the terminology of the theory of group representations [1].
A 1-cocycle $\mathfrak{f}: G \rightarrow \widehat{M}$ is called coboundary, if there exists an $x \in F M$ such that $\mathfrak{f}(g)=(g-1) x+M$ for every $g \in G$. The 1-cocycles $\mathfrak{f}_{1}: G \rightarrow \widehat{M}$ and $f_{2}: G \rightarrow \widehat{M}$ are called cohomologous if $\mathfrak{f}_{1}-\mathfrak{f}_{2}$ is a coboundary. Let $H^{1}(G, \widehat{M})$ be the first cohomology group. Clearly, each element of $H^{1}(G, \widehat{M})$ defines a class of equivalence of groups.

If the 1 -cocycles $\mathfrak{f}_{1}, \mathfrak{f}_{2}$ are cohomologous, then $\mathfrak{C r y s}\left(G, M, \mathfrak{f}_{1}\right)$ and $\mathfrak{C r y s}\left(G, M, \mathfrak{f}_{2}\right)$ are isomorphic. This isomorphism is called equivalence and these groups are called equivalent. In particular, the $\operatorname{group} \mathfrak{C r y s}(G, M, \mathfrak{f})$ is split (i.e. $\mathfrak{C r y s}(G, M, \mathfrak{f})=M \rtimes G$) if and only if \mathfrak{f} is coboundary.

The dimension of the group $\mathfrak{C r n s}(G, M, \mathfrak{f})$ is called the R-rank of the R-module M. (Note that M is a free R-module of finite rank.) The group $\mathfrak{C r y s}(G, M, \mathfrak{f})$ is called irreducible (indecomposable), if M is an irreducible (indecomposable) $R G$-module and the 1 -cocycle \mathfrak{f} is not cohomologous to zero.

The group $\mathfrak{C r y s}(G, M, \mathfrak{f})$ is non-split, if the 1-cocycle \mathfrak{f} defines a non-zero element of $H^{1}(G, \widehat{M})$.

Note that the properties of the group $\mathfrak{C r y s}(G, M, \mathfrak{f})$ were studied in $[5,6,8]$, in the cases when R is either the ring of rational integers \mathbb{Z}, or the p-adic integers \mathbb{Z}_{p}, or the localization $\mathbb{Z}_{(p)}$ of \mathbb{Z} at p.

Let $G=\left\langle a \mid a^{p}=1\right\rangle$ be the cyclic group of prime order p, R the ring of integers of the ramified finite extension T of the field of p-adic numbers. We calculate the group $H^{1}(G, \widehat{M})$ for some module M of an indecomposable R-representation of G.

Let $\Phi_{p}(x)=x^{p-1}+\cdots+x+1$ be a cyclotomic polynomial of degree p and let $\eta(x)$ be a divisor of $\Phi_{p}(x)$ over the field \mathfrak{T} with $\operatorname{deg}(\eta(x))<p-1$ (provided that such non-trivial polynomial exists).

Lemma 1. Let M_{1} and M_{2} be $R G$-modules which afford an R-representation Γ of $G=$ $\left\langle a \mid a^{p}=1\right\rangle$.
(i) If $M_{1} \cong M_{2}$ then $H^{1}\left(G, \widehat{M_{1}}\right) \cong H^{1}\left(G, \widehat{M_{2}}\right)$.
(ii) If the matrix Γ (a) does not have 1 as eigenvalue, then $H^{1}\left(G, \widehat{M_{1}}\right)$ is trivial.

Proof. See [1].

Theorem 1. Let $G=\left\langle a \mid a^{p}=1\right\rangle$ and $M_{\eta}=\eta(a) R G$. Then the $R G$-module M_{η} is indecomposable and

$$
H^{1}\left(G, \widehat{M_{\eta}}\right) \cong R /(\eta(1) R),
$$

where $R /(\eta(1) R)$ is the additive group of the factor ring of R by the ideal $\eta(1) R$.
Proof. Let $t \in R$ be a prime element and $\bar{R}=R /(t R)$. Then in \bar{R} we have that

$$
\begin{equation*}
x^{p}-1=(x-1)^{p}, \quad \eta(x)=(x-1)^{n}, \quad\left(x^{p}-1\right) \eta^{-1}(x)=(x-1)^{p-n} \tag{1}
\end{equation*}
$$

