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Two different methods of diffraction pro®le analysis are presented. In the ®rst,

the breadths and the ®rst few Fourier coef®cients of diffraction pro®les are

analysed by modi®ed Williamson±Hall and Warren±Averbach procedures. A

simple and pragmatic method is suggested to determine the crystallite size

distribution in the presence of strain. In the second, the Fourier coef®cients of

the measured physical pro®les are ®tted by Fourier coef®cients of well

established ab initio functions of size and strain pro®les. In both procedures,

strain anisotropy is rationalized by the dislocation model of the mean square

strain. The procedures are applied and tested on a nanocrystalline powder of

silicon nitride and a severely plastically deformed bulk copper specimen. The

X-ray crystallite size distributions are compared with size distributions obtained

from transmission electron microscopy (TEM) micrographs. There is good

agreement between X-ray and TEM data for nanocrystalline loose powders. In

bulk materials, a deeper insight into the microstructure is needed to correlate

the X-ray and TEM results.

1. Introduction

X-ray diffraction peak pro®le analysis is a powerful tool for

the characterization of microstructures in crystalline materials.

Diffraction peaks broaden when crystallites are small or the

material contains lattice defects. The two effects can be

separated on the basis of the different diffraction-order

dependence of peak broadening. Two classical methods have

evolved during the past ®ve decades: the Williamson±Hall

(Williamson & Hall, 1953) and the Warren±Averbach (Warren

& Averbach, 1950; Warren, 1959) procedures. The ®rst is

based on the full width at half-maximum (FWHM) values and

the integral breadths, while the second is based on the Fourier

coef®cients of the pro®les. Both methods provide, in principle,

apparent size parameters of crystallites or coherently

diffracting domains and values of the mean square strain. The

evaluations become complicated, however, if either the crys-

tallite shape (LoueÈr et al., 1983) or strain (Caglioti et al., 1958)

are anisotropic. It is often attempted to give the mean square

strain as a single-valued quantity (Warren, 1959; Klug &

Alexander, 1974). A vast amount of experimental work has

shown, however, that the mean square strain, h" 2
L;gi is almost

never a constant, neither as a function of L nor of g, where L

and g are the Fourier length (see below) and the diffraction

vector, respectively (Warren, 1959; Krivoglaz, 1969; Wilkens,

1970a,b; Klimanek & KuzÏel, 1988; van Berkum et al., 1994;

UngaÂr & BorbeÂ ly, 1996; Scardi & Leoni, 1999; Chatterjee &

Sen Gupta, 1999; Cheary et al., 2000). The g dependence is

further complicated by strain anisotropy, which means that

neither the breadth nor the Fourier coef®cients of the

diffraction pro®les are monotonous functions of the diffrac-

tion angle or g (Caglioti et al., 1958; UngaÂr & BorbeÂ ly, 1996; Le

Bail & Jouanneaux, 1997; Dinnebier et al., 1999; Stephens,

1999; Scardi & Leoni, 1999; CÏ ernyÂ et al., 2000).

Peak pro®le analysis can only be successful if the strain

effect is separated correctly. Two different models have been

developed so far for strain anisotropy: (i) a phenomenological

model based on the anisotropy of the elastic properties of

crystals (Stephens, 1999) and (ii) the dislocation model (UngaÂr

& BorbeÂ ly, 1996) based on the mean square strain of dislo-

cated crystals (Krivoglaz, 1969, 1996; Wilkens, 1970a,b). The

dislocation model of h" 2
L;gi takes into account that the

contribution of a dislocation to strain-induced broadening

(strain broadening) of a diffraction pro®le depends on the

relative orientations of the line and Burgers vectors of the

dislocations and the diffraction vector, similar to the contrast

effect of dislocations in electron microscopy. Anisotropic

contrast can be summarized in contrast factors, C, which can

be calculated numerically on the basis of the crystallography

of dislocations and the elastic constants of the crystal

(Wilkens, 1970a, 1987; Groma et al., 1988; Klimanek & KuzÏel,

1988; KuzÏel & Klimanek, 1988; UngaÂr & Tichy, 1999; UngaÂr,

Dragomir et al., 1999; BorbeÂ ly et al., 2000; Cheary et al., 2000).

By appropriate determination of the type of dislocations and
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Burgers vectors present in the crystal, the average contrast

factors, �C, for the different Bragg re¯ections can be deter-

mined. Using the average contrast factors in the `modi®ed'

Williamson±Hall plot and in the `modi®ed' Warren±Averbach

procedure, the different averages of crystallite sizes, the

density and the effective outer cut-off radius of dislocations

can be obtained (UngaÂr & BorbeÂ ly, 1996; UngaÂr et al., 1998).

It can be shown that, once the strain contribution has been

separated, diffraction peak pro®les depend on the shape, the

mean size and the size distribution of crystallites or coherently

diffracting domains (Bertaut, 1950; Rao & Houska, 1986;

Langford et al., 2000). If the shape of the crystallites can be

assumed to be uniform, the area- and volume-weighted mean

crystallite sizes can be determined from the Fourier coef®-

cients and the integral breadths of the X-ray diffraction

pro®les (Krill & Birringer, 1998; Rand et al., 1993; Wilson,

1962; Gubicza et al., 2000). These two mean sizes of crystallites

can be used for the determination of a crystallite size distri-

bution function. Armstrong & Kalceff (1999) have recently

developed a method of maximum entropy for the determi-

nation of column length distribution from size-broadened

pro®les. There is a large amount of experimental evidence that

the crystallite size distribution is usually log-normal (Krill &

Birringer, 1998; Terwilliger & Chiang, 1995; UngaÂr, BorbeÂ ly et

al., 1999; Gubicza et al., 2000). Hinds (1982) proposed

formulae to calculate the two characteristic parameters of the

log-normal size distribution function from the area- and

volume-weighted means. Krill & Birringer (1998) determined

the weighted mean crystallite sizes from the Fourier transform

of X-ray diffraction pro®les. Using the formulae of Hinds

(1982), they calculated the parameters of the log-normal size

distribution for nanocrystalline palladium. Langford et al.

(2000) have elaborated a whole-powder-pattern ®tting

procedure to determine the crystallite size distribution in the

absence of strain; they assumed spherical morphology and log-

normal size distribution of crystallites and discussed the shape

of pro®les in terms of Lorentzian and Gaussian components

depending on the variance of the size distribution.

The aim of this paper is to present two different procedures

for the determination, from diffraction pro®les, of the size

distribution of crystallites in the presence of strain. Strain is

given in terms of the dislocation density and arrangement. The

®rst method uses the three apparent size parameters obtained

from the FWHM, the integral breadths and the ®rst few

Fourier coef®cients of the diffraction pro®les using the

modi®ed Williamson±Hall and Warren±Averbach procedures.

