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Abstract

For the ringR of integers of a ramified extension of the field pfadic numbers and a cyclic
groupG of prime orderp we study the extensions of the additive groupRefepresentations mod-
ules of G by the groupG.
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Let ¥ be the field of fractions of a principal ideal domatn F a field which contain®,
let G be a finite group and™ a matrix R-representation o;. Let M be anRG-module,
which affords theR-representatiod” of G, andFM = F ® g M the smallest linear space
over F which containsM and M = FM™ /M, the factor group of the additive group of
the spacel" M by the additive group oM. Clearly, the groupf\/? and the spacé&' M are
RG-modules. Puf = F+/R.
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Letf: G — M be a 1-cocycle o6 with values iniM, i.e.

flxy) = xf(y) +(x)  (x,y€G).

Define[g, x] by (§7) and set

Cws(G, M, §) = {lg,x]1 g € G, x € ()},

wherex runs over the cosefsg) € M for anyg eG.

Clearly,€tys(G, M, §) is a group, where the multiplication is the usual matrix multipli-
cation. Of cours&; = {[e, x] | e is the unit element of7, x € f(e)} is a normal subgroup of
Crys(G, M, f) such thatk; = M+ and€rys(G, M, f)/K1 = G. The group€tys(G, M, f)
is an extension of the additive group of tR&-moduleM by G.

We are using the terminology of the theory of group representations [1].

A 1-cocyclej:G — M is called coboundary, if there exists anc € FM such that
f(g) = (g — 1)x + M for everyg € G. The 1-cocycleg1:G — M andj,:G — M are
called cohomologous if f; — 2 is a coboundary. LeH(G, M) be the first cohomology
group. Clearly, each element 6f1(G, A7I) defines a class of equivalence of groups.

If the 1-cocycleds, f2 are cohomologous, thefxys(G, M, f1) and€rys(G, M, ) are
isomorphic. This isomorphism is calledquivalence and these groups are called equiva-
lent. In particular, the grougys(G, M, §) is split (i.e.Ctys(G, M, f) = M x G) if and
only if f is coboundary.

The dimension of the groupCrtys(G, M, f) is called theR-rank of the R-module M.
(Note thatM is a freeR-module of finite rank.) The grou@tys(G, M, §) is calledirre-
ducible (indecomposable), if M is an irreducible (indecomposabl®)G-module and the
1-cocyclef is not cohomologous to zero.

The group€rys(G, M, f) is non-split, if the 1-cocyclef defines a non-zero element of
HYG, M).

Note that the properties of the grodpys(G, M, ) were studied in [5,6,8], in the cases
whenR is either the ring of rational intege?s or thep-adic integer4.,, or the localization
Z(p) of Z atp.

Let G = (a | a? = 1) be the cyclic group of prime ordef, R the ring of integers of
the ramified finite extensio of the field of p-adic numbers. We calculate the group
HY(G, M) for some module of an indecomposabl®-representation of;.

Let®,(x) = xP~14... 4+ x+1 be a cyclotomic polynomial of degrgeand let; (x) be
adivisor of®,(x) over the fieldT with degn(x)) < p — 1 (provided that such non-trivial
polynomial exists).

Lemma 1. Let My and M2 be RG-modules which afford an R-representation I" of G =
(a|aP =1).

(i) If M1= My then HY(G, My) = HYX(G, M>). .
(i) If the matrix I" (a) does not have 1 as eigenvalue, then H1(G, My) istrivial.

Proof. See [1]. O
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Theorem 1. Let G = (a | a? = 1) and M,, = n(a) RG. Then the RG-module M,, is inde-
composable and

HY(G. My) = R/(n(DR),
where R/(n(1)R) isthe additive group of the factor ring of R by theideal n(1)R.
Proof. Lett € R be a prime element ankl= R/(tR). Then inR we have that
xP —1=(x - 1P, nx)=@x—-1", (P =Dt = -DP", (1)
wheren = degn(x)).