where $n=\operatorname{deg}(\eta(x))$.
Put $\eta_{1}(x)=\left(x^{p}-1\right) \eta^{-1}(x)$. Then M_{η} and $R G /\left(\eta_{1}(a) R G\right)$ are isomorphic as $R G$ modules. If $\overline{M_{\eta}}=M_{\eta} /\left(t M_{\eta}\right)$, then by (1) follows that $\overline{M_{\eta}}$ is a root subspace of the linear operator a over \bar{R}. It is easy to see that $\overline{M_{\eta}}$ is not decomposable into a direct sum of invariant subspaces. It follows that M_{η} is an indecomposable $R G$-module. Clearly $F M_{\eta}=$ $\eta(a) F G=\eta(a) F+(a-1) F M_{\eta}$ and the group $\widehat{M_{\eta}}=F M_{\eta}^{+} / M_{\eta}$ is isomorphic to a direct sum of groups $\eta(a)\left(F^{+} / R\right)+(a-1) \widehat{M_{\eta}}$. This means that in the class of 1-cocycles there is a cocycle $\mathfrak{f}: G \rightarrow \widehat{M_{\eta}}$ such that

$$
\mathfrak{f}(a)=\lambda \eta(a)+M_{\eta} \quad(\lambda \in F) .
$$

Moreover, from $\mathfrak{f}\left(a^{p}\right)=0\left(\right.$ in $\left.\widehat{M_{\eta}}\right)$ it follows that if $\omega=a^{p-1}+\cdots+a+1$, then

$$
\omega \cdot \mathfrak{f}(a)=\lambda \cdot \eta(1) \cdot \omega \in M_{\eta}
$$

if and only if $\lambda \eta(1) \in R$. Therefore, $H^{1}\left(G, \widehat{M_{\eta}}\right)$ is isomorphic to the subgroup $\{\lambda+R \mid$ $\lambda \in F, \lambda \cdot \eta(1) \in R\}$ of F / R and

$$
\{\lambda+R \in F / R \mid \lambda \cdot \eta(1) \in R\} \cong R /(\eta(1) R) .
$$

Corollary 1. Let $\alpha \in R$ and $\eta(1) R=t^{s} R$, where t is a prime element of R. Put

$$
K_{\alpha}\left(G, M_{\eta}\right)=\left\langle\left(\begin{array}{cc}
e & m \\
0 & 1
\end{array}\right), \left.\left(\begin{array}{cc}
a & \alpha t^{-s} \eta(a) \\
0 & 1
\end{array}\right) \right\rvert\, m \in M_{\eta}\right\rangle,
$$

where α runs over the representative elements of the cosets of $R /\left(t^{s} R\right)$. Up to equivalence, the groups $K_{\alpha}\left(G, M_{\eta}\right)$ give all extensions of the additive group of the $R G$-module M_{η} by the group G.

Suppose $p=t^{d} \theta$, where $d>1$ is the ramification index and θ is a unit in R. Set

$$
\mathfrak{X}_{j i}=t^{j} R G+(a-1)^{i} R G \quad(1 \leqslant j<d, 1 \leqslant i<p) .
$$

Theorem 2. The module $\mathfrak{X}_{j i}$ is an $R G$-module affording an indecomposable R-representation of G and

$$
H^{1}\left(G, \widehat{\mathfrak{X}}_{j i}\right) \cong R /\left(t^{d-j} R\right)
$$

Proof. Suppose that the $R G$-module $\mathfrak{X}_{j i}$ is decomposable into a direct sum of $R G$ submodules. Then $t^{j}=u_{1}+u_{2}$, where u_{1}, u_{2} are non-zero elements of $R G$ with $u_{1} u_{2}=0$. Thus $e_{1}=t^{-j} u_{1}$ is an idempotent. Since the trace $\operatorname{tr}\left(e_{1}\right)$ of e_{1} is a rational number (see [4, Theorem 3.5, p. 21]) of the form $r p^{-1}(1 \leqslant r \leqslant p)$, we get $t^{j} r p^{-1} \in R$, which is impossible for $j<d$. This contradiction proves the indecomposability of $\mathfrak{X}_{j i}$.

Clearly $F \mathfrak{X}_{j i}=F G=F+(a-1) F G$. Therefore, in each class of 1-cocycles there is a cocycle $\mathfrak{f}: G \rightarrow \widehat{\mathfrak{X}}_{j i}$ such that $\mathfrak{f}(a)=\lambda+\mathfrak{X}_{j i}$, where $\lambda \in F$ with $\lambda \omega \in \mathfrak{X}_{j i}$. It follows that $\lambda p=t^{j} \alpha$, where $\alpha \in R$ and

$$
H^{1}\left(G, \widehat{\mathfrak{X}}_{j i}\right) \cong\left\{\lambda+R \mid \lambda \in F, \lambda t^{d-j} \in R\right\}
$$

is a subgroup of F / R.