The measured apparent size parameters are matched, by the

method of least squares, to the calculated values obtained

from the theoretical size pro®le. In the second procedure, the

Fourier transforms of the experimentally determined peak

pro®les are ®tted by the Fourier coef®cients of ab initio

physical functions of the size and strain pro®les. The only

®tting parameters are the median and the variance of the size

distribution function, the density and the arrangement of

dislocations, and one or two parameters corresponding to the

dislocation contrast factors in cubic or hexagonal crystals,

respectively. In the present paper, the application and testing

of the two procedures on the pro®les of two representative

materials, (a) a submicrometre-grain-size copper specimen

deformed by equal-channel angular (ECA) pressing (Valiev et

al., 1994) and (b) a hexagonal Si3N4 nanocrystalline ceramic

powder produced by nitridation of silicon and subsequent

milling, are discussed. In both cases, TEM microstructures are

analysed and discussed in parallel with the X-ray peak pro®le

analysis. The speci®c surface area of Si3N4 nanopowder was

additionally investigated by the method of Brunauer±

Emmett±Teller (BET) and is discussed together with the TEM

and X-ray results.

2. Diffraction profile analysis based on the widths and
the first Fourier coefficients of profiles (WFFC)

2.1. The hierarchy of lattice defects

Lattice defects ®t into a simple hierarchy according to their

strain ®elds: the strain ®elds of (i) point defects, (ii) linear

defects or (iii) planar defects decay as 1/r2, 1/r or are space-

independently homogeneous, respectively, where r is the

distance from the defects. The three different types of spacial

dependences are of short- and long-range order, and homo-

geneous, respectively. As a result of the reciprocity between

crystal and reciprocal space, point defects have diffraction

effects far from the fundamental Bragg re¯ections, often

referred to as Huang scattering (Trinkaus, 1972). The strain

®elds of linear defects are of long-range character; therefore

their diffraction effects cluster around the fundamental Bragg

re¯ections. This is the diffraction effect known as diffraction

peak broadening; the science related to it is peak pro®le (or

line pro®le) analysis. The strain ®elds of planar defects are

space independent or homogeneous; thus they cause lattice

parameter changes or shifts of Bragg re¯ections. In reality,

lattice defects are more complex and their effects on peak

shape can be a mixture of the three well separated cases.

Stacking faults, for example, can cause peak shifts and peak

broadening simultaneously, since they are usually bounded by

partial dislocations. Despite this complex behaviour, disloca-

tions play a special and unique role: they are always present

(a) either as the major component in complex lattice defects or

(b) as the only lattice defects which distort the crystal lattice to

such an extent that it becomes visible as pro®le (or line)

broadening in a diffraction experiment. For this reason, in the

present account we consider the effect of dislocations in strain

broadening. The effect of stacking faults and/or planar defects,

like grain boundaries, may be the subject of further develop-

ments (Scardi & Leoni, 1999).

2.2. The modified Williamson±Hall and Warren±Averbach
procedures

Within the kinematical theory of X-ray diffraction, the

physical pro®le of a Bragg re¯ection is given by the convo-

lution of the size and the distortion pro®les (Warren, 1959;

Wilson, 1962):
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I P � I S � I D; �1�
where the superscripts S and D stand for size and distortion,

respectively. The Fourier transform of this equation is known

as the Warren±Averbach method (Warren, 1959):

lnA�L� ' lnAS
L ÿ 2�2L2g2h" 2

g;Li; �2�
where A(L) are the absolute values of the Fourier coef®cients

of the physical pro®les,AS
L are the size Fourier coef®cients, g is

the absolute value of the diffraction vector and h" 2
g;Li is the

mean square strain. L is the Fourier length de®ned as L = na3
(Warren, 1959), where a3 = �/2(sin�2 ÿ sin�1), n are integers

starting from zero, � is the wavelength of X-rays and (�2 ÿ �1)
is the angular range of the measured diffraction pro®le.

In a dislocated crystal, for small L values, h" 2
g;Li can be given

as (Krivoglaz, 1969, 1996; Wilkens, 1970a,b)

h" 2
g;Li ' �� �Cb2=4�� ln�Re=L�; �3�

where �, b and Re are the density, the modulus of the Burgers

vector and the effective outer cut-off radius of dislocations,

respectively. The peak broadening caused by a dislocation

depends on the relative orientations between the Burgers and

line vectors of the dislocation and the diffraction vector, b, l

and g, respectively. This effect is taken into account by the

dislocation contrast factors C (Krivoglaz, 1969; Wilkens,

1970a,b; KuzÏel & Klimanek, 1988; UngaÂr, Dragomir et al.,

1999). In a texture-free polycrystal or if the Burgers vector

population on the different slip systems is random, the C

factors can be averaged over the permutations of the hkl

indices (UngaÂr & Tichy, 1999). In the present work, we deal

with cases in which this averaging is legitimate; therefore, in

equation (3) the average dislocation contrast factor �C is used.

Inserting equation (3) into (2), the `modi®ed' Warren±Aver-

bach equation is obtained (UngaÂr & BorbeÂ ly, 1996):

lnA�L� ' lnAS�L� ÿ �BL2 ln�Re=L��K2 �C� �O�K4 �C2�; �4�
where K = 2sin�/� and K = g at the exact Bragg position, B =

�b2/2 and O stands for higher order terms in K2 �C. The size

parameter corresponding to the Fourier coef®cients is denoted

by L0. It is obtained from the size Fourier coef®cients, AS, by

taking the intercept of the initial slope at AS = 0 (Warren,

1959) and it gives the area-weighted mean column length

(Guinier, 1963).

Based on the dislocation model of strain, the FWHM and

the integral breadths of pro®les can be evaluated by the

modi®ed Williamson±Hall plot (cf. UngaÂr & BorbeÂ ly, 1996). In

the following, it will be shown that if this plot is given as a

function of K �C1/2, then it has to start with a horizontal slope.

The only hkl-dependent term in h" 2
g;Li is �C, which can be

separated from the L-dependent part as

h" 2
g;Li � h" 2

Li �C: �5�
Using equations (2) and (5) and assuming that the Fourier

coef®cients are normalized to unity at L = 0, the integral

breadth of a pro®le can be given as

�K� �
� R1

0

2AS�L� exp�ÿ2�2L2h" 2
Li�K �C1=2�2� dL	ÿ1

: �6�

In the present work it is assumed that the main source of strain

is dislocations. The best solution of h" 2
Li for dislocations in the

entire L range has been given, so far, by Wilkens (1970b) and

is discussed in x3.1 below.

