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A unilateral facial nerve injury (n7x) was found to influence the
transcallosal spread of the attenuated strain of pseudorabies virus
(PRV Bartha) from the affected (left) primary motor cortex (MI) to
the contralateral MI of rats. We used Ba-DupLac, a recombinant
PRV strain, for the tracing experiments since this virus was
demonstrated to exhibit much more restricted transportation
kinetics than that of PRV Bartha, and is therefore more suitable
for studies of neuronal plasticity. Ba-Duplac injection primarily
infected several neurons around the penetration channel, but hardly
any transcallosally infected neurons were observed in the con-
traleral MI. In contrast, after right facial nerve injury, Ba-DupLac
was transported from the primarily infected neurons in the left MI to
the contralateral side, and resulted in the labeling of several neurons
due to a transneuronal infection. These results reveal that a per-
ipheral nerve injury induces changes in the Ba-DupLac infection
pattern in the related cortical areas. These findings and the
literature data suggest that this phenomenon may be related to
the changes in the expression or to the redistribution of cell-
adhesion molecules, which are known to facilitate the entrance
and/or transmission of PRV into neurons.

Keywords: herpes, neuronal plasticity, peripheral nerve injury, primary
motor cortex, pseudorabies virus

Introduction

Since the early 1990s, studies demonstrating plasticity in the

cortical somatotopic representation maps of the primary motor

cortex (MI) of adult animals have brought about a dramatic

change in the concept of the function and role of motor cortical

areas as information-processing structures (Sanes and Donoghue,

2000). In a series of electrical stimulation mapping experiments,

Sanes and Donoghue demonstrated that transection of the facial

motor nerve (n7x), which supplies the rat facial whisker

musculature, led to a functional loss of the MI whisker area.

Consequently, this area was occupied by representations of the

adjacent forelimb or eye/eyelid regions (Donoghue et al., 1990;

Sanes et al., 1992). This reorganization emerged within hours of

the nerve lesion, and persisted for a period of months (Sanes

et al., 1990). The earliest sign of motor cortical plasticity

induced by n7x can be observed within minutes after the

intervention (Toldi et al., 1996, 1999). An important insight into

the possible mechanism was revealed by the observation that

the blockade of cortical GABAergic inhibition unmasked exist-

ing horizontal connections that are probably normally blocked

by feed-forward inhibition (Jacobs and Donoghue, 1991). This

kind of local GABAergic release yielded map changes parallel to

those following nerve lesions, demonstrating that the MI has the

intrinsic circuitry necessary to support reorganization, in which

the intracortical horizontal connections play a decisive role

(Sanes and Donoghue, 2000). Our earlier studies revealed that

the motor cortices of both hemispheres, interconnected com-

missurally, are involved in n7x-induced cortical plasticity (Toldi

et al., 1999; Farkas et al., 2000). Most of the studies cited above

were based on experiments in which electrophysiological

methods were used.

However, it is more than likely that the changes in the

cortical representational maps are consequences of molecular

biological and biochemical changes in the neurons and the glial

cells and in their connections. It has been found, for instance,

that n7x leads not only to the activation of astrocytes in the

corresponding facial nerve nucleus (Rohlmann et al., 1993,

1994), but also, a few minutes after a peripheral nerve injury, to

histochemical and immunohistochemical changes throughout

the cortical areas (Negyessy et al., 2000; Hoyk et al., 2002).

Here we demonstrate that the changes induced by n7x in the

motor cortical neuronal connections can be studied by neur-

onal tracing with the pseudorabies virus (PRV).

PRV-Bartha is an attenuated strain of PRV developed as

a vaccine (Bartha, 1961). It has been used widely for trans-

neuronal tracing (Enquist et al., 1998; Card, 1999). We used

Ba-DupLac, a recombinant PRV strain, for the present tracing

experiments, since this virus has been demonstrated to exhibit

much more restricted transportation kinetics than that of PRV-

Ba (Boldogkoi et al., 2002), and is therefore more suitable for

studies of neuronal plasticity. Indeed, we found that the method

based on the use of this virus is sensitive enough to detect fine

plastic changes induced in the central nervous system by

estrogen application (Horvath et al., 2002). In fact, utilization

of Ba-DupLac allowed us to reduce the problem to an all-or-

none labeling paradigm.