Set

$$
K_{\alpha}\left(G, \mathfrak{X}_{j i}\right)=\left\langle\left(\begin{array}{cc}
e & m \\
0 & 1
\end{array}\right), \left.\left(\begin{array}{cc}
a & \alpha t^{j-d} \\
0 & 1
\end{array}\right) \right\rvert\, m \in \mathfrak{X}_{j i}\right\rangle
$$

where α runs over the representative elements of the cosets of $R /\left(t^{d-j} R\right)$.

Corollary 2. The groups $K_{\alpha}\left(G, \mathfrak{X}_{j i}\right)$ give all extensions of the additive group of the $R G$ module $\mathfrak{X}_{j i}$ by G.

Lemma 2. The set $\left\{\mathfrak{X}_{j i} \mid j=1, \ldots, d-1 ; i=1, \ldots,(p-1) / 2\right\}$ consists of pairwise non-isomorphic modules.

Proof. Let us consider an indecomposable $\bar{R} G$-module $V_{i}=\bar{R} G /\left((a-1)^{i} \bar{R} G\right)$, where $\bar{R}=R /(t R)$ and $1 \leqslant i \leqslant p$. It is easy to check that the elements

$$
\begin{equation*}
u_{1}=t^{j}, \quad \ldots, \quad u_{i}=t^{j}(a-1)^{i-1}, \quad u_{i+1}=(a-1)^{i}, \quad \ldots, \quad u_{p}=(a-1)^{p-1} \tag{2}
\end{equation*}
$$

form an R-basis in $\mathfrak{X}_{j i}$ and

$$
\begin{equation*}
\Phi_{p}(x)-(x-1)^{p-1}=p \theta(x), \tag{3}
\end{equation*}
$$

where $\theta(x) \in \mathbb{Z}[x], \operatorname{deg}(\theta(x)) \leqslant p-2$. Note that since $\theta(1)=1$, it follows that $\theta(a)$ is a unit in the group ring $R G$. Using the identity

$$
x y-1=(x-1)(y-1)+(x-1)+(y-1),
$$

from (3) we obtain that

$$
\begin{equation*}
(a-1)^{p}=p(a-1) \cdot\left(\alpha_{0}+\alpha_{1}(a-1)+\cdots+\alpha_{p-2}(a-1)^{p-2}\right) \tag{4}
\end{equation*}
$$

where $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{p-2} \in \mathbb{Z}$. Since $p=t^{d} \theta=t\left(t^{d-1} \theta\right)$, from (4) we get

$$
\begin{equation*}
(a-1)^{p}=(a-1) u_{p}=t m, \tag{5}
\end{equation*}
$$

where $m \in \mathfrak{X}_{j i}$. According to (2), $(a-1) u_{i}=t^{j} u_{i+1}$, and from (5) we obtain that the $R G$-module $\overline{\mathfrak{X}}_{j i}=\mathfrak{X}_{j i} /\left(t \mathfrak{X}_{j i}\right)$ is isomorphic to a direct sum $V_{i} \oplus V_{p-i}$ of indecomposable $\bar{R} G$-modules, so by Theorem 2 and Lemma 1 the proof is complete.

Let $n>1$ be the degree of a divisor of $\Phi_{p}(x)$ which is irreducible over R. We consider the following $R G$-modules:

$$
\mathfrak{U}_{j i}=t^{j}(a-1) R G+(a-1)^{s+1} R G \quad(1 \leqslant j<d, 1 \leqslant s<n) .
$$

It is easy to check that the $R G$-module $\mathfrak{U}_{j i}$ satisfies the condition (ii) of Lemma 1 , so $H^{1}\left(G, \widehat{\mathfrak{U}_{j i}}\right)=0$.

Let $\mathfrak{Z}_{j s}$ be a submodule on the free module $R G^{(2)}=\{(x, y) \mid x, y \in R G\}$ of rank 2, which consists of the solutions (x, y) of the equality

$$
\begin{equation*}
t^{j}(a-1) x+(a-1)^{s+1} y=0 . \tag{6}
\end{equation*}
$$

Lemma 3. Let $\omega=\Phi_{p}(a)$ and set $u_{1}=[0, \omega], u_{2}=\left[(a-1)^{s},-t^{j}\right]$ and $u_{3}=\left[t^{-j}(\omega-\right.$ $\left.\left.(a-1)^{p-1}\right),(a-1)^{p-s-1}\right]$. Then $\mathfrak{Z}_{j s}$ is an $R G$-module generated by u_{1}, u_{2}, u_{3}.

