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1. Aims

The research proposal is grown up from our intensive work and experience in the research
on the quantum mechanical inverse scattering problem. Immense scientific efforts are
and were made in Bose-Einstein-Condensation (BEC) in order to gain new knowledge
and deeper insight in the properties and the forming of observable BE condensates. The
stability of these condensates depends on the interaction between the atoms forming the
condensates.
The first main aim of our research project was the exploration of stable solutions for
two-component BE condensates by considering the general region of stable solutions of
coupled Gross-Pitaevskii equations describing the two component BE condensates. For
the solution of these equations an inverse scattering problem has to be solved with cou-
pled reaction channels. The second main aim was directly connected to this problem.
We planned to develop new practical methods of the solution of the inverse scattering
problem at fixed energy for coupled reaction channels. Whereas the elastic inverse scat-
tering problem at fixed energy can be solved with several known methods giving complex
potentials from the elastic phase shifts, the three-dimensional coupled inverse problem
at fixed energy is less studied and lacks for such methods. We wanted to investigate
this basic question by searching for solutions within a Born-like approximation and within
the algebraic scattering theory. Both methods should be used for obtaining potentials
and couplings from S-matrices connected with experimental elastic and reaction cross
sections.
Both aims are and were actual and basic for our understanding of interactions between
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atoms, ions or nuclei. They should lead to important results which should be published
in internationally recognized journals like our former work in the fields of Bose-Einstein-
Condensates and of Inverse Scattering Problems.

2. Summary

The inverse quantum mechanical scattering problem at fixed scattering energy searches for
the elastic potential or coupling potentials from a set of phase shifts or from a S-matrix.
The phase shifts as a function of the angular momentum can be obtained from measured
differential cross sections at fixed energy. To solve the inverse scattering problem is a very
difficult mathematical question. Here, we do not discuss the uniqueness of the different
methods, to extract potentials from the phase shifts.
During the project we developed the inverse method of Cox and Thompson for applica-
tions, simplified the solution method and applied this method to get the effective Rb-Rb
interatomic potential from ultracold Bose gas collisions (T < 1 µK). We worked out a
new solution method of the inverse scattering problem at a fixed energy for a poten-
tial which is zero beyond a fixed radius. Further we gave a first solution of the inverse
scattering problem for coupled channels at a fixed energy. This solution is based on
the Born approximation and allows to analyze coupled channel problems with the corre-
sponding S-matrix. We investigated the stability of static solitonic excitations occuring
in Bose-Einstein condensates.
With the Cox-Thompson method it is possible to invert phase shifts to potentials which
are finite at the coordinate origin and have a first momentum

∫

V (r)rdr which can be
different from zero. The Cox-Thompson method leads to highly nonlinear equations. We
found numerical solutions from phase shifts of complex potentials and partly analytical
solutions in the case that only phase shifts contribute which belong to even or odd angular
momenta. The latter point is important and gives a great simplification for problems of the
elastic scattering of bosons (even angular momenta) or fermions (odd angular momenta).
We showed that this latter method can also be approximately applied in various variants.
We applied the Cox-Thompson method for the scattering of 87Rb on 87Rb at very low
energies, where these atoms form a Bose-Einstein condensate. We obtained an energy-
dependent potential which changes its characteristic from repulsion to attraction near the
` = 2 resonance at T ≈ 275 µK.
The complicated inversion problem for coupled channels was solved for cases where the
Born approximation is justified. We have up to now only inverted S-matrices from known
given potentials. This method has the great advantage that one needs only S-matrix
elements, which relate the elastic channel with the inelastic channels, and one obtains
the coupling potentials between the elastic and inelastic channels directly. This procedure
is waiting for applications with measured S-matrices where we would find realistic cou-
pling potentials which can be compared with coupling potentials calculated with model
assumptions.
In this project we worked out a treatment for the stability of an atomic two-component
Bose-Einstein condensate. We considered the macroscopic dynamics in such a conden-
sate by two coupled nonlinear Schrödinger equations, known as Gross-Pitaevskii equa-
tions. Depending on the interspecies scattering length we got information about the
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two-component system which may show solitonic features. We applied the formalism to
a two-component Bose-Einstein condensate consisting of a mixture 7Li - 87Rb.
The project gave new, internationally recognized developments in the mathematical the-
ory of the solution of the inverse scattering problem at fixed energy. Also new knowledge
in the field of Bose-Einstein condensates was gained.