The literature cited above leads us to suppose that n7x

induces complex changes, e.g. surface molecule [heparan

sulfate-proteoglycan (HSPG) and nectins] redistribution or the

gene activation of cortical neurons, which lead to alterations in

the functions of their connections. The HSPGs are a group of

glycoproteins that carry covalently bound large, unbranched

polymers composed of ~20--200 repeating heparin/heparan

sulfate disaccharide units, which are usually attached to the

core proteins through a serine residue and characteristic

carbohydrate linkage regions. It appears that the HSPGs can

regulate long-term potentiation (LTP) and may be involved in

the morphological maturation of dendritic spines through
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multiple ligand interactions; this may be critically dependent on

the balance between the different heparin-binding molecules

available (Bandtlow and Zimmermann, 2000). Heparan sulfate

chains on cell surface proteoglycans also provide initial docking

sites for the binding of PRV to eukaryotic cells (Campadelli-

Fiume et al., 2000). Nectin-1, a member of the immunoglobulin

superfamily, is a component of a novel cell-to-cell adhesion

system, localized within the cadherin-catenin system at cell-

to-cell adherens junctions (Ajs). It has been shown to play an

important role in synapse formation (Mandai et al., 1997;

Takahashi et al., 1999; Miyahara et al., 2000; Tachibana et al.,

2000; Mizoguchi et al., 2002). Nectin-1 serves as an entry

and cell--cell spread mediator of PRV (Geraghty et al., 1998;

Campadelli-Fiume et al., 2000).

As concerns our model, the crucial question is whether cell

surface molecules exist which can change their expression or

distribution following n7x, and which therefore influence the

entry of virions into the neurons and/or their cell-to-cell spread.

As the first step, in this study we tested the hypothesis that

n7x induces changes in the neuronal connections of the MIs

in both hemispheres, which influence the transcallosal PRV

labeling pattern.

Materials and Methods

Cells and Virus
A porcine kidney cell line, PK-15, was used for the propagation and

titration of PRV. Cells were grown in Dulbecco’s modified minimum

essential medium (DMEM) supplemented with 5% fetal calf serum at

37�C in a CO2 incubator. Aliquots of PRV (1000 ll/vial) were stored at

–80�C, and single vials were thawed immediately prior to injection.

Ba-DupLac was constructed by the insertion of a pair of lacZ expression

cassettes to a putative latency promoter (antisense promoter) of

PRV-Ba, located in the inverted repeat of the virus (Boldogkoi et al.,

2000, 2002).

Animals and Surgical Procedures
The experimental procedures used in this study followed the protocol

for animal care approved by the Hungarian Health Committee (1998)

and the European Communities Council Directives (86/609/EEC). A

total of 28 adult Sprague--Dawley rats were raised with access to water

and food pellets (Altromin) ad libitum. Sixteen animals were used to

study the postinjury/preadministration time (see later and Fig. 2). In 7 of

the remaining 12 animals, the right facial nerve trunk was transected 1 h

before PRV injection; 5 sham-operated animals served as controls. The

nerve cut was made near the stylomastoid foramen. All the surgical

procedures were carried out under deep ketamine/xylazine anesthesia

(ketamine 10.0 mg/100 g and xylazine 0.8 mg/100 g body wt, i.P.).

Injection of the Virus
The head of each rat was fixed in a stereotactic headholder. PRV was

injected with special care; the inoculations were made by the same

person at the following coordinates: frontal: +2.0 mm to the bregma,

lateral 2.0 mm, vertical 800 lm from the cortical surface (Paxinos,

1998). PRV (0.1 ll) was injected over 5 min by pressure (PRV

concentration: 109 P.f.u./ml, vehicle: DMEM + 5% fetal calf serum).

