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On elements in algebras
having finite number of conjugates
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Dedicated to Professor Kálmán Győry on his 60th birthday

Abstract. Let R be a ring with unity and U(R) its group of units. Let ∆U =
{a ∈ U(R) | [U(R) : CU(R)(a)] < ∞} be the FC-radical of U(R) and let ∇(R) = {a ∈
R | [U(R) : CU(R)(a)] < ∞} be the FC-subring of R.

An infinite subgroup H of U(R) is said to be an ω-subgroup if the left annihilator
of each nonzero Lie commmutator [x, y] in R contains only finite number of elements
of the form 1 − h, where x, y ∈ R and h ∈ H. In the case when R is an algebra over
a field F , and U(R) contains an ω-subgroup, we describe its FC-subalgebra and the
FC-radical. This paper is an extension of [1].

1. Introduction

Let R be a ring with unity and U(R) its group of units. Let

∆U = {a ∈ U(R) | [U(R) : CU(R)(a)] < ∞},
and

∇(R) = {a ∈ R | [U(R) : CU(R)(a)] < ∞},

which are called the FC-radical of U(R) and FC-subring of R, respectively.
The FC-subring ∇(R) is invariant under the automorphisms of R and
contains the center of R.
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The investigation of the FC-radical ∆U and the FC-subring ∇(R)
was proposed by S. K. Sehgal and H. Zassenhaus [8]. They described
the FC-subring of a Z-order as a unital ring with a finite Z-basis and a
semisimple quotient ring.

Definition. An infinite subgroup H of U(R) is said to be an ω-subgroup
if the left annihilator of each nonzero Lie commmutator [x, y] = xy − yx

in R contains only a finite number of elements of the form 1 − h, where
h ∈ H and x, y ∈ R.

The groups of units of the following infinite rings R contain ω-sub-
groups, of course:

1. Let A be an algebra over an infinite field F . Then the subgroup U(F )
is an ω-subgroup.

2. Let R = KG be the group ring of an infinite group G over the ring K.
It is well-known (see [6], Lemma 3.1.2, p. 68 ) that the left annihilator
of any z ∈ KG contains only a finite number of elements of the form
g − 1, where g ∈ G. Thus G is an ω-subgroup.

3. Let R = FλG be an infinite twisted group algebra over the field F with
an F -basis {ug | g ∈ G}. Then the subgroup G = {λug | λ ∈ U(F ),
g ∈ G} is an ω-subgroup.

4. If A is an algebra over a field F , and A contains a subalgebra D such
that 1 ∈ D and D is either an infinite field or a skewfield, then every
infinite subgroup of U(D) is an ω-subgroup.

2. Results

In this paper we study the properties of the FC-subring ∇(R) when
R is an algebra over a field F and U(R) contains an ω-subgroup. We show
that the set of algebraic elements A of ∇(R) is a locally finite algebra,
the Jacobson radical J(A) is a central locally nilpotent ideal in ∇(R) and
A/J(A) is commutative. As a consequence, we describe the FC-radical
∆U , which is a solvable group of length at most 3, and the subgroup t(∆U)
is nilpotent of class at most 2. If F is an infinite field then any algebraic
unit over F belongs to the centralizer of ∇(R), and, as a consequence,
we obtain that t(∆U) is abelian and ∆U is nilpotent of class at most 2.
These results are extensions of the results obtained by the author in [1]
for groups of units of twisted group algebras.
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By the Theorem of B. H. Neumann [5], elements of finite order in
∆U form a normal subgroup, which we denote by t(∆U), and the factor
group ∆U/t(∆U) is a torsion free abelian group. If x is a nilpotent element
of the ring R, then the element y = 1 + x is a unit in R, which is called
the unipotent element of U(R).

Let ζ(G) be the center of G and (g, h) = g−1h−1gh, where g, h ∈ G.

Lemma 1. Assume that U(R) has an ω-subgroup. Then all nilpotent
elements of the subring ∇(R) are central in ∇(R).

Proof. Let x be a nilpotent element of ∇(R). Then xk = 0, and by
induction on k we shall prove that vx = xv for all v ∈ ∇(R).

Choose an infinite ω-subgroup H of U(R). By Poincare’s Theorem
the centralizer S of the subset {v, x} in H is a subgroup of finite index
in H. Since H is infinite, S is infinite and fx = xf for all f ∈ S. Then
xf is nilpotent and 1 + xf is a unit in U(R). Since v ∈ ∇(R), the set
{(1 + xf)−1v(1 + xf) | f ∈ S} is finite. Let v1, . . . , vt be all the elements
of this set and

Wi = {f ∈ S | (1 + xf)−1v(1 + xf) = vi}.