Let us introduce the notation z = K �C1/2. Since the integrand

in (6) is an analytic function of z for any ®xed value of L, the

integral in (6) is also analytic for z. Since, further, the integral

at z = 0 is non-zero, its reciprocal, i.e.�K�, is also analytic at z

= 0. This means that�K� can be developed into a power series

of z around zero:

�K��z� �
P1
n�0

anz
n: �7a�

Since �K� is an even function of z,

�K��z� � �K��ÿz� �
P1
n�0

�ÿ1�nanzn: �7b�

From (7a) and (7b), for each n, an = (ÿ1)nan, from which it

follows that for the odd values of n, an = 0. In particular,

d�K�

dz

����
z�0

� 0: �7c�

This means that the modi®ed Williamson±Hall plot of the

integral breadths starts with a zero slope and has the following

form:

�K� � 1=d� ��K �C1=2�2 �O�K �C1=2�4: �8�
The FWHM can also be shown to have the same z behaviour:

�KFWHM � 0:9=D� �0�K �C1=2�2 �O�K �C1=2�4; �9�
where d and D are the apparent size parameters corre-

sponding to the integral breadth and the FWHM. They are

obtained by extrapolation toK = 0 in the usual manner (UngaÂr

& BorbeÂ ly, 1996). d provides the volume-weighted mean

column length of the crystallites in the specimen (Guinier,

1963; Langford et al., 2000). The fourth-order terms in z, i.e.

O(K �C1/2)4, are usually small compared to the ®rst two terms in

the power series in (8) and (9).

In a few previous papers, in which the modi®ed Williamson±

Hall procedure has been suggested and applied to evaluate

apparent size values, the experimental data have already

indicated the type of z behaviour derived in equations (8) and

(9) (UngaÂr & BorbeÂ ly, 1996; UngaÂr et al., 1998; UngaÂr,

Dragomir et al., 1999; UngaÂr & Tichy, 1999; UngaÂr, Leoni &

Scardi, 1999; Gubicza et al., 2000). If strain is not mainly

caused by dislocations, deviations from purely quadratic K

dependence of �K may also be anticipated. For example, if

strain distribution is Gaussian, i.e. the displacement of atoms

from their equilibrium positions is strictly random, then the

mean square strain becomes constant (Warren, 1959). In such

a case, �K is a linear function of K.

2.3. The average dislocation contrast factors

The average dislocation contrast factors are the weighted

average of the individual C factors either over the dislocation

population or over the permutations of the hkl indices
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(Krivoglaz, 1969; Wilkens, 1970a,b; KuzÏel & Klimanek, 1988).

Based on the theory of line broadening caused by dislocations,

it can been shown that in an untextured cubic and a hexagonal

polycrystalline specimen, the values of �C are simple functions

of the invariants of the fourth-order polynomials of hkl

(UngaÂr & Tichy, 1999):

�C � �Ch00�1ÿ qH2� �10�
and

�C � �Chk0 1� fA�h2 � k2 � �h� k�2� � Bl2gl2
�h2 � k2 � �h� k�2 � �3=2��a=c�2l2�2

� �
; �11�

respectively, where �Ch00 and �Chk0 are the average dislocation

contrast factors for the h00 and hk0 re¯ections, respectively,

H2 = (h2k2 + h2l2 + k2l2)/(h2 + k2 + l2)2; q, A and B are para-

meters depending on the elastic constants and on the char-

acter of dislocations (e.g. edge or screw type) in the crystal and

c/a is the ratio of the two lattice constants of the hexagonal

crystal. It is worth noting that the fourth-order invariants of

the hkl indices appear also in the more phenomenological

description of anisotropic strain broadening as presented by

Stephens (1999) and Popa (1998).

2.4. Determination of the size distribution of crystallites

Three size parameters were determined by the modi®ed

Williamson±Hall and Warren±Averbach procedures: D from

the FWHM, d from the integral breadths and L0 from the

Fourier coef®cients. A pragmatic and self-consistent numer-

ical procedure has been worked out to relate the experimental

D, d and L0 values to the parameters of a crystallite size

distribution density function f(x). It has been observed by

many authors that the size distribution of crystallites in

powder or bulk specimens is log-normal (cf. Langford et al.,

2000). This is especially true in plastically deformed bulk or in

nanocrystalline materials (Krill & Birringer, 1998; Terwilliger

& Chiang, 1995; UngaÂr, BorbeÂ ly et al., 1999; Valiev et al., 2000):

f �x� � �1=�2��1=2���1=x� expfÿ�ln�x=m��2=2�2g; �12�
where x is the size of a crystallite from the size distribution, �2

is the variance and m is the median of the size distribution

function (Langford et al., 2000). Guinier (1963) has shown that

if the crystallite is distortion-free, the Bragg peak pro®le can

be described as [Guinier, 1963, equation (5.18) therein]:

I S�s� � R1
0

�sin2���s�=���s�2� g��� d�; �13�

where s = �(2�)/�, � is the column length and g(�)d�
represents the volume fraction of the columns for which the

length parallel to the diffraction vector lies between � and � +

d�. The relationship between g(�) and f(x) depends on the

shape of the crystallites, since the volume fraction of the

column lengths in a given crystallite is related to its geome-

trical boundaries. For spherical crystallites, the relationship

between g(�) and f(x) can be given in the following form:

g��� � N�2
R1
�

f �x� dx; �14�

where N is a normalization factor. Substituting equation (12)

into (14), calculating the integral in equation (14) and

substituting (14) into (13), the intensity distribution corre-

sponding to size broadening is obtained as

I S�s� � R1
0

��sin2���s�2��s�2� erfcf�ln��=m��=21=2�g d�; �15�

where erfc is the complementary error function. It can be seen

from equation (15) that the shape of the peak pro®le depends

only on � and m. [Here we note that (15) gives only the

intensity distribution without normalizing with respect to

either the maximum or the integral of the intensity.] The

theoretical function IS(s) can provide numerically calculated

apparent size parameters corresponding to its FWHM, inte-

gral breadth and Fourier coef®cients, denoted by D�,m, d�,m
and L�;m

0 , respectively. The median and the variance of the size

distribution function are obtained by the method of least-

squares ®tting:

�D�;m ÿD�2 � �d�;m ÿ d�2 � �L�;m
0 ÿ L0�2 � minimum; �16�

in which the ®tting is carried out by varying � and m.