Putni(x) = (x — Dn~1x). Then M, and RG/(n1(a)RG) are isomorphic aRG-
modules. IfM, = M, /(tM,), then by (1) follows thai, is a root subspace of the linear
operatora over R. It is easy to see tha¥,, is not decomposable into a direct sum of
invariant subspaces. It follows tha, is an mdecomposabIEG -module. ClearlyF M, =

n@FG=n@F+@-1FM, and the groupM,7 = FM+/M is isomorphic to a direct
sum of groupsy(a)(F*/R) + (a — l)M This means that in the class of 1-cocycles there
is a cocyclef: G — M such that
f(a)=rn(@) + M, (re€F).
Moreover, fromf(a?) =0 (in JT/I\,,) it follows that if o =a?~1 + ... + a + 1, then
w-fla)=ir-1(1)-weM,

if and only if An(1) € R. Therefore, H(G, 1\71\,7) is isomorphic to the subgroup. + R |
A€ F, A-n(l) e R}of F/R and

{A\+ReF/R|%-n)eR}=R/(n(DR). O

Corollary 1. Let @ € R and n(1)R =* R, where ¢t isa prime element of R. Put

Ka(G,Mn):<<8 ";)(g arn (a))‘meM>

where « runsover the representative el ements of the cosets of R/ (¢ R). Up to equivalence,
the groups K, (G, M,) give all extensions of the additive group of the RG-module M,, by
thegroup G.

Suppose = 199, whered > 1 is the ramification index ardlis a unitinR. Set

X;i=t/RG+@—-1'RG (1<j<d, 1<i<p).
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Theorem 2. The module X ;; isan RG-module affording an indecomposable R-represent-
ation of G and

HY(G,X;)) = R/ (17 /R).
Proof. Suppose that th&k G-module X ;; is decomposable into a direct sum BIiG-
submodules. Therd = uq + u», whereu1, us are non-zero elements &G with uqu2 = 0.
Thuse; =t~/ uy is an idempotent. Since the tracéein of e is a rational number (see [4,
Theorem 3.5, p. 21]) of the formp~1 (1 < r < p), we getr/rp~1 € R, which is impossi-
ble for j < d. This contradiction proves the indecomposability®yf .

Clearly FXj; = FG = F + (a — D) FG. Therefore, in each class of 1-cocycles there is
acocyclef: G — Xj; such thaf(a) =1+ Xj;, wherei € F with Aw € X ;. It follows that
Ap =t/ a, wherea € R and

HY(G,Xj;)={r+R|reF, miJ cR)
is a subgroup of/R. O

Set

j—d
sio={(5 15 4" <)

wherea runs over the representative elements of the coseRy 6f ~/ R).

Corollary 2. The groups K (G, X ;) give all extensions of the additive group of the RG-
module X ;; by G.

Lemma2 Theset {(X;; | j=1,....d—-1 i=1...,(p—1)/2} consists of pairwise
non-isomor phic modules.

Proof. Let us consider an indecomposalii&-moduleV; = RG/((a — 1)' RG), where
R=R/(tR) and 1< i < p. Itis easy to check that the elements

ur=t, .., wi=ta-1"Y wp=@-1, ..., uy=@-1"1 (2
form anR-basis inX ;; and
@) — (x =Pt = po (), (3)

whered (x) € Z[x], degf(x)) < p — 2. Note that sincé (1) = 1, it follows thatf (a) is a
unit in the group ringRG. Using the identity

xyy=1l=x-DO-D+G&-D+O -1,
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from (3) we obtain that
@=D"=pla—1)-(w+arl@a—1+-+a, 20a—1H"?), @)
whereag, a1, ..., ap_2 € Z. Sincep = 146 = 1 (19-19), from (4) we get
(a—DP=(a—Du,=tm, (5)
wherem e X ;. According to (2),(a — Du; = t/u; 11, and from (5) we obtain that the
RG-moduIea_Eﬂ =X;;/(tX;;) is isomorphic to a direct suv; @ V,,_; of indecomposable
RG-modules, so by Theorem 2 and Lemma 1 the proof is complete.