Obviously, S =
⋃

Wi and there exists an index j such that Wj is infinite.
Fix an element f ∈ Wj . Then any element q ∈ Wj such that q 6= f satisfies

(1 + xf)−1v(1 + xf) = (1 + xq)−1v(1 + xq)

and

v(1 + xf)(1 + xq)−1 = (1 + xf)(1 + xq)−1v.

Then

v{(1 + xq) + (xf − xq)}(1 + xq)−1 = {(1 + xq) + (xf − xq)}(1 + xq)−1v,

v(1 + x(f − q)(1 + xq)−1) = (1 + x(f − q)(1 + xq)−1)v

and

(1) vx(f − q)(1 + xq)−1 = x(f − q)(1 + xq)−1v.

Let xv 6= vx and k = 2. Then x2 = 0 and (1 + xq)−1 = 1− xq. Since
f and q belong to the centralizer of the subset {x, v}, from (1) we have

(f − q)vx(1− xq) = (f − q)x(1− xq)v,
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whence (f−q)(vx−vx2q−xv+x2qv) = 0 and evidently (f−q)(vx−xv) = 0.
Therefore, (q−1f − 1)(vx − xv) = 0 for any q ∈ Wj . Since q−1Wj is an
infinite subset of the ω-subgroup H, we obtain a contradiction, and thus
vx = xv.

Let k > 2. If i ≥ 1 then xi+1 is nilpotent of index less than k, thus
applying an induction on k, first we obtain that xi+1v = vxi+1 and then

x(f − q)xiqiv = (f − q)xi+1qiv = (f − q)vxi+1qi = vx(f − q)xiqi.

Hence

vx(f − q)(1− xq + x2q2 + · · ·+ (−1)k−1xk−1qk−1)

= x(f − q)((1− xq)v + (x2q2 + · · ·+ (−1)k−1xk−1qk−1)v).

and (f − q)(vx− xv) = 0. As before, we have a contradiction in the case
xv 6= xv.

Thus nilpotent elements of ∇(R) are central in ∇(R). ¤

Lemma 2. Let R be an algebra over a field F such that the group of

units U(R) contains an ω-subgroup. Then the radical J(A) of every locally

finite subalgebra A of ∇(R) consists of central nilpotent elements of the

subalgebra ∇(R), and A/J(A) is a commutative algebra.

Proof. Let x ∈ J(A), then x ∈ L for some finite dimensional sub-
algebra L of A. Since L is left Artinian, Proposition 2.5.17 in [7] (p. 185)
ensures that L ∩ J(A) ⊆ J(L), moreover J(L) is nilpotent. Now x ∈ J(L)
implies that x is nilpotent and the application of Lemma 1 gives that x

belongs to the center of ∇(R). Then Theorem 48.3 in [4] (p. 209) will
enable us to verify the existence of the decomposition into the direct sum

L = Le1 ⊕ · · · ⊕ Len ⊕N,

where Lei is a finite dimensional local F -algebra (i.e. Lei/J(Lei) is a divi-
sion ring), N is a commutative artinian radical algebra, and e1, . . . , en are
pairwise orthogonal idempotents. Since nilpotent elements of ∇(R) be-
long to the center of ∇(R), by Lemma 13.2 of [4] (p. 57) any idempotent
ei is central in L and the subring Lei of ∇(R) is also an FC-ring, whence
J(Lei) is a central nilpotent ideal.
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Suppose that Lei/J(Lei) is a noncommutative division ring. Then
1 + J(Lei) is a central subgroup and

U(Lei)/(1 + J(Lei)) ∼= U(Lei/J(Lei)).

Applying Herstein’s Theorem [2] we establish that a noncentral unit
of Lei/J(Lei) has an infinite number of conjugates, which is impossible.
Therefore, L/J(L) is a commutative algebra and from J(L) ⊆ J(A) and
J(L) is nil (actualy nilpotent) in A, it follows that A/J(A) is a commutative
algebra. ¤

Theorem 1. Let R be an algebra over a field F such that the group of

units U(R) contains an ω-subgroup, and let ∇(R) be the FC-subalgebra

of R. Then the set of algebraic elements A of ∇(R) is a locally finite

algebra, the Jacobson radical J(A) is a central locally nilpotent ideal in

∇(R) and A/J(A) is commutative.