The main advantages of this method are the following: (i)

the procedure uses three experimental apparent size para-

meters to determine the two parameters of the size distribu-

tion function, thus decreasing the errors introduced by

experimental uncertainties; (ii) if one of the three size para-

meters cannot be determined, the two remaining are enough

to calculate � and m by this procedure; (iii) the method

outlined above can also be applied if the size distribution is

different from log-normal by inserting the appropriate func-

tion into equation (14). For spherical crystallites with log-

normal size distribution, the area-, volume- and arithmetically

weighted mean crystallite sizes are obtained as (Hinds, 1982)

hxiarea � m exp�2:5�2�; �17�

hxivol � m exp�3:5�2� �18�
and

hxiarithm � m exp�0:5�2�; �19�
respectively. The procedure has also been worked out for

ellipsoidal disc-shape crystallites, enabling the determination

of the size distribution functions of crystallites with non-

spherical shape (UngaÂr et al., 2001).

3. Whole-profile fitting by the Fourier coefficients of ab
initio size and strain functions (WPFC)

The fundamental equations of diffraction pro®le analysis are

equations (1) and (2), which tell us that the size and strain

pro®les are in convolution and the Fourier coef®cients are in

product. Once we know these functions, it is only a question of

skillful numerical calculus to make a ®tting between experi-

ment and theory. The size pro®le for spherical crystallites
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having a log-normal size distribution is given by equation (15).

Here we show that using the strain pro®le suggested by

Wilkens (1970a,b) for dislocated crystals, the experimental

pro®les can be ®tted by ab initio physical functions for both

size and strain broadening, respectively. We show further that

the ®tting procedure provides well established physical para-

meters characterizing the microstructure, which can be

compared with parameters obtained by other methods, espe-

cially TEM, in a straightforward manner. It should be noted

that the size pro®le function for similar crystallite shapes and

size distributions has recently been derived by Langford et al.

(2000). Because of a different kind of derivation and

summation, their formula [equation (21) of Langford et al.,

2000] is different from equation (15) herein; however, the two

equations are mathematically equivalent.

3.1. The strain profile for dislocations

In equation (3), it has been shown that for small L values,

the mean square strain for dislocations is described by a

logarithmic function. Wilkens evaluated h" 2
g;Li in the entire

range of L for screw dislocations (Wilkens, 1970a,b). For the

following reasons this will be used as the ab initio function for

strain broadening: (i) this is probably the best available

expression of h" 2
g;Li for dislocations (Levine & Thomson, 1997;

Groma, 1998); (ii) experiments on plastically deformed copper

single crystals (Wilkens, 1988), and (iii) computer simulations

(Kamminga & Delhez, 2000) have shown that it works even

for edge dislocations. The detailed expression of h" 2
g;Li given

by Wilkens is (Wilkens, 1970b, equations A.6 to A.8 therein)

h" 2
g;Li � �b=2��2��Cf ���; �20�

where

� � �1=2� exp�ÿ1=4��L=R0
e�: �21�

In the following we call f(�) the Wilkens function. For � � 1,

f ��� � ÿ ln �� �7=4ÿ ln 2� � 512=90��

� �2=���1ÿ 1=4�2� R�
0

�arcsinV�=V dV

ÿ �1=���769=180�� 41�=90� 2�3=90��1ÿ �2�1=2
ÿ �1=���11=12�2 � 7=2� �2=3� arcsin �� �2=6;

�22�
and for � � 1,

f ��� � 512=90��ÿ �11=24� �1=4� ln 2���1=�2�: �23�
It can be seen that the Wilkens function has a logarithmic

singularity at small � values and decays as a hyperbola for

large values of �. In the numerical calculations, f(�) has been
applied as it stands in equations (22) and (23) with the

exception that the integral in (22) has been approximated by a

series expansion. Here we note that, strictly speaking, the

Wilkens function was calculated assuming screw dislocations;

however, Kamminga & Delhez (2000) have shown recently

that the calculations remain valid for edge dislocations.

According to equations (2) and (20), the Fourier coef®-

cients of the strain pro®le can be given as

AD
g �L� � exp�ÿ�BL2f ���g2 �C�: �24�

In accordance with de®nitions used in previous works (Levine

& Thomson, 1997; Groma, 1998; UngaÂr et al., 1982; Hecker et

al., 1997; Zehetbauer et al., 1999; UngaÂr & BorbeÂ ly, 1996;

UngaÂr & Tichy, 1999), the effective outer cut-off radius of

dislocations, Re, will be considered as de®ned in equation (3).

Re and R0
e are related as

Re � exp�2�R0
e � 7:39R0

e: �25�
It is physically more appropriate to use the dimensionless

parameter

M � Re�
1=2 �25a�

de®ned by Wilkens as the dislocation arrangement parameter

(Wilkens, 1970b). The value of M gives the strength of the

dipole character of dislocations: if M is small or large, the

dipole character and the screening of the displacement ®eld of

dislocations are strong or weak, respectively. At the same time,

strong or weak screening and small or large values ofM mean

strong or weak correlation in the dislocation distributions and

long or short tails in the diffraction pro®les, respectively. Long

or short tails of the diffraction pro®les mean that the tail parts

of the pro®les are close to Lorentzian or Gaussian type

functions, respectively; however, they are never exactly iden-

tical to either of the two simple functions (UngaÂr et al., 1982;

UngaÂr & Tichy, 1999; Wilkens, 1987). This also means that

when diffraction pro®les reveal similarity to either of the two

shapes, i.e. Lorentzian or Gaussian, it is more appropriate if

this behaviour is interpreted by concomitant size and strain

broadening (Barabash & Klimanek, 1999; Langford, et al.,

2000).

3.2. The Fourier transform of size profile

The Fourier transform of the size intensity function IS in

equation (15) yields the following formula:

AS�L� ' R1
jLj
��2 ÿ jLj�� erfcf�ln��=m��=21=2�g d�: �26�

Calculating the integral in equation (26), the Fourier coef®-

cients of the size pro®le can be obtained in closed form as a

function of the two parameters of the log-normal size distri-

bution, m and �:

AS�L� ' �m3 exp�4:5�2�=3�erfcf�ln�jLj=m��=21=2�ÿ1:5�21=2��g
ÿ �m2 exp�2�2�jLj=2�erfcf�ln�jLj=m��=21=2� ÿ 21=2�g
� �jLj3=6�erfcf�ln�jLj=m��=21=2�g: �27�

3.3. Fitting procedure

A numerical procedure has been worked out for ®tting the

Fourier transform of the experimental pro®les by the theo-

retical functions of size and strain Fourier transforms given by
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equations (24) and (27). The ®tting of the Fourier transform

instead of the intensity pro®le is performed for the following

reasons: (a) the size and the strain pro®les are in convolution

[see equation (1)]; therefore it is more convenient to work on

the Fourier coef®cients which are in product; (b) the size and

strain Fourier coef®cients are given in explicit forms [see

equations (24) and (27)]; (c) the instrumental correction can

be easily carried out on the Fourier coef®cients using complex

division, as in the Stokes correction (Stokes, 1948). The

numerical procedure has the following steps. (i) The Fourier

coef®cients of the measured physical pro®les are calculated by

a non-equidistantly sampling Fourier transformation

(NESFT). (ii) The Fourier coef®cients of the size and strain

pro®les are calculated by using equations (22), (23), (24), (27)

and (10) or (11) by expanding the integral in equation (22)

into a Taylor series. (iii) The experimental and the calculated

Fourier coef®cients are compared by the Marquardt±Leven-

berg non-linear least-squares procedure using a modi®ed

version of the GNUPLOT program package (for the original

GNUPLOT program package see http://www.gnuplot.org).