Proof. Clearly, $u_{1}, u_{2}, u_{3} \in \mathfrak{Z}_{j s}$. Let $u=[x, y]$ be an arbitrary element of $\mathfrak{Z}_{j s}$. If $x=0$ then $u=u_{1}$. Suppose $x \neq 0$. By substraction of the elements of $R G u_{3}$ from u we obtain that $y=\gamma_{0}+\gamma_{1}(a-1)+\cdots+\gamma_{p-s-2}(a-1)^{p-s-2}\left(\gamma_{r} \in R\right)$. By (6)

$$
t^{j}(a-1) x+\left(\gamma_{0}+\gamma_{1}(a-1)+\cdots+\gamma_{p-s-2}(a-1)^{p-s-2}\right) \cdot(a-1)^{s+1}=0
$$

which is possible if and only if $\gamma_{0} \equiv \cdots \equiv \gamma_{p-s-2} \equiv 0\left(\bmod t^{j}\right)$. Now, since u is an element of $R G u_{2}$, we obtain that $y=0$. Then $t^{j}(a-1) x=0$, which implies $x=\alpha \omega$ $(\alpha \in R)$ and $u=\alpha\left(t^{j} u_{3}-(a-1)^{p-s-1} u_{2}\right)$.

Theorem 3. The $R G$-module $\mathfrak{Z}_{j s}$ is indecomposable. Moreover,

$$
H^{1}\left(G, \widehat{\mathfrak{Z}}_{j s}\right) \cong R /\left(t^{d} R\right) \oplus R /\left(t^{d-j} R\right)
$$

and the $R G$-modules $\mathfrak{X}_{j s}$ are pairwise non-isomorphic.

Proof. It is easy to see that

$$
\begin{array}{ccc}
u_{1}=t^{j}(a-1), & \ldots, & u_{i-1}=t^{j}(a-1)^{i-1} \\
u_{i}=(a-1)^{i}, & \ldots, & u_{p-1}=(a-1)^{p-1}
\end{array}
$$

form an R-basis in the $R G$-module $\mathfrak{U}_{j s}$ and

$$
\overline{\mathfrak{U}}_{j s}=\mathfrak{U}_{j s} /\left(t \mathfrak{U}_{j s}\right) \cong V_{s} \oplus V_{p-s-1}
$$

Since $s<n$, it follows that the $R G$-module $\mathfrak{U}_{j s}$ is indecomposable. Moreover, it follows that the $R G$-modules $\mathfrak{U}_{j s}$ are pairwise non-isomorphic and $R G$-modules $\mathfrak{Z}_{j s}, \mathfrak{U}_{j s}$ and $R G^{2}$ form an exact sequence

$$
0 \rightarrow \mathfrak{Z}_{j s} \rightarrow R G^{(2)} \rightarrow \mathfrak{U}_{j s} \rightarrow 0
$$

Therefore, $\mathfrak{Z}_{j s}$ is the kernel of a minimal projective covering of the indecomposable $R G$ module $\mathfrak{U}_{j s}$, so $\mathfrak{Z}_{j s}$ is also indecomposable.

Lemma 4. Let $\widehat{\mathfrak{Z}}_{j s}=\left(F \mathfrak{Z}_{j s}\right)^{+} / \mathfrak{Z}_{j s}, \widehat{F}=F^{+} / R$ and $M=(a-1) \widehat{\mathfrak{Z}}_{j s}$. Then

$$
\widehat{\mathfrak{Z}}_{j s} / M=\widehat{F} \nu_{1}+\widehat{F} \nu_{2},
$$

where $\nu_{1}=[0, \omega]+M, \nu_{2}=[\omega, 0]+M$ and $a \nu_{1}=\nu_{1}, a \nu_{2}=\nu_{2}$.
Proof. Clearly, $a x=x\left(x \in \widehat{\mathfrak{Z}}_{j s} / M\right)$ and $\widehat{F} \nu_{1}=\widehat{F}[0, \omega]+M \in \widehat{\mathfrak{Z}}_{j s} / M$. Moreover,

$$
\omega \widehat{F} u_{3}+M=\widehat{F}\left[t^{-1} p \omega, 0\right]+M=\widehat{F}\left(t p^{-1}\right)\left[t^{-1} p \omega, 0\right]+M=\widehat{F}[\omega, 0]+M .
$$

By analogy

$$
\omega \widehat{F} u_{2}+M=\widehat{F}\left[0,-t^{j} \omega\right]+M=\widehat{F}[0, \omega]=\widehat{F} v_{1} .
$$