The coordinates of the injection site (and of its homotopic point) were

determined by prior physiological mapping; we have been carrying out

the mapping of MIs since 1996. It is known from the literature (Sanes

and Donoghue, 2000) and from our own studies that the injection site

(with the coordinates given above) at which intracortical microstimu-

lation induces contralateral whisker movements is in the MI center of

the contralateral whiskers (Toldi et al., 1996). The homotopic point in

the contralateral hemisphere was determined by intracortical stimula-

tion at the injection site, which transcallosally evoked responses in the

homotopic point (Farkas et al., 2000). After determination of the

location, and following the completion of the injection, the pipet was

left in the tissue for an additional 5 min in order to prevent any backflow

of the PRV and/or its spread into the surrounding areas. After the PRV

injection, the incision on the head was closed and each animal was

housed individually in a plastic isolation cage. The presence and location

of PRV-immunoreactive (IR) neurons were checked in all animals. The

positions of the tip of the Hamilton syringe and the lesion induced by

the PRV injection were verified histologically in cresyl violet-stained

sections.

Perfusion and Immunocytochemistry
After survival for 72 h, the animals were deeply anesthetized as

described above and perfused transcardially with ~200 ml of phos-

phate-buffered saline (PBS, 0.1 mol/l, pH 7.3), followed by ~200 ml of

Zamboni’s fixative (2.0% aqueous paraformaldehyde solution — from

a 16% stock solution containing 15% picric acid — in 0.1 M sodium

phosphate buffer stock, pH 7.3) (Stefanini et al., 1967). Brains were

postfixed in fresh Zamboni’s solution overnight. Coronal sections (50 lm
thick) of the brain were cut using a Vibratome (Campden Instru-

ments) and were processed for PRV immunocytochemistry. Only those

animals were evaluated (n = 10) in which the infection was successful,

i.e. infected neurons (PRV-IR) were seen in the left motor cortex and

the whole length of the penetration channel was situated within the

cortex. The sections were blocked in 5% normal goat serum (diluted in

PBS) for 1 h, and incubated with a rabbit polyclonal antibody (Rb133;

1:10 000, courtesy of Professor L.W. Enquist, Department of Molecular

Biology, Princeton University, Princeton, NJ, USA) overnight at 4�C. The
sections were then treated with biotinylated anti-rabbit IgG (1:200,

Vector Laboratories) for 2 h at room temperature. The immuno-

histochemical reaction was visualized with the ABC-DAB technique

Figure 1. A schematic drawing to explain the experimental paradigm. PRV was
injected into the whisker representation area in the left motor cortex (MIipsi). PRV-
immunoreactive (PRV-IR) neurons were counted in five consecutive 50 lm wide
coronal sections of both hemispheres (as shown in the right hemisphere: MIcontra). To
facilitate the analysis, the photomicrographs of the five coronal sections (forming the
250 lm wide bands of the cortices) were divided in the mediolateral direction into six
300 lm wide areas (on the coronal surface): L1 5 L2 5 L3 5 M1 5 M2 5 M3 5
300 lm. The numbers of PRV-IR cells obtained in five sham-operated and five n7x
animals were quantified according to this cortical division. In one animal each in both
the sham-operated and the n7X group, serial sections (50 lm wide) of the rostral part
of both hemispheres were made (also as shown in the right hemisphere: MIcontra).
The PRV-IR neurons were counted in every sixth section in these two animals. The
three-dimensional distributions of the PRV-IR neurons in Figure 5 were constructed on
the basis of these studies. Scissors plus arrow denotes the right side facial nerve cut.
The divisions (L3--M3 in the left hemisphere, the labeling of the 50 lm wide cortical
slides and the mark of every sixth section in the rostral half of the right hemisphere)
serve only for demonstration and, of course, are not proportionate in this schematic
drawing.
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(ABC-Elite Kit, Vector Laboratories); sections were mounted on gelatin-

ized slides, dehydrated and coverslipped with Entellan� (Merck).

Statistical Analysis
To prevent experimental bias, the facial nerve status was decoded for