Proof. Since any nilpotent element of ∇(R) is central in ∇(R) by
Lemma 1, one can see immediately that the set of all nilpotent elements of
∇(R) form an ideal I, and the factor algebra ∇(R)/I contains no nilpotent
elements. Obviously, I is a locally finite subalgebra in ∇(R), and all
idempotents of ∇(R)/I are central in ∇(R)/I.

Let x1, x2, . . . , xs be algebraic elements of ∇(R)/I. We shall prove
that the subalgebra generated by x1, x2, . . . , xs is finite dimension.

For every xi the subalgebra 〈xi〉F of the factor algebra ∇(R)/I is a
direct sum of fields

〈xi〉F = Fi1 ⊕ Fi2 ⊕ · · · ⊕ Firi ,

where Fij is a field and is finite dimensional over F . Choose F -basis
elements uijk (i = 1, . . . , s, j = 1, . . . , ri, k = 1, . . . , [Fij : F ]) in Fij over F

and denote by wijk = 1− eij + uijk, where eij is the unit element of Fij .
Obviously, wijk is a unit in ∇(R)/I. We collect in the direct summand
all these units wijk for each field Fij (i = 1, . . . , s, j = 1, . . . , ri) and this
finite subset in the group U(∇(R)/I) is denoted by W .

Let H be the subgroup of U(∇(R)/I) generated by W . The subgroup
H of ∇(R)/I is a finitely generated FC-group, and as it is well-known,
a natural number m can be assigned to H such that for any u, v ∈ H

the elements um, vm are in the center ζ(H), and (uv)m = umvm (see [5]).
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Since H is a finitely generated group, the subgroup S = {vm | v ∈ H} has
a finite index in H and {wm | w ∈ W} is a finite generated system for S.
Let t1, t2, . . . , tl be a transversal to S in H.

Let HF be the subalgebra of ∇(R)/I spanned by the elements of H

over F . Clearly, the commutative subalgebra SF of HF , generated by
central algebraic elements wm (w ∈ W ), is finite dimensional over F and
any u ∈ HF can be written as

u = u1t1 + u2t2 + · · ·+ ultl,

where ui ∈ SF . Since titj = αijtr(ij) and αij ∈ SF , it yields that the
subalgebra HF is finite dimensional over F . Recall that

xi =
∑

j,k

βjkwijk −
∑

j,k

βjk(1− eij),

where βjk ∈ F and eij are central idempotents of ∇(R)/I. The subalgebra
T generated by eij (i = 1, 2, . . . , s, j = 1, 2, . . . , ri) is finite dimensional
over F and T is contained in the center of ∇(R)/I. Therefore, xi belongs
to the sum of two subspaces HF and T and the subalgebra of ∇(R)/I

generated by HF and T is finite dimensional over F . Since 〈x1, . . . , xs〉F is
a subalgebra of 〈HF , T 〉F , is also finite dimensional over F . We established
that the set of algebraic elements of ∇(R)/I is a locally finite algebra.
One can see that all the algebraic elements of ∇(R) form a locally finite
algebra A (see [3], Lemma 6.4.1, p. 162). Since the radical of an algebraic
algebra is a nil ideal, according to Lemma 1 we have that J(A) is a central
locally nilpotent ideal in ∇(R), and A/J(A) is commutative by Lemma 2.

¤

Recall that by Neumann’s Theorem [5] the set t(∆U) of ∆U contain-
ing all elements of finite order of ∆U is a subgroup.

Theorem 2. Let R be an algebra over a field F such that the group

of units U(R) contains an ω-subgroup. Then

1. the elements of the commutator subgroup of t(∆U) are unipotent and

central in ∆U ;

2. if all elements of ∇(R) are algebraic then ∆U is nilpotent of class 2;
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3. ∆U is a solvable group of length at most 3, and the subgroup t(∆U)
is nilpotent of class at most 2.

Proof. It is easy to see that ∆U ⊆ ∇(R), and any element of t(∆U)
is algebraic. According to Theorem 1 the set A of algebraic elements
of ∇(R) is a subalgebra, the Jacobson radical J(A) is a central locally
nilpotent ideal in ∇(R), and A/J(A) is commutative. The isomorphism

U(A)/(1 + J(A)) ∼= U(A/J(A)),

implies that
(
t(∆U)(1 + J(A))

)
/(1 + J(A)) is abelian, the commutator

subgroup of t(∆U) is contained in 1 + J(A) and consists of unipotent
elements.