Therefore $\widehat{\mathfrak{Z}}_{j s} / M=\widehat{F} \nu_{1}+\widehat{F} \nu_{2}$.
From Lemma 4 it follows that each class of 1-cocycles of the group G with values in the group $\widehat{\mathfrak{Z}}_{j s}=\left(F \mathfrak{Z}_{j s}\right)^{+} / \mathfrak{Z}_{j s}$ contains a 1-cocycle \mathfrak{f} such that

$$
\mathfrak{f}(a)=\alpha[0, \omega]+\beta[\omega, 0]+\mathfrak{Z}_{j s},
$$

where $\alpha, \beta \in F$ and $\omega(\alpha[0, \omega]+\beta[\omega, 0]) \in \mathfrak{Z}_{j s}$. This condition holds if and only if $\alpha p, \beta p \in R$. Moreover,

$$
\alpha[0, \omega]+\beta[\omega, 0] \in \mathfrak{Z}_{j s}+(a-1) \widehat{\mathfrak{Z}}_{j s}
$$

if and only if $\alpha \in R$ and $\beta \in t^{-j} R$. Using properties of the 1 -cocycle \mathfrak{f} it is easy to show that the two 1-cocycles $\mathfrak{f}_{j}(j=1,2)$:

$$
\mathfrak{f}_{1}(a)=\alpha_{1}[0, \omega]+\beta_{1}[\omega, 0]+\mathfrak{Z}_{j s}, \quad \mathfrak{f}_{2}(a)=\alpha_{2}[0, \omega]+\beta_{2}[\omega, 0]+\mathfrak{Z}_{j s}
$$

are cohomologous if and only if

$$
p \alpha_{1} \equiv p \alpha_{2} \quad\left(\bmod t^{d}\right) \quad \text { and } \quad p \beta_{1} \equiv p \beta_{2} \quad\left(\bmod t^{d-j}\right)
$$

where $\alpha_{j}, \beta_{j} \in F, p \alpha_{j}, p \beta_{j} \in R$. Note that $p=t^{d} \theta$.
It follows that the map $\mathfrak{f} \mapsto\left(p \alpha+t^{d} R, p \beta+t^{d-j} R\right)$ gives the isomorphism

$$
H^{1}\left(G, \widehat{\mathfrak{Z}}_{j s}\right) \cong R /\left(t^{d} R\right) \oplus R /\left(t^{d-j} R\right)
$$

Therefore, according to (ii) of Lemma 1 , the $R G$-modules $\mathfrak{Z}_{j s}(1 \leqslant j<d)$ are pairwise non-isomorphic.

Now, using the description of 1-cocycles it is easy to prove the following
Corollary 3. Put

$$
K_{\alpha, \beta}\left(G, \mathfrak{Z}_{j s}\right)=\left\langle\left(\begin{array}{cc}
e & m \\
0 & 1
\end{array}\right), \left.\left(\begin{array}{cc}
a & \alpha t^{-d}[0, \omega]+\beta t^{-d}[\omega, 0] \\
0 & 1
\end{array}\right) \right\rvert\, m \in Z_{j s}\right\rangle
$$

where α and β independently run over the representative elements of the cosets $R /\left(t^{d} R\right)$ and $R /\left(t^{d-j} R\right)$, respectively. Up to equivalence, the groups $K_{\alpha, \beta}\left(G, \mathfrak{Z}_{j s}\right)$ give all extensions of the additive group of the $R G$-module $\mathfrak{Z}_{j \text { s }}$ by the group G.

If R is the quadratic extension of the ring of p-adic integers, then the R-representations of G were described by P.M. Gudivok (see [7]). Finally, we have the following result.

Theorem 4. Let $\Phi_{p}(x)$ be decomposable into the product of at least two irreducible polynomials over R. Then the dimensions of the non-split indecomposable groups $\mathfrak{C r y s}(G, M, \mathfrak{f})$ are unbounded.

Proof. Let $\Phi_{p}(x)=\eta_{1}(x) \cdots \eta_{k}(x)(k>2)$ be a decomposition into a product of polynomials irreducible over R and suppose that

$$
\eta_{1}(x)=x^{n}-\alpha_{n-1} x^{n-1}-\cdots-\alpha_{1} x-\alpha_{0} \in R[x] .
$$

Note that $\operatorname{deg}\left(\eta_{1}(x)\right)=\operatorname{deg}\left(\eta_{2}(x)\right)=\cdots=\operatorname{deg}\left(\eta_{k}(x)\right)=n$ and $k n=p-1$.
We will use the technique of integral representation of finite groups, which was developed by S.D. Berman and P.M. Gudivok in [2,3,7].