statistical analysis after cell counts had been collected. In our experi-

ments, five consecutive (50 lm thick) coronal sections from both

hemispheres of the animals were processed for PRV immunocytochem-

istry. Accordingly, in both hemispheres, all of the PRV-IR neurons within

these 250 lm wide bands of the MIs were encountered. In the left

hemisphere, this 250 lm wide cortical band contained the penetration

channel too (Fig. 1). To check whether the infection pattern exceeded

the 250 lm wide band, one animal randomly selected from the n7x

group and one from the sham-operated group were treated and

processed as described previously, but serial sections of the rostral part

of the hemispheres were made. In these cases, we selected every sixth

section for data sampling (Figs 1 and 5). We used the nonparametric

Mann--Whitney U-test to analyze the difference between the total

number of infected cells on each cortical side in the control and n7x

groups. Repeated-measures ANOVAwas applied to test the mean effects

on the number of infected cells and the interactions between the facial

nerve status (between-subject), the cortical side (within-subject) and

the cortical area (within-subject). The slides were processed digitally

(Olympus BX51, DP11, Camedia Master 2.0). The coronal sections of the

motor cortices were then divided into six 300 lm wide areas on the

cortical surface (Figs 1 and 4), making the infection pattern easier to

analyze. Statistical analysis was performed with the aid of the SPSS 11.0

for Windows program. The results are expressed as means ± SD; P < 0.05
was regarded as significant.

Data Presentation in Figures
The PRV-IR neurons in Figrue 3 are shown in microphotographs. In

Figure 4, diagrams of coronal sections were constructed to demonstrate

in two dimensions the distribution and localization pattern of PRV-IR

cells observed within 250 lm wide bands of both cortices of five

controls and five n7x animals. Since the differences in the numbers of

labeled neurons within the detailed studied 250 llm wide bands in the

five slides were very small, the average number of labeled neurons in

a slide could be calculated and given (see the small SDs in Fig. 4). In

these drawings, the motor cortical slices were divided into 300 lmwide

areas. The black areas denote the medial and lateral areas closely

adjacent to the injection channel. The gray areas are homotopic to them.

In Figure 5, the schematic surface diagrams depict in three dimensions

the distribution of PRV-IR neurons in the frontal part of both hemi-

spheres of a sham-operated and of an n7x animal. L1, L2 and L3 denote

the three 300 lm wide bands on the cortical surface lateral to the

injection site. M1, M2 and M3 denote the three 300 lm wide bands on

the cortical surface medial to the injection site. O1, O2 and O3 denote

the three 300 lmwide bands on the cortical surface in the oral direction

from the injection site. C1, C2 and C3 denote the three 300 lm wide

bands on the cortical surface caudal to the injection site (see also Fig. 1).

Results

n7x Influences the Transcallosal Spread of PRV
in a Time-dependent Manner

To determine whether the peripheral injury of the nervous

system has a virus immunohistochemically detectable effect on

the synaptic connections, the right facial nerve of the animals

was cut or the animals were sham-operated before administra-

tion of the PRV suspension. Synaptic reorganization can reveal

viral glycoprotein receptors or can induce other protein--protein

interactions, which can modulate the entry or transmission

of viral particles. We were interested in determining the time

course of the possible reorganization, and we therefore applied

different postinjury/preadministration times. The results ob-

tained with PRV are shown in Figure 2. The postinjury/

preadministration duration did not have a significant effect on

the inoculation side in either group. On the contralateral side of

the injured animals (n7x contralateral in Fig 2), the number of

infected neurons increased in a time-dependent manner. The

number reached a plateau at ~1 h postinjury/preadministration.

In the sham-operated animals, there was no significant effect of

the resting time (control contralateral and control ipsilateral in

Fig 2). It is likely that the changes in the motor cortex affect the

neuronal transmission of PRV in a short period, i.e. within 1 h.

Figure 2. The number of infected neurons increased logarithmically with the
postinjury/preadministration time only in the right hemisphere of the n7x animals
(n7x contralateral; its log fit is depicted by a broken line). The other three curves are
linear and parallel to the x-axis. The postinjury/preadministration time on the abscissa
means that PRV was injected into the animals 0.5 h (n5 2), 1 h (n5 2), 12 h (n5 2)
or 24 h (n5 2) after n7x. The study was also made on eight sham-operated animals.
The PRV infection was followed in each case by a 72 h survival time. Figure 3. Labeled neurons in the left (A) and right (B) primary motor cortices (MIs) of

a control animal, and in the left (C) and right (D) primary motor cortices of a rat in
which the right facial nerve was transected 1 h before the PRV infection. Several PRV-
infected neurons are localized around the injection channels (A, C). We could not
usually observe labeling in the contralateral MI of the controls (B), with some
exceptions, where a few labeled cells were detected. Inset in B: higher magnification
of the one labeled pyramidal neuron found in this control animal. (A and B are
corresponding slides.) (D) PRV-IR neurons in the homotopic area of the right
hemisphere of an n7x animal, after facial denervation. Calibration: 100 lm in A--D. In
the inset in B, the bar is 10 lm.
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PRV Immunoreactivity Was not Different on the
Inoculation Side in the Controls and the n7x Animals