3. Report on the main results

3.1 Extension of the inverse method of Cox and Thompson to complex
potentials and experimental data

Phase shifts obtained at fixed energies are usually used together with the modified Newton-
Sabatier method to construct the underlying potential. However this method yields local
potentials which are infinite at the origin and which have a vanishing first momentum
∫

V (r)rdr = 0. Both disadvantages of the Newton-Sabatier method are avoided by the
Cox-Thompson method developed here for practical applications first by B. Apagyi, Z.
Harman and W. Scheid (J. Phys. A: Math. Gen. 36 (2003) 4815). We have extended
this method to complex potentials and experimental data. In chapter 3.2 we describe a
recent extension to fermionic and bosonic scattering wave functions which simplifies this
method to a large extent.
Cox and Thompson started with a Povzner-Levitan-representation for the regular scatter-
ing wave function

φl(r) = ul(r) −
r
∫

0

dr′ r′−2K(r, r′)ul(r
′), (1)

where φl(r) has to fulfill the Schrödinger equation with the searched potential. (We use
dimensionless units and k is fixed at 1 so that kr => r, 2µ

~2k2U(r) = V (r), 2µ
~2k2E = 1.)

Using the operators

D(r) = D0(r) − r2V (r), D0(r) = r2

(

∂2

∂r2
+ 1

)

, (2)

the Schrödinger equation can be written in the form

D(r)φl(r) = l(l + 1)φl(r). (3)

The function ul(r) is the regular solution of the corresponding Schrödinger equation
without a potential

D0(r)ul(r) = l(l + 1)ul(r). (4)

Inserting φl(r) into the Schrödinger equation and assuming that the kernel K(r, r ′) fulfills
the partial differential equation

D(r)K(r, r′) = D0(r
′)K(r, r′),
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one obtains the potentials as

V (r) = −2

r

d

dr

(

K(r, r)

r

)

.

The transformation kernel K(r, r′) can be written as

K(r, r′) =
∑

L∈T

AL(r)uL(r′),

where the indices L ∈ T are taken from a set T of generalized shifted angular momentum
quantum numbers being disjunct with the set {l} ≡ S of real integer physical angular
momenta (S ∩ T = { }). The functions AL(r) can be determined by starting with the
Gel’fand-Levitan-Marchenko–type integral equation for the transformation kernel

K(r, r′) = g(r, r′) −
r
∫

0

dr′′r′′−2K(r, r′′)g(r′′, r′), r ≥ r′

and then applying the Cox-Thompson ansatz for the symmetric kernel

g(r, r′) =
∑

l∈S

γlul(r<)vl(r>) = g(r, r′),

where r<(r>) stands for the minimum (maximum) of the variables r, r ′, vl are irregular
Neumann functions satisfying equation (4) with the behaviour r−l at the origin, and γl

denotes expansion coefficients. From the above equations one obtains a system of linear
equations for the functions AL(r):

∑

L∈T

AL(r)
uL(r) × dvl(r)/dr− duL(r)/dr × vl(r)

l(l + 1) − L(L + 1)
= vl(r), l ∈ S,

where the set T is as yet unknow. Another system of equations can be obtained for the
coefficients γl:

∑

l∈S

γl

l(l + 1) − L(L + 1)
= 1, L ∈ T,

which has the solution

γl =

∏

L∈T [l(l + 1) − L(L + 1)]
∏

l′∈S,l′ 6=l[l(l + 1) − l′(l′ + 1)]
, l ∈ S.