Let ε be a primitive p th root of unity such that $\eta_{1}(\varepsilon)=0$ and let r_{j} be a natural number, such that $\varepsilon_{j}=\varepsilon^{r_{j}}$ is a root of the polynomial $\eta_{j}(x)$, where $r_{1}=1$ and $j=1, \ldots, k$. Let

$$
\tilde{\varepsilon}=\left(\begin{array}{cccc}
0 & \cdots & 0 & \alpha_{0} \\
1 & \cdots & 0 & \alpha_{1} \\
\vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 1 & \alpha_{n-1}
\end{array}\right)
$$

be the comparing matrix of $\eta_{1}(x)$.
The following R-representations of $G=\left\langle a \mid a^{p}=1\right\rangle$ are irreducible:

$$
\delta_{0}: a \mapsto 1, \quad \delta_{1}: a \mapsto \tilde{\varepsilon}, \quad \delta_{j}: a \mapsto \tilde{\varepsilon_{j}}=\tilde{\varepsilon_{j}}{ }^{r_{j}} \quad(j=2, \ldots, k) .
$$

Note that the module which affords representation δ_{1} is $R[\varepsilon]$ with R-basis $1, \varepsilon, \ldots$, ε^{n-1}.

Let $m \in \mathbb{N}$. Define the following R-representation of $G=\langle a\rangle$ of degree $(3 n+1) m$:

$$
\Gamma_{m}: a \mapsto\left(\begin{array}{cc}
\Delta_{1 m}(a) & U_{m}(a) \\
0 & \Delta_{2 m}(a)
\end{array}\right),
$$

where

- $\Delta_{1 m}(a)=\delta_{0}^{(m)}(a)+\delta_{1}^{(m)}(a)=\left(\begin{array}{c}E_{m} \otimes \delta_{0}(a) \\ 0\end{array} \stackrel{0}{E_{m} \otimes \delta_{1}(a)}\right)$;
- $\Delta_{2 m}(a)=\delta_{2}^{(m)}(a)+\delta_{3}^{(m)}(a)=\left(\begin{array}{cc}E_{m} \otimes \delta_{2}(a) & 0 \\ 0 & E_{m} \otimes \delta_{3}(a)\end{array}\right)$;
- $U_{m}(a)=\left(\begin{array}{cc}E_{m} \otimes u & J_{m}(1) \otimes u \\ E_{m} \otimes \bar{u} & E_{m} \otimes \bar{u}\end{array}\right)$;
- $u=(0,0, \ldots, 0,1)$ defines a non-zero element of $\operatorname{Ext}\left(\delta_{0}, \delta_{j}\right)$;
- $J_{m}(\lambda)$ is a Jordan block of degree m with λ in the main diagonal;
- \bar{u} is a matrix in which the first row is $(0, \ldots, 0,1)$ and all other rows are zero. The matrix \bar{u} defines a non-zero element of the group $\operatorname{Ext}\left(\delta_{1}, \delta_{j}\right)$, where $j=2,3$;
- E_{m} is the unity matrix of degree m.

Lemma 5 (see [2,3]). Γ_{m} is an indecomposable R-representation of G.
Let $\mathfrak{W}_{m}=R^{l}$ be a module of l-dimension vectors over R affording the R-representation Γ_{m}. Put $\widehat{F}=F^{+} / R, \widehat{\mathfrak{W}}_{m}=F \mathfrak{W}_{m}^{+} / \mathfrak{W}_{m}$. Clearly $\widehat{F}^{l} \cong \widehat{\mathfrak{W}}_{m}$. Define $\tau: F \rightarrow F^{n}$ by

$$
\begin{equation*}
\tau(w)=w\left(\alpha_{0}, \alpha_{0}+\alpha_{1}, \alpha_{0}+\alpha_{1}+\alpha_{2}, \ldots, \alpha_{0}+\cdots+\alpha_{n-2}, 1\right), \tag{7}
\end{equation*}
$$

where the α_{j} are coefficients of $\eta_{1}(x)$ and $w \in F$.

Lemma 6.