The whole pro®le ®tting procedure is based on ®ve or six

®tting parameters for cubic or hexagonal crystals, respectively:

(i) m and (ii) � of the log-normal size distribution function

(assuming spherical crystallites), (iii) � and (iv)M in the strain

pro®le [see equations (20), (22) and (23)], and (v) q, or A and

B, for the average dislocation contrast factors in cubic, or

hexagonal, crystals, respectively. The quality of the ®tting is

measured by the sum of the squares of the differences between

the calculated and the input Fourier coef®cients: SSR (sum of

squared residuals). Further details of the ®tting procedure and

the ®tting program may be found elsewhere (RibaÂrik et al.,

2001).

3.4. Boundary conditions and assumptions

These procedures assume that (i) strain is caused by dislo-

cations, (ii) either the specimen is a texture-free polycrystal, or

it is a random powder, or the Burgers vector population in the

possible slip systems is random, (iii) the crystallite size

distribution is lognormal, and (iv) the shape of the diffraction

domains is spherical. If there is evidence that the micro-

structure contains other lattice defects, e.g. stacking faults, the

evaluation procedures should be corrected, which increases

the number of ®tting parameters. If the assumption (ii) is not

true, then equations (10) and (11) cannot be used for the

average dislocation contrast factors and the individual

contrast factors calculated numerically should be used as ®xed

parameters, either for different re¯ections or for the different

components of an hkl re¯ection. If the crystallite size distri-

bution is not log-normal, but has analytical form with two free

parameters, then equations (15), (17), (18), (19), (26) and (27)

have to be recalculated, but the procedures and the number of

®tting parameters are not changed. The deviation of the shape

of crystallites from spherical would increase the number of

®tting parameters in the modi®ed Williamson±Hall plot and

the modi®ed Warren±Averbach method, and also in the

whole-pro®le ®tting procedure. In this case, the anisotropic

broadening of diffraction pro®les is caused by both the shape

and the strain of the crystallites (UngaÂr et al., 2001).

As mentioned before, if the specimen is either a texture-

free polycrystal or a powder, or the Burgers vector population

in the possible slip systems is random, then the average

contrast factors are given by equations (10) and (11). In this

case, the parameters q, or A and B, of the contrast factors can

be obtained either by the whole-pro®le ®tting procedure as

described in x3.3, or from the modi®ed Williamson±Hall plot.

In the latter case, equations (10) and (11) are inserted into (9),

which can be solved for D, �0 and q, or D, �0, A and B, for

cubic or hexagonal crystals, respectively, by the method of

least squares. However, the length of the Burgers vector, b,

and the average dislocation contrast factors for the h00 or hk0

re¯ections, �Ch00 or �Chk0, are input parameters of the evaluation

methods for cubic or hexagonal crystals, respectively. For the

calculation of these parameters, some information about the

dislocation structure existing in the sample is necessary.

Effective ways to ®nd out the dominant dislocation slip system

are transmission electron microscopy (TEM) measurements

or the evaluation of the anisotropic strain broadening of

diffraction pro®les by the modi®ed Williamson±Hall method

(UngaÂr, Dragomir et al., 1999; Gubicza et al., 2001).

4. Experimental

4.1. Samples

A copper and a silicon nitride sample having cubic and

hexagonal crystal structures, respectively, were investigated. A

99.98% copper specimen (kindly provided by Professor R.

Valiev), of about a few micrometres initial crystallite size, was

produced by extrusion. The extruded sample was further

deformed by ECA (equal-channel angular pressing) produ-

cing sub-micrometre average crystallite size (Valiev et al., 1994,

2000). In order to avoid machining effects, an approximately

100 mm surface layer was removed from the specimen surface

by chemical etching before the X-ray experiments. The silicon

nitride sample investigated here was a commercial powder

produced by nitridation of silicon and post-milling (powder

LC12 from Starck Ltd, Germany). The X-ray phase analysis

showed that the silicon nitride ceramic powder contained

97 vol.% �-Si3N4 and 3 vol.% �-Si3N4; therefore the micro-

structural parameters calculated for the major �-Si3N4 phase

were taken as characteristic parameters for the entire powder.

4.2. X-ray diffraction technique

The diffraction pro®les were measured by a special double-

crystal diffractometer with negligible instrument-induced

broadening (Wilkens & Eckert, 1964). A ®ne-focus rotating

cobalt anode (Nonius FR 591) was operated as a line focus at

36 kV and 50 mA (� = 0.1789 nm). The symmetrical 220

re¯ection of a Ge monochromator was used for wavelength

compensation at the position of the detector. The K�2
component of the Co radiation was eliminated by a 0.16 mm

slit between the source and the Ge crystal. The pro®les were

registered by a linear position-sensitive gas-¯ow detector
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(OED 50 Braun, Munich). In order to avoid air scattering and

absorption, the distance between the specimen and the

detector was bridged by an evacuated tube closed by Mylar

windows.

4.3. Corrections for instrumental effects, background and
overlapping peaks

Instrumental corrections have not been performed in the

present case since the X-ray diffraction measurements were

carried out by a special double-crystal diffractometer with

negligible instrumental broadening (see x4.2). If, however, the
instrumental effect could not be neglected, the observed line

pro®le would be the convolution of the physical and the

instrumental pro®les. In this case, the function ®tted to the

Fourier transform of the observed pro®les would be the

product of the size, the strain and the instrumental Fourier

coef®cients, as in a usual Stokes correction (Stokes, 1948). The

pro®les were measured by a linear position-sensitive detector

in 2048 channels, from which 900 to 1200 were used in the

evaluation of each pro®le. The tails of the diffraction pro®les

were measured down to 10ÿ3 or better in the special high-

resolution diffractometer with negligible instrumental broad-

ening. Thus truncation affects the pro®les only in the range

where relative intensities are below 10ÿ3 to 10ÿ4. From each

measured pro®le, about 250 to 500 Fourier coef®cients were

calculated in the case of the WPFC procedure. More details

about the numerical procedures will be published in a separate

paper (RibaÂrik et al., 2001).