To examine the effects of n7x on the entry and/or cell-to-cell

spread of PRV, we compared the numbers and distributions of

infected cells on the inoculation side of the cerebral cortex. The

primarily infected neurons were found around the penetration

channel in both the controls and the n7x animals (Fig. 3A,C). In

all cases, the primarily infected neurons were located discretely

in the third lamina of the motor cortex. This is consistent with

the selective uptake of the virus by the middle-layer cells. The

highest number of labeled neurons was found close to the

injection channel, and the number decreased with increasing

distance from this. These results seem to be consistent with the

diffusion of PRV-containing solution around the cannula.

There was no significant difference between the control and

n7x groups in the number of labeled neurons (82.3 ± 3.36 versus
86.2 ± 3.82; P = 0.119), or in the infection patterns on the

injected side (Figs 3A,C and 4A,C). These results indicate that

the entry of PRV into the motor cortical neurons is not

dependent on facial denervation.

PRV Immunoreactivity Differs in the Contralateral MI
in the Controls and the n7x Animals

To test whether n7x affects the cell-to-cell spread of PRV, we

compared the numbers and distributions of infected cells in the

cortex contralateral to the inoculation. The transcallosally

infected cells displayed cytoplasmic staining (as shown in

Fig 3B, inset), and by 72 h following inoculation strong PRV

immunoreactivity could be seen in these neurons. In the control

animals, there were significantly fewer labeled neurons in the

contralateral (right side) cerebral cortex than in the n7x

animals (2.0 ± 1.86 versus 5.0 ± 1.83; P < 0.001 (see Figs 3B--D

and 4B,D). In the n7x animals, these neurons were located close

to the homotopic line of the injection channel (Fig. 4D). n7x not

only increased the number of transcallosally labeled neurons,

but also affected their distribution. ANOVA indicated a signifi-

cant three-way interaction between the facial nerve status, the

cortical side and the cortical area [F(5,40) = 15.64, P < 0.0001],

i.e. the mean of the PRV-IR cell number is dependent on the

cortical side, the cortical area and the unilateral n7x.

In the control animals, the distributions of the transcallosally

infected neurons were identical in the divided cortical areas

(Fig. 4B). There was no significant difference between the

divided areas in the number of labeled neurons.

Although we did not perform a detailed study, in the course of

a rough survey, PRV-IR neurons were not found in any other

cortical area (e.g. in the somatosensory cortex) apart from the

motor cortices on both sides.

The Motor Cortex Is Homogenous for Viral Spread
in Both Mediolateral and Orocaudal Directions

To confirm that this infection pattern does not exist in only two

dimensions, one animal randomly selected from each group was

treated and processed as described previously, and serial

sections of the brains were made. The surface diagrams of the

distribution of the PRV-IR neurons revealed a cone-like shape

on the ipsilateral side in both groups (Fig. 5A,C) and also on the

contralateral side in the n7x animals (Fig. 5D). On the contra-

lateral side of the sham-operated animal, the diagram was nearly

planar (Fig. 5B). A possible explanation is the diffusion of the

viral suspension on the inoculation side — the farther from the

injection channel, the lower the probability of infected neur-

ons. Envelope proteins of PRV and other herpes viruses play

an essential role in target cell recognition, attachment and

receptor-mediated fusion of virions to permissive profiles.

Additionally, some envelope proteins exhibit an affinity for

extracellular matrix molecules such as HSPG that are present

in the extracellular milieu of the nervous system. These

affinities act to limit the diffusion of virions from the injection

site and thereby contribute to the ability to carry out localized

injections of PRV. Finally, the large size of the PRV particle may

further aid in limiting the diffusion of injected tracer (Enquist

et al., 1998; Aston-Jones and Card, 2000). In this case, it means

that at least this part of the cerebral cortex is homogenous

concerning viral infection.