(i) Each 1-cocycle of $G=\left\langle a \mid a^{p}=1\right\rangle$ at $\widehat{\mathfrak{W}}_{m}$ is cohomologous to a cocycle \mathfrak{f}, such that

$$
\mathfrak{f}(a)=(X, 0, \ldots, 0)+\mathfrak{W}_{m},
$$

where $X \in F^{m}$ and $p X=0$ in \widehat{F}^{m} (i.e. $p X \in R^{m}$).
(ii) Let $z \in F^{n}$ such that $\left(\tilde{\varepsilon}-E_{n}\right) z=0$ in \widehat{F}^{n}. Then $z=\tau(w)\left(\bmod R^{n}\right)$, with $w \in F$ such that $\eta_{1}(1) w=0$ in \widehat{F}.
(iii) If $V=R /\left(\frac{p}{\eta(1)} R\right)$ is the residual of ring R by the ideal $\left(\frac{p}{\eta(1)} R\right)$, then $H^{1}\left(G, \widehat{\mathfrak{W}}_{n}\right) \cong$ V^{m}.

Proof. (i) follows from (ii) of Lemma 1. (ii) is easy to check.
(iii) By (i) we can put $\mathfrak{f}(a)=(X, 0,0,0)$ and $\mathfrak{g}(a)=(Y, 0,0,0)$, where $X=$ $\left(x_{1}, \ldots, x_{n}\right), Y=\left(y_{1}, \ldots, y_{n}\right)$ and $p X=p Y=0$. Note that all the equalities considered here are understood modulo the group R. Suppose that these 1-cocycles are cohomologous and $Z \in F^{l}$ is such that

$$
\begin{equation*}
\left(\Gamma_{m}(a)-E_{l}\right) Z+\mathfrak{f}(a)=\mathfrak{g}(a) . \tag{8}
\end{equation*}
$$

Put $Z=\left(Z_{1}, Z_{2}, Z_{3}, Z_{4}\right)$, where $Z_{1} \in F^{m}$ and Z_{2}, Z_{3}, Z_{4} are m-dimensional vectors, with i-components belong to F^{n}, and denoted by Z_{2}^{i}, Z_{3}^{i} and Z_{4}^{i}, respectively. By (8) we get

$$
\begin{gather*}
\left(E_{m} \otimes u\right) Z_{3}+\left(J_{m} \otimes u\right) Z_{4}+X=Y, \tag{9}\\
\left(E_{m} \otimes\left(\tilde{\varepsilon}-E_{n}\right)\right) Z_{2}+\left(E_{m} \otimes \bar{u}\right)\left(Z_{3}+Z_{4}\right)=0, \tag{10}\\
\left(E_{m} \otimes\left(\tilde{\varepsilon}_{2}-E_{n}\right)\right) Z_{3}=0, \quad\left(E_{m} \otimes\left(\tilde{\varepsilon}_{3}-E_{n}\right)\right) Z_{4}=0 . \tag{11}
\end{gather*}
$$

From (11) and by (ii) we have

$$
\begin{equation*}
Z_{3}=\left(\tau\left(v_{1}\right), \ldots, \tau\left(v_{m}\right)\right), \quad Z_{4}=\left(\tau\left(u_{1}\right), \ldots, \tau\left(u_{m}\right)\right), \tag{12}
\end{equation*}
$$

where $u_{j}, v_{j} \in F, \tau$ is from (7) and

$$
\begin{equation*}
\eta_{1}(1) u_{j}=\eta_{1}(1) v_{j}=0 . \tag{13}
\end{equation*}
$$

Clearly, the equality (10) consists of m matrix equalities of the form

$$
\begin{equation*}
\left(\tilde{\varepsilon}-E_{n}\right) Z_{2}^{i}+\bar{u} \tau(w)=0, \tag{14}
\end{equation*}
$$

where $Z_{2}^{i} \in F^{n}$ is the i th component of $Z_{2}, i=1, \ldots, m$, and $w \in F$. Since $u \tau(w)=w$ and $\bar{u} \tau(w)=(w, 0, \ldots, 0)$, when all the rows of (14) are added together we obtain

$$
\begin{equation*}
-\eta(1) Z_{2}^{n}+w=0, \tag{15}
\end{equation*}
$$

where Z_{2}^{n} is the last component of the vector Z_{2}. According to (12) and (15), (10) gives the equalities

$$
\begin{equation*}
-\eta(1) z_{j}+v_{j}+u_{j}=0 \quad(j=1, \ldots, m), \tag{16}
\end{equation*}
$$

where z_{j} are some components of Z_{2}. From (9)

$$
\begin{gather*}
v_{j}+u_{j}+u_{j+1}+x_{j}=y_{j} \quad(j=1, \ldots, m-1), \\
v_{m}+u_{m}+x_{m}=y_{m}, \tag{17}
\end{gather*}
$$

where $X=\left(x_{1}, \ldots, x_{n}\right), Y=\left(y_{1}, \ldots, y_{n}\right)$ and $p X=p Y=0$. Multiplying (17) by $\eta_{1}(1)$ and using (16) we obtain for the components of X and Y

$$
\begin{equation*}
\eta_{1}(1) x_{j}=\eta_{1}(1) y_{j} \quad(j=1, \ldots, m) . \tag{18}
\end{equation*}
$$