If the pro®les overlap, they have to be separated since the

present evaluation methods are designed for individual

pro®les. Background subtraction and the separation of over-

lapping peaks are carried out in one step. Two analytical

functions, usually a pair of Pearson VII functions or a pair of

pseudo-Voigt functions, plus a linear background are ®tted to

the overlapping peaks. In the next step, one of the ®tted peaks

together with the linear background is subtracted, leaving the

other peak free of overlap and background. The counterpart

of the two overlapping peaks is obtained by changing the

assignment of one of the peaks as `background'. Practice has

shown that neither the Pearson VII nor the pseudo-Voigt

function is able to ®t the physical pro®les satisfactorily from

the maxima down to the tails. The software enables the height

of the linear background to be changed manually in an

interactive mode. This was necessary because of the un-

satisfactory ®tting of the pro®le tails by the two analytical

functions. The separated pro®les are taken as individual

diffraction pro®les in the evaluation procedures. The separa-

tion procedure can be avoided by further improvement of the

whole-pro®le ®tting by Fourier coef®cients (WPFC), in which

the theoretical intensity function is produced by the inverse

Fourier transformation of the theoretical Fourier transforms

and ®tted to the overlapping experimental intensity pro®les.

This improvement of the WPFC method, with ab initio

physical pro®le functions including strain, is under construc-

tion.

4.4. Transmission electron microscopy and the measurement
of specific surface area

Transmission electron microscopy (TEM, Jeol JEM200CX

instrument) has been used for direct measurement of the size

distribution of crystallites. Bright-®eld images were used to

measure the crystallite size in the samples. The speci®c surface

area of the silicon nitride ceramic powder was determined

from the nitrogen adsorption isotherms by the BET

(Brunauer±Emmett±Teller) method (Lippenca & Hermanns,

1961). Assuming that the particles have spherical shape, the

area-weighted average particle size (t) in nanometres was

calculated as t = 6000/qS where q is the density in g cmÿ3 and S

is the speci®c surface area in m2 gÿ1.

5. Results and discussion

5.1. Microstructural parameters obtained by the method of
widths and first Fourier coefficients (WFFC)

Strain anisotropy is clearly seen in the conventional

Williamson±Hall plot (Williamson & Hall, 1953) of the

FWHM and the integral breadths for copper, as shown by

UngaÂr & BorbeÂ ly (1996). The FWHM and the integral

breadths for copper are shown in a modi®ed Williamson±Hall

plot in Fig. 1. It can be seen that the measured data follow

smooth curves. Similar plots can be constructed for the silicon

nitride specimen. Using equation (10) or (11), equation (9)

was solved for D, �0 and q for cubic copper, or D, �0, A and B

for hexagonal silicon nitride by the method of least squares.

For the copper specimen, q = 1.90 (3) (uncertainty within

parentheses) has been obtained. In a previous work, the

values of q have been calculated for the most common dislo-

cation slip system in copper with the Burgers vector b =

a/2h110i (UngaÂr, Dragomir et al., 1999). It was found that for

pure screw or pure edge dislocations, the values of q are 2.37

or 1.68, respectively. The experimental value obtained in the

Figure 1
The modi®ed Williamson±Hall plot of the FWHM (squares) and the
integral breadths (circles) for copper deformed by equal-channel angular
pressing (Valiev et al., 1994). The indices of re¯ections are also indicated.
Note that C is a function of hkl; see equation (10).
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present case is somewhat below the arithmetic average of the

two limiting values of q. From this we conclude that the

character of the prevailing dislocations is more edge than

screw. This is in good agreement with other theoretical and

experimental observations, according to which, in face-centred

cubic (f.c.c.) metals during large deformations at low

temperatures, screw dislocations annihilate more effectively

than edge dislocations (Zehetbauer, 1993; Zehetbauer &

Seumer, 1993; Valiev et al., 1994). The value of �Ch00 was

determined in accordance with the experimental values of q:
�Ch00 = 0.30 (1) (UngaÂr, Dragomir et al., 1999).

The A and B parameters in the contrast factors of silicon

nitride were obtained from the modi®ed Williamson±Hall plot

as A = 3.33 and B = ÿ1.78. The value of c/a was taken as

0.7150. The value of �Chk0 was calculated numerically assuming

elastic isotropy since, to the best knowledge of the authors, the

anisotropic elastic constants of this material are not available.

The isotropic �Chk0 factor was evaluated for the most

commonly observed dislocation slip system in silicon nitride

(Wang et al., 1996): h0001i{10�10}. Taking 0.24 as the value of

the Poisson ratio (Rajan & Sajgalik, 1997), �Chk0 = 0.0279 was

obtained. The best contrast factors corresponding to the

integral breadths (also in the modi®ed Williamson±Hall plot)

and to the Fourier coef®cients in the modi®ed Warren±Aver-

bach plot, were identical, within experimental error, to those

obtained from the FWHM for both copper and silicon nitride.

The quadratic regressions to the FWHM and the integral

breadths give D = 140 nm and d = 106 nm for copper and D =

74 nm and d = 57 nm for silicon nitride.

A typical plot according to the modi®ed Warren±Averbach

procedure is shown in Fig. 2 for the copper specimen. From

the quadratic regressions, the size coef®cients, AS, were

determined. The intersection of the initial slope at AS(L) = 0

yields the area-weighted average column length: L0 = 75 and

41 nm for copper and Si3N4, respectively. The dislocation

densities obtained by using equation (4) are 1.6 � 1015 and 7.7

� 1014 mÿ2 for copper and silicon nitride, respectively. The

median, m, and variance, �, of the crystallite size distribution

functions determined by the WFFC procedure (see x2.4) are
listed in Table 1.