Connecting the coefficients AL(r) with the physical phases we calculated finally the equa-
tions

Sl =
1 + iK+

l

1 − iK−
l

, l ∈ S

with the scattering matrix elements Sl = exp (2iδl) and the quantities K±
l defined as

K±
l =

∑

L∈T,l′∈S

(Msin)lL(M−1
cos)Ll′e

±i(l−l′)π/2, l ∈ S,
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Figure 1: Complex box potential: Results for the inversion of 11 phase shifts at Ecm = 22
MeV using the CT- and mNS-method. The masses of the scattered particles were chosen
as M1 = M and M2 = 20 ·M , where M is the nucleon mass.

where the square matrices are defined by

{

Msin

Mcos

}

lL

=
1

L(L + 1) − l(l + 1)

{

sin
(

(l − L)π
2

)

cos
(

(l − L)π
2

)

}

, l ∈ S, L ∈ T, S∩T = { }.

The numerical search for complex L−values from complex phase shifts is mathemati-
cally very complex and needs advanced numerical methods like the Newton-Raphson or
simulated annealing methods.
The application of inversion methods has two sources of errors, namely the quality of
the phase shifts of the measured differential cross section and the quality of the inversion
method from the phase shifts to the potential. First we will concentrate our discussion on
the second source of errors. In Figs. 1 and 2 we demonstrate potentials gained with phases
from given potentials with the Cox-Thompson (CT) and the modified Newton-Sabatier
(mNS) methods. One recognizes the advantage of the CT method. The inversion leads
to a finite value of the potential at the origin.
The amplitude of the oscillations of the inverted potentials depends on the maximum
angular momentum lmax, on the precision of phase shifts and of the calculation. It is
very difficult the formulate precise error formulas in an analytical form since the Newton-
Sabatier and the Cox-Thompson method are highly nonlinear theories. Such mathematical
investigations on the stability and precision of the CT-method are really needed for future
advance of this ill-conditioned inversion problem and should be planned in a new proposal
of investigations to the inverse scattering problem.
As an example for phase shifts related to experimental scattering data we considered the
elastic n−α scattering below the inelastic threshold n+α→ d+ t at Eα = 22.06 MeV.
Since the CT-method assumes a local central potential, we simplified the actual problem
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Figure 2: Complex Woods-Saxon potential: Results for the inversion of 14 phase shifts at
Ecm = 25 MeV using the CT- and mNS-method. The masses of the scattered particles
were chosen as M1 = M and M2 = 20 ·M , where M is the nucleon mass. Because of the
good agreement of the CT inversion potential with the original Woods-Saxon-potential,
the latter one is not shown in the figure.

considerably. We partly neglected the spin-orbit potential and used complex-valued phase
shifts. Also phase shifts were derived by Chen and Tornow from experimental differential
cross section data for the scattering of neutrons on 12C. We used the phase shifts for
inversion. In Fig. 3. we show real and imaginary central potentials obtained by the
CT-inversion from these phase shifts. We conclude from the results obtained for the
n−nucleus scattering that the CT inverse method deserves to be extended further to be
able to treat phase shift data originated from charged particle collisions.

3.2 Simplified solution of the Cox-Thompson inverse scattering method
at fixed energy

The Cox-Thompson method connects the S−matrix with a ”reactance” matrix K±
l (see

Section 3.1)(T. Palmai, H. Horvath, B. Apagyi, J. Phys. A: Math. Theor. 41 (2008)
235305)

Sl =
1 + iK+

l

1 − iK−
l

, l ∈ S, (5)

where
K±

l =
∑

L∈T,l′∈S

(Msin)lL(M−1
cos)Ll′e

±i(l−l′)π/2, l ∈ S,
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Figure 3: Real and imaginary central potentials inverted from phase shifts of n − 12C
differential cross sections at the neutron energies E lab

n = 9.2, 10 and 12 MeV.

and
{

Msin

Mcos

}

lL

=
1

L(L + 1) − l(l + 1)

{

sin
(

(l − L)π
2

)

cos
(

(l − L)π
2

)

}

, l ∈ S, L ∈ T, S∩T = { }.