On the contralateral side of the control animal, the distribu-

tion of infected neurons was uniform (Fig. 5B), which means

that the neurons around the infection channel received affer-

ents from all parts of the contralateral side. After n7x, this

afferentation was more focused; the surface diagram exhibited

a distribution of PRV-IR neurons similar to that observed on the

inoculation side (Fig. 5D).

These results indicate that the transcallosal cell-to-cell spread

of PRV within the MIs of both hemispheres is influenced by n7x.

Discussion

The present study has demonstrated that n7x influences the

transcallosal spread of PRV from the MI on the affected side to

Figure 4. Schematic diagrams of the distribution of labeled cells in two slides of
controls (A, B) and in two slides of n7x animals (C, D). The average number of labeled
cells per slide is given in these diagrams. The averages of the cell numbers were
calculated from the corresponding data on five controls and five n7x animals, i.e. from
53 5 slides. The motor cortices are divided into 300 lm wide areas (see also Fig. 1).
The black areas denote the 300 lm wide cortical areas in the close medial and lateral
environment of the injection channel in the left hemispheres (A, C). The gray areas are
homotopic to them in the right hemispheres (B, D). Values are means and SDs for PRV-
IR neurons (n 5 25) (see also Fig. 1).

Page 4 of 7 Analysis of Motor Cortical Reorganization d Horváth et al.



the contralateral MI in rats. The main observations were as

follows: in the controls, PRV injection primarily infected several

neurons around the penetration channel, but hardly any trans-

callosally infected neurons were found in the contralateral MI.

In coronal sections, these neurons exhibited an almost constant

distribution from medial to lateral in the cerebral cortex. In

contrast, after right n7x, PRV was transported from the primar-

ily infected neurons in the left MI to the contralateral side, and

resulted in the labeling of several neurons via transneuronal

infection. These transcallosally labeled neurons were concen-

trated near the homotopic line of the injection channel. The

number of infected neurons reached a plateau 1 h postinjury/

preadministration.

In our tracing study, we did not find any other infected brain

areas associated with a motor function apart from theMIs. In the

MIs, the interhemispheric connections between the homotopic

representation fields of the vibrissal muscles undergo rapid

disinhibition (minutes after denervation) (Toldi et al., 1999;

Farkas et al., 2000). The question arises of whether this

disinhibition of interhemispheric connections might play a role

in the observed enhanced transcallosal labeling. Our results

suggest that a new transcallosal path is unmasked quickly after

the peripheral n7x. In adult rats, the MI exhibits a noteworthy

capacity to react to peripheral nerve lesions, with changes in

the perisynaptic glia and synaptic reorganization, with latencies

of from 1 h up to 1 day. The results we have presented here also

show that the changes in the motor cortex affect the neuronal

transmission of PRV within 1 h. Our results, supported by

statistical analysis, suggest that n7x not only facilitates, but also

augments the transcallosal spread of PRV from the left MI to the

contralateral side. Unilateral n7x did not affect the entry of PRV

into the neurons (infected primarily).

To explain this result, it should be taken into account that the

entry of alpha herpes viruses into the cells usually requires

multiple interactions between the viral envelope and the cell

surface proteins. At least two groups (HSPGs and nectins) of

these cell surface (glyco)proteins are known to play roles in

these processes (Mettenleiter, 2000; Spear et al., 2000). It

should also be considered that HSPGs and nectins participate in

the development and plasticity in adulthood of tissues of

neuroepithelial origin (Carey, 1997; Rauvala and Peng, 1997;

Suzuki et al., 2000; Mizoguchi et al., 2002).

Our present results suggest that n7x does not affect the entry

of PRV, but increases the efficiency of its cell-to-cell spread.

Thus, we may speculate that the n7x-dependent infection

pattern appears to be related not to cellular components

(HSPGs) involved in the attachment of the virus, but rather to

cellular components located in the synaptic region of the

membrane of presynaptic neurons.

Many articles (see the review by Sanes and Donoghue, 2000)

or our own results (Toldi et al., 1999; Farkas et al., 2000)

demonstrate that n7x induces changes in cortical activity in

extended areas. On the basis of these results, we suggest that,

as a consequence of these changes in cortical activity (or in

parallel with them), changes also take place in the expression of

the cell surface molecules in the presynaptic terminals of

transcallosal axons of motor cortical origin on the right side.