5.2. Microstructural parameters obtained from the method of
whole-profile fitting using the Fourier coefficients (WPFC)

Here we present the microstructural parameters obtained

by using the Fourier coef®cients in the whole-pro®le ®tting

(WPFC) procedure, as described in x3. The length of the

Burgers vector and �Ch00 or �Chk0 are input parameters. The

values of these quantities are the same as those calculated for

the WFFC procedure above. The measured and the ®tted

theoretical Fourier transforms are plotted in Figs. 3 and 4 for

copper and silicon nitride, respectively. The open circles and

the solid lines represent the measured and the ®tted theore-

tical Fourier pro®les normalized to unity, respectively. The

sum of squared residuals (SSR) was usually between 0.1 and 1,

which is very satisfactory taking into account that the ®tting

was carried out on about 1500 to 5000 data points. On a

Pentium class machine, one iteration lasts less than 1 s and

convergence to�(SSR)/SSR = 10ÿ9 is usually reached after 10

to 50 iterations. Fitting of one set of pro®les took usually less

than 1 min. Further details of the ®tting procedure and the

®tting program may be found elsewhere (RibaÂrik et al., 2001).

The median, m, and variance, �, of the crystallite size distri-

bution, the dislocation densities, �, and the arrangement

parameters, M, of the dislocations, obtained for copper and

silicon nitride, are listed in Table 1. It can be concluded that

the results determined by the two different procedures, WFFC

and WPFC, are in very good correlation.

In order to check the quality of the ®tting, the measured

physical pro®les are compared with the inverse Fourier

transform of the ®tted Fourier coef®cients in Fig. 5. The

differences are also shown. The measured (open circles) and

®tted (solid lines) pro®les of silicon nitride are shown in

Fig. 5(a). Three selected pro®les are shown in a wider scale in

Fig. 5(b). A very good correlation between the two sets of

pro®les can be observed. In the case of copper, the linear and

logarithmic intensity plots in Figs. 5(c) and 5(d), respectively,

show the central and the tail parts of the pro®les in more

detail. The pro®les correspond to a plastically deformed bulk

specimen and are intrinsically asymmetric as a result of resi-

dual long-range internal stresses (Mughrabi, 1983; UngaÂr et al.,

1984; Groma et al., 1988; Groma & SzeÂkely, 2000). These

internal stresses have the most pronounced effect on the 200,

311 and 400 re¯ections. Since in the WPFC procedure the ab

initio Fourier coef®cients correspond to symmetrical pro®les,

the Fourier coef®cients corresponding to the measured

pro®les were also symmetrized by taking their absolute values.

The inverse Fourier transformation of the ®tted coef®cients

therefore cannot account for the asymmetries of the measured

pro®les. The somewhat larger differences in Fig. 5(b) are

caused by this intrinsic asymmetry, especially in the case of the

200, 311 and 400 pro®les. The handling of intrinsic asymme-

tries will be included in the further development of the

procedure.
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Figure 2
The modi®edWarren±Averbach plot according to equation (4) for copper
deformed by equal-channel angular pressing (Valiev et al., 1994). Note
that C is a function of hkl; see equation (10).
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5.3. Comparison of the X-ray results with the TEM micro-
structure

The crystallite size distributions, f(x), obtained by X-ray

analysis are compared with size distributions determined from

TEM micrographs for the silicon nitride loose powder and the

plastically deformed bulk copper specimens. Typical TEM

micrographs of the two specimens are shown in Figs. 6 and 7.

In the TEMmicrographs, the crystallite sizes were determined

by the usual method of random line section.

For silicon nitride, about 300 particles were measured at

random in different areas of the micrographs and are shown as

a bar graph in Fig. 8. The crystallite size distribution density

function, f(x), obtained by the WFFC method, is shown by a

solid line in the same ®gure. The agreement between the bar

diagram and the size distribution function is very good. The

small quantitative differences between the X-ray and the TEM

results probably arise from the fact that the bar diagram was

obtained from a relatively small number of particles. A

formidably greater effort would be needed in order to increase

the number of particles for counting in TEM micrographs.

Estimating the volume illuminated by X-rays and the fraction

of crystallites re¯ecting in the correct direction, the number of

crystals contributing to the X-ray measurements is found to be

at least ®ve orders of magnitude larger than in the TEM

investigations. The good qualitative and quantitative agree-

ment between the size distributions determined by TEM and

X-ray analysis for silicon nitride indicates that (i) the particles

in the powder are single crystals, i.e. for this powder the

phrases `crystallite' and `particle' can be used in the same

sense, (ii) the size distribution is log-normal, in accordance

with observations of many nanocrystalline materials by other

authors (Krill & Birringer, 1998; Terwilliger & Chiang, 1995;

UngaÂr, BorbeÂ ly et al., 1999), and (iii) the X-ray procedures

described in xx2 and 3 yield the size distribution in good

agreement with direct observations. The area-weighted

average crystallite size (hxiarea) of silicon nitride calculated

from equation (17) is 58 nm. This value agrees well with the

area-weighted average particle size of the powder determined

from the speci®c surface area, t = 71 nm.

In the case of the bulk copper specimen, contour maps were

®rst drawn around the assumed crystallites. A typical ®rst-

approximation contour map is shown in Fig. 7(b) and the

corresponding bar graph is shown in Fig. 9 (open squares). The

crystallite size distribution density function, f(x), obtained by

the WFFC method is shown by a solid line in the same ®gure.

The open squares, annotated as TEM (gross) in Fig. 9,

correspond to considerably larger crystallites than the X-ray

size distribution. A more careful evaluation of the TEM

micrograph in Fig. 7(a) shows that there are large areas not in

contrast, which is typical for TEM micrographs of bulk

material. By tilting the specimen in the electron microscope,

different areas come into contrast or go out of contrast. The

contour of a large area out of contrast is shown in Fig. 7(c). On

the other hand, some areas are in excellent contrast, for

example the grain denoted by A in Fig. 7(b). The contour map

has been re®ned by selecting a large number of regions that

Table 1
The median,m, and the variance, �, of the crystallite size distribution functions, the densities, �, and the arrangement parameters,M, of dislocations, and
the parameters of the dislocation contrast factors, q, orA and B, obtained for copper and silicon nitride by the two different X-ray diffraction procedures,
WFFC and WPFC.

Sample Method m (nm) � � (1015 mÿ2) M q A, B

Copper WFFC 59 (5) 0.51 (5) 1.6 (2) 2.8 1.9 ±
Copper WPFC 62 (5) 0.53 (4) 1.7 (2) 1.7 1.84 ±
Si3N4 WFFC 26 (3) 0.54 (5) 0.77 (8) 2.5 ± 3.33, ÿ1.78
Si3N4 WPFC 20 (3) 0.65 (5) 0.75 (8) 2.1 ± 3.54, ÿ1.93

Figure 4
The measured (open circles) and the ®tted theoretical (solid line) Fourier
coef®cients of L for silicon nitride. The differences between the measured
and ®tted values are also shown, in the lower part of the ®gure. The
scaling of the differences is the same as in the main part of the ®gure. The
indices of the re¯ections are also indicated.