An essential simplification has been found which can be used in the cases when only even
or odd partial waves contribute to the scattering. This simplifications of the equations
can be used to construct different simple approximations to the Cox-Thompson-method.
For example, in the scattering of 12C on 12C the elastic cross sections are generated by
even partial phase shifts only.
By solving the Gel’fand-Levitan-Marchenko–type integral equation one writes the trans-
formation kernel in the form as a sum over an artificial angular momentum space L ∈ T :

K(x, y) =
∑

L∈T

AL(x)uL(y).

One finds for the asymptotic expansion functions Aa
L(x) ≡ AL(x→ ∞) the relation

∑

L∈T

Aa
L(x)

cos((l − L)π
2
)

l(l + 1) − L(L + 1)
= − cos(x− l

π

2
), l ∈ S.

If this equation is differentiated twice with respect to x, we obtained the following equation

d2Aa
L(x)

dx2
= −Aa

L(x),

which has a periodic solution

Aa
L(x) = aL cos(x) + bL sin(x).
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Then we introduced two systems of equations for even l = le and odd l = lo angular
momenta as follows

∑

L∈Te

{

aL

bL

}

cos
(

(l − L)π
2

)

L(L + 1) − l(l + 1)
=

{

cos
(

lπ
2

)

sin
(

lπ
2

)

}

, l ∈ Se

and
∑

L∈To

{

aL

bL

}

cos
(

(l − L)π
2

)

L(L + 1) − l(l + 1)
=

{

cos
(

lπ
2

)

sin
(

lπ
2

)

}

, l ∈ So,

where |Te| = |Se|, |To| = |So| and Te ∩ Se = ∅, To ∩ So = ∅. These systems can be
analytically solved. For even l value we obtained

aL =

∏

l∈Se
(L(L + 1) − l(l + 1))

∏

L′∈Te\{L}(L(L + 1) − L′(L′ + 1))

1

cos
(

Lπ
2

) , bL = 0, L ∈ Te,

and similarly for odd orbital angular momenta lo ∈ So. Now by using these analytical
expressions one obtains the final solution to the CT method for even l as:

tan(δl) = −
∑

L∈Te

∏

l′∈Se\{l}
(L(L + 1) − l′(l′ + 1))

∏

L′∈Te\{L}(L(L + 1) − L′(L′ + 1))
tan
(

L
π

2

)

, l ∈ Se. (6)

A similar relation is obtained for odd orbital angular momenta lo ∈ So.
The above equations determine the unknown set Te of shifted angular momenta L. These
equations are much simpler as the above equations which contain the inversion of the
matrix of Mcos involving the unknowns of shifted angular momenta L. The above equa-
tions are presumably easier to be solved for the set Te (or To) if the input phase shifts
are given. We showed that the solutions with even l = le of equations (6) are equivalent
to the solution of equation (5).
There are several approximations possible with this simplified method. One can solve the
inverse potential for the sets Te and To and obtains the potentials qe and qo. One can
simply add them together to get the approximation of the interaction potential qA(x) =
qe(x) + qo(x). This is called the potential approximation A. One may try to approximate
the set of the shifted angular momenta themselves by solving the equations for even and
odd phase shifts separately, obtaining the sets Te and To (approximation T ). One gets
the T−set approximation Ta = Te ∪ To and then the approximate potential qT (x). If
the collision is dominated by a single partial wave as in the case of resonance scattering
then the equations can be solved for N = 1, and this results in the simple expression
L = l− 2δl/π for the shifted angular momentum (approximation L). This approximation
used for all shifted angular momenta yields an inverted potential denoted by qL(x).
We applied the new method to calculate an effective 87Rb+87Rb-potential observed in
ultracold Bose-gas collision at an energy of E = 303µK. The inverse calculation uses only
even measured phase shifts with angular momenta l = 0, 2, 4, respectively. The resulting
potential shown in Fig. 4 is identical with the potential obtained by solving the complete
set of equations (see chapter 3.3).
We calculated also the inverse potential for the n+12C scattering at Elab = 10 MeV
with complex-value phase shifts derived by Chen and Thornow from experimental cross
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Figure 4: Effective 87Rb+87Rb inverse potential VCT (in mK) as a function of the radial
distance r (in nm) at an energy Ecm = 303µK.