Therefore, if the 1 -cocycles \mathfrak{f} and \mathfrak{g} are cohomologous then (18) holds.
Conversely, suppose that (18) holds. Then it is not difficult to construct vectors Z_{2}, Z_{3}, Z_{4} that satisfy (9) and (10), which is equivalent to (8), i.e. the 1 -cocycles \mathfrak{f} and \mathfrak{g} are cohomologous. It follows that by going from a cocycle to an element of the cohomology group, we need to change each component in X by $\beta=\alpha \cdot p^{-1}$ modulo the group R, where $\alpha \in R$. Moreover, if $\eta_{1} \cdot \beta \in R$, then must change β to 0 .

Theorem 5. Let $\varepsilon \in R$, where $\varepsilon^{p}=1$ and $p>2$. Then the description of the non-split indecomposable groups $\mathfrak{C v y s}(G, M, \mathfrak{f})$ is a wild type problem.

Proof. For arbitrary matrices $A, B \in M(m, R)$ the map

$$
\Gamma_{A, B}: a \mapsto\left(\begin{array}{ccccc}
E & 0 & E & A & E \\
& \varepsilon E & E & E & B \\
& & \varepsilon^{2} E & 0 & 0 \\
& & & \varepsilon^{3} E & 0 \\
& & & & \varepsilon^{4} E
\end{array}\right)
$$

is an R-representation of G of degree $l=5 \mathrm{~m}$. The R-representations $\Gamma_{A, B}$ and $\Gamma_{A_{1}, B_{1}}$ are R-equivalent if and only if

$$
C^{-1} A C \equiv A_{1} \quad(\bmod (1-\varepsilon)), \quad C^{-1} B C \equiv B_{1} \quad(\bmod (1-\varepsilon))
$$

for some invertible matrix C. It follows that the description of the R-representations $\Gamma_{A, B}$ of G is a wild type problem.

For the module affording the representation $\Gamma_{A, B}$ of G we put R^{l}. Let X be an m dimensional vector over F with $p X \in R^{m}$. Then there is a 1-cocycle $\mathfrak{f}_{X}: G \rightarrow \widehat{R}^{l}$, such that $\mathfrak{f}_{X}(a)=(X, 0, \ldots, 0)+R^{l}$. The 1-cocycles \mathfrak{f}_{X} and \mathfrak{f}_{Y} are cohomologous if and only if

$$
(1-\varepsilon)(X-Y) \in R^{m} .
$$

Putting $X=\left(p^{-1}, 0, \ldots, 0\right)$ we obtain that $H^{1}\left(G, \widehat{R}^{l}\right) \neq 0$.

References

[1] D.J. Benson, Representations and Cohomology: Cohomology of Groups and Modules, Cambridge Stud. Adv. Math., vol. 31, Cambridge Univ. Press, Cambridge, 1998.
[2] S.D. Berman, Representations of finite groups over an arbitrary field and over rings of integers, Izv. Akad. Nauk SSSR Ser. Mat. 30 (1966) 69-132 (in Russian).
[3] S.D. Berman, P.M. Gudivok, Indecomposable representation of finite group over the ring p-adic integers, Izv. AN USSR 28 (4) (1964) 875-910 (in Russian).
[4] A.A. Bovdi, Group Rings, UMK BO, Kiev, 1988, 156 pp. (in Russian).
[5] V.A. Bovdi, P.M. Gudivok, V.P. Rudko, Torsion free groups with indecomposable holonomy group I, J. Group Theory 5 (2002) 75-96.
[6] V.A. Bovdi, P.M. Gudivok, V.P. Rudko, Torsion-free crystallographic groups with indecomposable holonomy group, J. Group Theory 7 (4) (2004) 555-569.
[7] P.M. Gudivok, Representation of finite groups over quadratic fields, Dokl. AN USSR 5 (2002) 75-96.
[8] G.M. Kopcha, Non-split extension of the indecomposable module of p-integer representation of the cyclic group of order p^{2}, Uzhgorod Univ. Sci. Herald. Math. Ser. 5 (2000) 49-56 (in Ukrainian).

[^0]: 4. The research was supported by OTKA Nos. T 037202 and T 038059.

 * Corresponding author.

 E-mail addresses: vbovdi@math.klte.hu (V.A. Bovdi), math1 @univ.uzhgorod.ua (V.P. Rudko).