Figure 3
The measured (open circles) and the ®tted theoretical (solid line) Fourier
coef®cients as a function of L for the copper specimen. The differences
between the measured and ®tted values are also shown, in the lower part
of the ®gure. The scaling of the differences is the same as in the main part
of the ®gure. The indices of the re¯ections are also indicated.
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are in good contrast, using several micrographs. A typical

example is shown in Fig. 7(d). The size distribution corre-

sponding to the re®ned contour maps is shown as a bar graph

in Fig. 9 and is denoted as TEM (®ne).

In a bulk specimen, like the copper specimen investigated

here, there is a hierarchy of length scales (Hughes & Hansen,

1991; GilSevillano, 2001); in sequence of decreasing order: (i)

grains, (ii) subgrains, (iii) cell blocks, (iv) dislocation cells, (v)

cell interiors, (vi) cell boundaries and (vii) distances between

dislocations. (Note that this hierarchy becomes more compli-

cated for bulk materials with different phases, e.g. in alloys

containing precipitates or in composites.) The misorientation

between the different units of the microstructure can vary

from zero through small angles to large angles. In X-ray

diffraction, crystallite diameter is equivalent to the size of a

domain that is separated from the surroundings by a small

misorientation, typically one or two degrees. The contour map

in Fig. 7(b) is produced by grains, the largest unit in the

microstructure. All other units, from subgrains down to cell

boundaries, can have very different misorientations, ranging

from a few degrees to any large value. It is up to the experi-

menter to determine which unit the X-ray coherence length
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Figure 5
The measured intensity pro®les (open circles) and the inverse Fourier transform of the ®tted Fourier coef®cients (solid lines) for silicon nitride, (a), (b),
and for the copper specimen, (c). Three selected pro®les of silicon nitride with a wider scale are shown in (b). The pro®les corresponding to copper are
shown in logarithmic scale in (d). The differences between the measured and ®tted intensity values are also shown, in the lower parts of the linear-scale
plots (a), (b) and (c). The scaling of the differences is the same as in the main part of the ®gure. The relatively larger differences in the case of copper are
caused by intrinsic asymmetries of the pro®les; for details see x5.2.

Figure 6
TEM micrograph of the silicon nitride ceramic powder.
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corresponds to. For this reason, TEM micrographs are very

helpful and almost mandatory for the correct interpretation of

X-ray crystallite size distribution in the case of bulk material.

In the copper specimen investigated here, the average

dislocation distance is �ÿ1/2 = 36 nm. The median, the volume-,

area- and arithmetic-average crystallite size values [see

equations (17), (18) and (19)] are 59, 147, 113 and 67 nm,

respectively. All crystallite size values are two to six times

larger than the average dislocation distance, indicating that

the coherent domain size is de®nitely different from the

dislocation distance. A single dislocation does not destroy the

coherence of scattering, in agreement with many earlier

results (Wilkens, 1988). The present results show that the size

distribution obtained from X-ray diffraction is closer to the

Figure 7
TEM micrograph of the copper specimen. The lines in (b) represent the contours of the large grains in the micrograph (a). The region out of contrast in
the micrograph (a) is shown in (c). (d) shows grain A divided into smaller subgrains.

Figure 8
Bar diagram of the crystallite size distribution obtained from TEM
micrographs and the size distribution density function, f(x) (solid line),
determined by X-ray analysis, for the silicon nitride ceramic powder.
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subgrain size distribution determined from TEM than to

classical large-grain size distribution. Obviously, the X-ray and

TEM size distributions approach each other as the crystallite

size decreases. This is especially true for nanocrystalline

materials, irrespective of powder or bulk, as can be seen for

the silicon nitride powder here or in previous works on ball-

milled and bulk materials (ReÂveÂsz et al., 1996; UngaÂr et al.,

1998; Gubicza et al., 2000).

6. Conclusions

Two different procedures are presented to obtain parameters

of the microstructure of crystalline materials by diffraction

peak pro®le analysis. One is based on the FWHM, the integral

breadths and the ®rst few Fourier coef®cients of the pro®les.

The other one is based on ®tting ab initio physical functions to

the Fourier transform of the measured pro®les.

In both procedures, strain anisotropy is accounted for by

the dislocation model of the mean square strain. In cubic or

hexagonal crystals, the average dislocation contrast factors are

described by two or three parameters, respectively. One or two

of these parameters in cubic or hexagonal crystals, respec-

tively, are obtained as a result of the ®tting procedure.

By scaling the FWHM, the integral breadths and the

Fourier coef®cients by the dislocation contrast factors, the

strain and size parts of peak broadening can be well and

straightforwardly separated from each other, enabling the

reliable determination of the apparent size parameters.

It has been shown that the crystallite size distribution can be

determined either from the apparent size parameters or from

the whole-pro®le ®tting procedure assuming spherical shape

and log-normal size distribution of the crystallites.

Although the apparent size parameter corresponding to the

FWHM has no direct physical meaning, its inclusion in the

determination of the crystallite size distribution decreases the

sensitivity of the procedure to the accuracy of the determi-

nation of the background.

The Fourier transform of the theoretical size pro®les has

been derived in a closed form, enabling a convenient and fast

®tting procedure.

In the case of spherical crystallites and the absence of

stacking faults, the microstructures are characterized by ®ve or

six parameters: the median and the variance of the size

distribution, the density and the arrangement parameter of

dislocations, and one or two parameters for the dislocation

contrast factors in cubic or hexagonal crystals, respectively. In

the two procedures these are the only ®tting parameters.

The two different methods were applied to determine the

crystallite size distribution and the dislocation structure in a

severely deformed bulk copper sample and a loose powdered

silicon nitride specimen. Good correlation between the

microstructural parameters provided by the two different

methods of diffraction pro®le analysis, WFFC and WPFC, is

observed.

In the case of silicon nitride, the crystallite size distributions

obtained by the two different methods are in excellent

agreement with the TEM results. The area-weighted mean

crystallite size obtained by X-ray analysis is in good agreement

with the area-weighted mean particle size calculated from the

speci®c surface area provided by the method of BET. From

this, it is concluded that the silicon nitride particles are

monocrystalline.

The TEM micrographs of the bulk copper specimen were

evaluated with regards to (i) the grains separated by the

strongest contours and (ii) the subgrains surrounded by

weaker contours. The results of the second evaluation are in

good correlation with the crystallite size distribution deter-

mined by X-ray analysis. From this it is concluded that in

plastically deformed bulk materials, the coherently scattering

domains are closer to subgrains or dislocation cells than to

crystallographic grains.
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support of the Hungarian Scienti®c Research Fund, OTKA,
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