sections. The inverse potentials are obtained with different approximations. It is assumed
that the potential calculated by the original CT-method would be the best one. In Fig.
5 we show inverse potentials obtained with the approximations A,T, and L.
The range of applicability of the new formulas is wider than the original Cox-Thompson
method. We have demonstrated the applicability of the new equations which make the
solution of the CT inverse scattering method at fixed energy much easier.

3.3 The effective Rb-Rb interatomic potential from ultracold
Bose-gas collisions

At very low energies, at the end of the energy scale, one can cool down atoms to the
ultracold regime (< 1µK), to form a Bose-Einstein condensate and explore the low-energy
properties of the atomic interaction. At these temperatures collisions play a major role
in affecting the static and dynamic properties of the condensate, e.g. stability, lifetime,
and thermalization rate. In this regime inelastic processes are usually negligible. Here, we
contributed to characterize or even to reconstruct an effective inter-atomic potential from
scattering phase shifts by using the inverse scattering method by assuming that there exists
an effective spherically symmetric potential which is the cause of the observed scattering
events (D. Schumayer, O. Melchert, W. Scheid, B. Apagyi, J. Phys. B: At. Mol. Opt.
Phys. 41 (2008) 035302).
We employed the fixed energy inverse scattering method of Cox and Thompson (CT)
in order to derive model-independent potentials from given phase shifts resulting from
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Figure 5: Inverse potentials obtained from input phase shifts up to l = 4 for n scattering
on 12C at an energy E lab

n = 10 MeV (Ec.m
n = 9.23 MeV, k = 0.638 fm−1). Curves ob-

tained by the CT and by the approximate methods are labeled according to the procedure
discussed in the text.

experiments with a Rb-Bose gas in traps. The CT method leads to a system of nonlinear
equations

exp (2iδl) =
1 + iK+

l

1 − iK−
l

,

where the reactance matrix is defined as

K±
l =

∑

L∈T,l′∈S

NlL

(

M−1
)

Ll′
e±i(l−l′)π/2, l ∈ S

with the square matrices

{N
M

}

lL

=
1

L(L + 1) − l(l + 1)

{

sin
(

(l − L)π/2
)

cos
(

(l − L)π/2
)

}

, l ∈ S, L ∈ T, S∩T = { },

containing the unknown L−values. Once the set T is determined by solving the highly
nonlinear equation given above for L, we calculate coefficient functions AL(r) using the
system of linear equations

∑

L∈T

AL(r)(jL(r) × n′
l(r) − j ′L(r) × nl(r))/[l(l + 1) − L(L + 1)] = nl(r),

where jL and nl denote spherical Bessel and Neumann functions. Next, we calculate the
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Figure 6: Inverse potentials from the l = 0, 2, 4 experimental phase shifts at energies
E=102-203 µK below the d−resonance. The inset shows the central amplitude of the
inverse potential as a function of collision energy.

potential with the expansion coefficients AL(r)

V (r) = −2

r

d

dr

∑

L∈T

AL(r)jl(r)/r.