Accordingly, we consider that the virus transport in our experi-

ments was mainly transynaptic and retrograde. There are

additional indications in support of retrograde transport. (i) In

the course of our experiments, we never observed labeled axon

terminals in the right hemisphere. This also holds for the

retrograde transport. (ii) The firmest evidence is the recent

observation by Enquist and co-workers (Enquist et al., 2002;

Figure 5. Surface diagrams for a sham-operated (A, B) and n7x animal (C, D). The diagrams exhibit a cone-like shape, which demonstrates the distribution of PRV-IR neurons on
the inoculation side (A, C). In contrast, the diagram of the contralateral cortex is virtually planar (B), while in the right hemisphere of the n7x animal there is an impressive peak in the
surface diagram at the homotopic point of the injection channel (D). It should be mentioned that the distance of sampling was in 300 lm in the mediolateral direction, but 50 lm in
the rostrocaudal direction in these animals.
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Pickard et al., 2002) that PRV-Bartha was transported trans-

ynaptically only in the retrograde direction (i.e. from post-

synaptic to presynaptic neuron).

The suggested relationship between the n7x-induced

changes in cortical activity and the changes in the neuronal

surface molecules is further supported, and partially explained,

by recent results indicating that the expression of the cell

surface molecules which we suggest might play roles in the

retrograde, trans-synaptic cell-to-cell spread of PRV is con-

trolled dynamically and locally, and modulated by synaptic

activity (Tanaka et al., 2000) or via activity-dependent regula-

tory pathways (Pierre et al., 2001; Murase et al., 2002).

However, in addition to the adhesion molecule (nectin-1a)-
aided cell-to-cell spread of the virus (Sakisaka et al., 2001), its

enhanced direct uptake and retrograde axonal transport into the

contralateral hemisphere after n7x cannot be completely ex-

cluded either. With regard to the enhanced number of PRV-IR

neurons in the contralateral primarymotor cortex after n7x, due

either to trans-synaptic retrograde cell-to-cell spread or to direct

uptake and retrograde transport of the virus, the role of the cell

adhesion molecules in these processes is hardly disputable.

Nectin-1 and nectin-2, components of a novel cell-to-cell

adhesion system, and localized within the cadherin--catenin

system at cell-to-cell Ajs, have been shown to play an important

role in synapse formation (Mandai et al., 1997; Takahashi et al.,

1999; Miyahara et al., 2000; Tachibana et al., 2000; Mizoguchi

et al., 2002). The synaptic scaffolding molecule (S-SCAM) is

localized at the Ajs in the CA3 area of the hippocampus in

a nectin-dependent manner. This finding indicates that S-SCAM

serves as a scaffolding molecule at the Ajs after maturation of the

synapses and at the synaptic junctions during the maturation. S-

SCAM is a neural scaffolding protein which interacts with many

proteins, including N-methyl-D-aspartic acid (NMDA) receptors

(Yamada et al., 2003). The nectin--afadin system may be in-

volved in the structural changes that occur at synapses during

the maintenance phase of LTP by modulating the redistribution

of synaptic components.

The remodeling of cortical circuits (including new synapse

formation) might also play a part in the plasticity of the motor

cortex, which contains both the substrate (the horizontal

connection system) and the mechanisms (LTP and long-term

depression) for reorganization after peripheral nerve injury

(Sanes and Donoghue, 2000). The mechanism by which n7x

increases the efficiency of cell-to-cell spread or the direct

uptake of PRV in the cortical network in vivo remains to be

elucidated, but the dense and focused PRV-IR suggests changes

in the background (in cell surface molecules), which should be

of significance in the cortical reorganization after a peripheral

nerve injury. We have recently started to study this aspect of

cortical plasticity.

Whatever the underlying mechanism is, the peripheral nerve

injury-induced changes in the Ba-DupLac infection pattern

seem to be a suitable model for the study of injury-induced

neuronal plasticity. Such studies reveal another aspect of

peripheral nerve injury-induced cortical reorganization.

Notes

The authors thank Professor L.W. Enquist (Department of Molecular

Biology, Princeton University, Princeton, NJ, USA) for the gift of the

primary antiserum. The research was supported by grants from the

National Research Foundation (OTKA T031893, T046687 and M36213).
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