Letn > 1 be the degree of a divisor df,(x) which is irreducible oveR. We consider
the following RG-modules:

Yii=t(a—DRG+(a—1)T'RG (1< j<d, 1<s<n).
It is easy to check that th@ G-moduletl;; satisfies the condition (ii) of Lemma 1, so
HY(G, ;) =0.
Let 3;, be a submodule on the free moduwt&s® = {(x, y) | x,y € RG} of rank 2,
which consists of the solutior(s, y) of the equality

ta—Dx+@—-1"ty=0. (6)

Lemma 3. Let w = ®,(a) and set u1 = [0, w], uz = [(@ — 1)*, —t/] and ug = [t /(& —
(a—1)P™Y, (@ —1)P~5~1]. Then 3, isan RG-module generated by u1, uz, us.

Proof. Clearly,u1,u2, u3 € 3;5. Letu =[x, y] be an arbitrary element ;. If x =0
thenu = u1. Supposex # 0. By substraction of the elements BtGu3 from u we obtain
thaty =yo+y1(a — D+ - + yp—s—2(a — D?~5~2 (y, € R). By (6)
tHa—Dx+(w+r@—D+-+yp2@—1"""?) @—1tt=0,
which is possible if and only ifg=--- = Yp-s—2 = 0 (mod /). Now, sinceu is an
element of RGup, we obtain thaty = 0. Thent/(a — 1)x = 0, which impliesx = aw
(@eR)andu =a(t/uz —(a —HP=~"tuy). O
Theorem 3. The RG-module 3 ;, isindecomposable. Moreover,

HY(G.3,) = R/('R) ® R/ ("~ R)

and the RG-modules X ;; are pairwise non-isomorphic.
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Proof. Itis easy to see that
ulztj(a—l), ui_lztj(a—l)i_l,
wi=@—-1", ..., up1=@-1nr?t

form an R-basis in theR G-moduley;; and

ujs :ujs/(tujs) =V, @ Vp—s—l-
Sinces < n, it follows that theRG-moduleil;, is indecomposable. Moreover, it follows
that the RG-modulesil;; are pairwise non-isomorphic ankiG-modules3;,, i;; and
RG? form an exact sequence

0— 3, — RGP = ;- 0.

Therefore,3 ;, is the kernel of a minimal projective covering of the indecomposa&igle
moduleil;,, S03;, is also indecomposable.0

Lemmad4. Let 3, = (F3;5)T /35, F=Ft/Rand M = (a — 1)3 ;. Then
gjs/Mz Fui+ Fuy,

wherevy = [0, w] + M, vo = [w, 0] + M and avy = v1, avy = v.
Proof. Clearly,ax =x (x € 3;,/M) andFvy = F[0, w] + M € 3,/ M. Moreover,

a)Fu:g + M= F[flpa), 0] + M= I?(Ipfl)[flpw, 0] + M= F[w, O]+ M.
By analogy

wFuz+ M = F[0, —t/o] + M = F[0,0] = Fyy.

Thereforeng/M = fvl + fvz. O

From Lemma 4 it follows that each class of 1-cocycles of the grGupith values in
the group3 ;s = (F3,)"/3s contains a 1-cocyclgsuch that

f(a) Z(X[O, CL)] +,3[C(),0] +3an

wherea, 8 € F and w(a[0, w] 4+ Blw,0]) € 3;5. This condition holds if and only if
ap, Bp € R. Moreover,

[0, w] 4 Blw, 0] € 3j5 + (a — 13y
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if and only if « € R andp et~/ R. Using properties of the 1-cocycfet is easy to show
that the two 1-cocyclef (j =1, 2):

f1(a) = 1[0, w] + B1lw, O] + 3, f2(a) = a2[0, ] + Bolw, O] + 3
are cohomologous if and only if
pol = par (mod td) and pBL= pB2 (mod td—j)’

wherea;, B € F, pa;, pBj € R. Note thatp =176,
It follows that the magj — (pa + t?R, pB + 19~/ R) gives the isomorphism

HY(G,3;,) = R/(t“R)® R/ (1 7/ R).