In Fig. 6 we present the inversion potentials for the energy range between 100 and 200
µK which lie below the characteristic l = 2 resonance of 87Rb-87Rb scattering at ∼ 275
µK. The inversion potentials reproduce the input phase shifts well within the considered
energy region as demonstrated in Fig. 7 where both input and output phase shifts are
shown. Fig. 8 gives the inversion potentials from 200 to 400 µK. There occurs an abrupt
change of potential strength V (0) at r = 0 from repulsion to attraction when the collision
energy crosses the l = 2 resonance at ∼ 275µK.
Since the input data stem entirely from experimentally confirmed data we expected that
the sudden change of the inner strength of the potential should be observed in future
Bose-gas experiments. This inversion technique is useful if high-resolution data are avail-
able, the corresponding potential has not already been studied with models and if one
needs an intuitive picture about the interaction in a given energy range.
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Figure 7: Phase shifts of the first three allowed partial waves with l = 0, 2, 4. Solid
and dashed lines represent the original input data. The symbols stand for phase shifts
calculated from the inverse potentials shown in Figs 6 and 8.

Figure 8: Inverse potentials obtained from the experimental l = 0, 2, 4 scattering phase
shifts around the d−resonance at ∼ 275µK.
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3.4 New solution of the inverse scattering problem at fixed
energy for a potential which is zero beyond a fixed radius.

We consider the radial Schödinger equation

−ϕ′′
l (r) +

(

l(l + 1)

r2
+ q(r) − k2

)

ϕl(r) = 0

with the boundary conditions ϕl(r → 0) ≈ rl+1, and ϕl(r → ∞) ≈ sin(kr − lπ/2 + δl)
with angular momentum quantum numbers l = 0, 1, 2, .... The physical potential V (r)
is related to the above potential by the relation q(r) = V (r)/(~2/2m) with m being the
reduced mass. The potential q(r) is zero beyond a certain radius: q(r ≥ a) = 0, and the
wave function can be written as

ϕl(r ≥ a) =
√
r
(

Jl+ 1

2

(kr) − tan(δl(k))Yl+ 1

2

(kr)
)

,

where Jl+ 1

2

and Yl+ 1

2

are regular and irregular Bessel functions. After performing the
transformations

ϕl(r) =
√
ryl(x), r = a exp(−x), 0 ≤ r ≤ a,

we obtained the transformed Schrödinger equation

−y′′l (x) +Q(x)yl(x) = −(l + 1/2)2 yl(x) (7)

Q(x) = r2(q(r) − k2), 0 ≤ x ≤ ∞.

The former equation is an eigenvalue equation on the half line with eigenvalues at λ =
−(l + 1

2
)2. The initial slope of these eigenfunctions is known to be:

y′l(0)

yl(0)
= a

ϕ′
l(a)

ϕl(a)
− 1

2
= −ka

J ′
l+1/2(ka) − tan δlY

′
l+1/2(ka)

Jl+1/2(ka) − tan δlYl+1/2(ka)
.

Equation (7) can be considered as a Sturm-Liouville equation whose inverse problem
is solved for a long time. The inverse spectral problem gives the spectral function, if

Q(x) ≡ 0 and Yλ(x) = cos
(√

λx
)

in the form

ρ0(λ) =

{

2
π

√
λ, λ ≥ 0,

0, λ < 0.

Our solution method is based on the observation that the moments µl of the input
function, i.e.,

µl ≡
∞
∫

0

F (x) exp(−(l +
1

2
)x)dx (8)
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with F (x) =
∫∞

−∞
cos(

√
λx) dσ(λ) and with σ(λ) = ρ(λ) − ρ0(λ), can be expressed as

following

µl =
(l + 1

2
)

ka

Jl+1/2(ka) − tan δlYl+1/2(ka)

J ′
l+1/2(ka) − tan δlY ′

l+1/2(ka)
− 1.

A symmetrical input kernel can be obtained from the definition of F (x)

F (x, t) =

∞
∫

−∞

cos(
√
λx) cos(

√
λt) dσ(λ) =

1

2
(F (x+ t) + F (|x− t|)).