By Neumann’s Theorem ∆U/t(∆U) is abelian, therefore ∆U is a solv-
able group of length at most 3. ¤

Let R be an algebra over a field F . Let m be the order of the element
g ∈ U(R) and assume that the element 1 − αm is a unit in F for some
α ∈ F . It is well-known that g − α ∈ U(R) and

(g − α)−1 = (1− αm)−1
m−1∑

i=0

αm−1−igi.

We know that the number of solutions of the equation xm − 1 = 0 in F
does not exceed m. If F is an infinite field, then it follows that, there
exists an infinite set of elements α ∈ F such that g − α is a unit. We will
show that this is true for any algebraic unit.

Lemma 3. Let g ∈ U(R) be an algebraic element over an infinite
field F . Then there are infinitely many elements α of the field F such that
g − α is a unit.

Proof. Since g is an algebraic element over F , F [g] is a finite di-
mensional subalgebra over F . Let T be the radical of F [g]. There exists
an orthogonal system of idempotents e1, e2, . . . , es such that

F [g] = F [g]e1 ⊕ F [g]e2 ⊕ · · · ⊕ F [g]es,

and Tei is a nilpotent ideal such that F [g]ei/Tei is a field. It is well-known
that F [g]ei is a local ring, and all elements of F [g]ei, which do not belong
to Tei, are units. Moreover, if α ∈ F , then

(2) g − α = (ge1 − αe1) + (ge2 − αe2) + · · ·+ (ges − αes).
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Clearly, gei is a unit and gei /∈ Tei for every i. Put

Li = {gei − αei | α ∈ F}.
Suppose that gei − βei and gei − γei belong to Tei for some α, β ∈ F .
Then

(gei − βei)− (gei − γei) = (γ − β)ei ∈ Tei,

which is impossible for β 6= γ. Therefore, Tei contains at most one element
from Li. Since F [g]ei is a local ring, all elements of the form gei − αei

with gei − αei /∈ Tei are units, and there are infinitely many units of the
form (2). ¤

Lemma 4. Let g ∈ U(R) and a ∈ R. If g − α, g − β are units for
some α, β ∈ F and ag 6= ga, then

(g − α)−1a(g − α) 6= (g − β)−1a(g − β).

Proof. Suppose that (g − α)−1a(g − α) = (g − β)−1a(g − β). Then

(g − α− (β − α))(g − α)−1a = a(g − α− (β − α))(g − α)−1

and (1− (β − α)(g − α)−1)a = a(1− (β − α)(g − α)−1).
Hence

(β − α)(g − α)−1a = a(β − α)(g − α)−1

and (g − α)−1a = a(g − α)−1, which provides the contradiction ag = ga.
¤

Theorem 3. Let R be an algebra over an infinite field F . Then

1. any algebraic unit over F belongs to the centralizer of ∇(R);
2. if R is generated by algebraic units over F , then ∇(R) belongs to the

center of R.

Proof. Let a ∈ ∇(R), and g ∈ U(R) be an algebraic element over F .
Then by Lemma 3 there are infinitely many elements α ∈ F such that g−α
is a unit for every α. If [a, g] 6= 0, then by Lemma 4 the elements of the
form (g − α)−1a(g − α) are different, and a has an infinite number of
conjugates, which is impossible. Therefore, g belongs to the centralizer
of ∇(R).

Now, suppose that R is generated by algebraic units {aj} over F .
Since every w ∈ U(R) can be written as a sum of elements of the form
αia

γi1
i1

. . . a
γis
is

, where αj ∈ F , γij ∈ Z, by the first part of this theorem w
commute with elements of ∇(R). Hence ∇(R) is central in R. ¤
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Corollary. Let R be an algebra over an infinite field F . Then

1. t(∆U) is abelian and ∆U is a nilpotent group of class at most 2;

2. if every unit of R is an algebraic element over F , then ∆U is central

in U(R).

Proof. Clearly, all elements from t(∆U) are algebraic and by The-
orem 3 every algebraic unit belongs to the centralizer of ∇(R). Since
t(∆U) ⊆ ∇(R), it follows that t(∆U) is central in ∇(R). Since ∆U/t(∆U)
is abelian, by Neumann’s Theorem ∆U is a nilpotent group of class at
most 2.

Let a ∈ ∆U and g ∈ U(R) be an algebraic element over F . Then
by Theorem 3 we get [a, g] = 0. Hence, if every unit of R is an algebraic
element over F , then ∆U is central in U(R). ¤
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