Therefore, according to (i) of Lemma 1, tlRG-modules3;; (1 < j < d) are pairwise
non-isomorphic. O

Now, using the description of 1-cocycles it is easy to prove the following

Corollary 3. Put

—d —d
Ka,ﬁ(G,3js)=<(8 rz)(g at [O,w]-i]-ﬁt [a),O])‘mers>’

where « and B independently run over the representative elements of the cosets R /(t?R)
and R/(t?~/ R), respectively. Up to equivalence, the groups Kq.5(G, 3;s) give all exten-
sions of the additive group of the RG-module 3 ;; by the group G.

If R isthe quadratic extension of the ring pfadic integers, then th2-representations
of G were described by P.M. Gudivok (see [7]). Finally, we have the following result.

Theorem 4. Let @,(x) be decomposable into the product of at least two irreducible
polynomials over R. Then the dimensions of the non-split indecomposable groups
Ceys(G, M, §) are unbounded.

Proof. Let®,(x) =n1(x)---m(x) (k > 2) be a decomposition into a product of polyno-
mials irreducible oveR and suppose that

nmx)=x"— op_1xX" L — . —a1x —ag € R[x].
Note that de@1(x)) = dedn2(x)) =---=dedni(x)) =n andkn = p — 1.

We will use the technique of integral representation of finite groups, which was devel-
oped by S.D. Berman and P.M. Gudivok in [2,3,7].
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Let ¢ be a primitivepth root of unity such thaw; (¢) = 0 and letr; be a natural number,
such that; = ¢’/ is a root of the polynomiab; (x), wherery=1andj=1,... k. Let

0 - 0 ap
1 .-~ 0 a

e=|. . . .
0 - 1 ap1

be the comparing matrix of1 (x).
The following R-representations af = (a | a”? = 1) are irreducible:

Soia—1, 81:a &, Sjra—€;=¢6"1 (j=2,...,k).

Note that the module which affords representatignis R[e] with R-basis le,...,
=1 g

Letm € N. Define the followingR-representation of; = (a) of degree(3n + 1)m:

: Apu(a)  Up(a)
Fm.a|—>< 0 Am(ﬂ))’

where

m 0 .
o Avn@)=85" (@) + 8" (@) = (" . S L)

En®3s 0 .
o Aon(a)=53"(a)+ 585" (a) = ( ®02(a) En@8a(@)

— EpnQu Jy(H®uy .
* Un@ = (i tpeu );

e u=(0,0,...,0,1) defines a non-zero element of 3¢, §;);

e J,, (1) is a Jordan block of degree with A in the main diagonal;

e i is a matrix in which the first row ig0, ..., 0, 1) and all other rows are zero. The
matrix iz defines a non-zero element of the group(Exts ;), wherej =2, 3;

e FE,, is the unity matrix of degree:.

Lemma5 (see [2,3]).I;, isan indecomposable R-representation of G.

Let 20, =§’ be a module of-dimension vectors oveR affording the R-represent-
ationT,. PutF = F*/R, 20,, = F23;/20,,. Clearly F' = 27,,. Definer : F — F" by

T(w) =w(ag, @0+ a1, 00+ a1+ a2,..., 00+ -+ ay_2, 1), (7

where thex; are coefficients ofj;(x) andw € F.
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Lemma 6.
(i) Each 1-cocycleof G = (a|a? =1) at 25, is cohomol ogous to a cocycle f, such that
fla) = (X,0,...,0) +2,,

where X € F™ and pX =0in F™ (i.e. pX € R™).

(i) Let z € F" suchthat (5 — E,)z =0in F". Then z = t(w) (mod R"), with w € F
such that n1(L)w =0in F. R

(i) 1fvV = R/(ﬁR) isthe residual of ring R by the ideal (ﬁR), then H1(G, 20,) =
vm,

Proof. (i) follows from (ii) of Lemma 1. (i) is easy to check.

(i) By (i) we can put f(a) = (X,0,0,0) and g(a) = (¥,0,0,0), where X =
(x1,...,%2), Y =(y1,...,y,) and pX = pY = 0. Note that all the equalities considered
here are understood modulo the gratipSuppose that these 1-cocycles are cohomologous
andZ e F! is such that

(Fn(a) — E1)Z + §(a) = g(a). (8)

PutZ = (Z1, Z2, Z3, Z4), WwhereZ, € F™ andzg, Z3,Z4 arem-dimensional vectors, with
i-components belong t5”, and denoted by, Z; and Z), respectively. By (8) we get

(Emn®@u)Z3+ (Jn @u)Zs+ X =Y, 9)
(Em ® € — En)Z2+ (Em ®i1)(Z3+ Z4) =0, (10)
(Em ® (82— En))ZS =0, (Em ® (83— En))Z4 =0. (11)

From (11) and by (ii) we have
Zz=(t(v1), ..., T(m)), Za=(t(uy), ..., t(um)), (12)
whereu;,v; € F, t is from (7) and
mu; =n1(Hv; =0. (13)
Clearly, the equality (10) consists af matrix equalities of the form
(— E)Z5+iit(w) =0, (14)

whereZé € F" is theith component oZ,, i =1,...,m, andw € F. Sinceut(w) = w
andit(w) = (w, 0, ..., 0), when all the rows of (14) are added together we obtain

-n(1Z5 +w=0, (15)
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where Z3 is the last component of the vect@p. According to (12) and (15), (10) gives
the equalities

wherez; are some components @b. From (9)

vitujtujpat+xj=y; (G=1....m-1,
Un +Um + Xm = Ym, (17)

whereX = (x1,...,x,), Y = (y1,...,y,) and pX = pY = 0. Multiplying (17) by n1(1)
and using (16) we obtain for the componentskodndY

mx;=m@y; (G=1...,m). (18)

Therefore, if the 1-cocyclelsandg are cohomologous then (18) holds.

Conversely, suppose that (18) holds. Then it is not difficult to construct vectors
Z», Z3, Z4 that satisfy (9) and (10), which is equivalent to (8), i.e. the 1-cocytlasd
g are cohomologous. It follows that by going from a cocycle to an element of the cohomol-
ogy group, we need to change each componet by 8 = « - p~! modulo the grougR,
wherea € R. Moreover, ifny - 8 € R, then must changgto 0. O

Theorem 5. Let ¢ € R, where ¢ =1 and p > 2. Then the description of the non-split
indecomposable groups €tys(G, M, ) isawild type problem.

Proof. For arbitrary matriceg\, B € M (m, R) the map

E O E A E

eE E E B

FA,B a— 82E 0 0
eE 0

e*E

is anR-representation of; of degred = 5m. The R-representationy g andI's, p, are
R-equivalent if and only if
ctACc=41 (mod(1-e)), C'BC=B1 (mod(l-¢))

for some invertible matrixC. It follows that the description of thR-representationfs
of G is a wild type problem.

For the module affording the representatibp 3 of G we putR'. Let X be anm-
dimensional vector oveF with pX € R™. Then there is a 1-cocyclg : G — R!, such
thatfx(a) = (X,0,...,0)+ R’ . The 1-cocycle$y andfy are cohomologous if and only if

(1—e)(X —Y)eR".

PuttingX = (p~1,0,..., 0) we obtain that71(G, R)) #0. O
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