Knowing the input kernel one can determine the transformation kernel K(x, t) by solving
the Gelfand-Levitan-Marchenko (GLM) equation:

0 = F (x, t) +K(x, t) +

x
∫

0

K(x, s)F (s, t)ds, 0 ≤ t ≤ x.

The transformation kernel yields the transformed potential

Q(x) = 2
d

dx
K(x, x).

To determine the input function F (x) from the given momenta we supposed that we have
only one bound state at λ = λ0 < 0 in Q(x). Then we write

F (x) ≈ c0e
(1/2−2d)x +

L
∑

l=1

cle
−(l−1)x

and solve the above equation (8) by the minimum norm method. This method yields a
system of linear equations which can be written in matrix form as

H(d)c = µ

with the matrix elements

Hij(d) =

1
∫

0

dt t2d+i+j−1 =
1

i + j + 2d
, i, j = 0, 1, .., L.

The unknown singularity position d is determined from the condition

|
∑

cl| = min

which provides the bound state energy of the potential Q(x) from the relation

d =
1

4
− 1

2

√

−λ0.
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Figure 9: The inversion potential V (r) = q(r)/2 as a function of r. The results belong
to the energy of Ecm = 0.5 a.u. (k = 1 a.u.).

By determining the expansion coefficients c0, c1, ..., cL, and the bound state position λ0

of Q(x), one can finally derive the inverse potential q(r). We applied this method to the
box potential

V (r) =

{

1/2 if 0 ≤ r ≤ a =
√

2
0 else

at the energy E = 0.5 a.u. with k = 1 a.u. We gained
√
−λ0 = 0.3881 for the bound

state position in Q(x). The Fig. 9 shows the potential inverted by phase shifts up to
l = 10. The method is capable of reproducing the constant potential except for a narrow
region at the origin where the breakdown is attributed to numerical imprecision of the
extraction of the bound state value λ0 of Q(x) from the input phase shifts.
Another example is the Gauss potential of the form V (r) = −2e−r2/0.2. The results
shown in Fig. 10 for the energy Ecm = 1.125 a.u. (~2/m = 1). We used eight phase
shifts as input data and obtained

√−λ0 = 2.0853656 for the bound state position in the
potential Q(x). The Gauss potential is well reproduced by this new method.

3.5 Coupled channel inverse scattering problem solution
at fixed energy in Born approximation

We developed an approximation method based on the first Born approximation for the
solution of the quantum inverse scattering problem at fixed energy for coupled reaction
channels (S. Jesgarz, B. Apagyi, W. Scheid, J. Phys. A: Math. Gen. 37 (2004) 8721).
This method gives us a local coupling matrix from the S−matrix.
We first formulated the Hamiltonian for the coupled channel problem

Ĥ(r, ξ) = T̂ (r) + ĥ(ξ) + Ŵ (r, ξ).
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Figure 10: Gauss potential resulting from the inversion of eight phase shifts l = 0, 1, ...7
at Ecm = 1.125 a.u. (k = 1.5 a.u.).

The internal Hamiltonian has the eigenvalues ενJ

ĥ(ξ)χνJM(ξ) = ενJχνJM(ξ).

where J is the total intrinsic angular momentum. The interaction potential is short-ranged
up to r ≤ a:

Ŵ (r, ξ) =

∞
∑

λ=0

λ
∑

µ=−λ

Qλµ(r, ξ)Y ∗
λµ(Ω).

The stationary solution of the coupled channel problem Ĥψ = Eψ can be written as

ΨI
M(r, ξ) =

∑

νJ

I+J
∑

`=|I−J |

[

i`Y`(Ω) ⊗ χνJ(ξ)
]I

M
RI

`νJ,n(r)/r

where ⊗ denotes the tensor product of the spherical harmonics Y`m and the internal wave
functions χνJM(ξ). In the following we use the coupled differential equations for the
radial wave functions
(

− ~
2

2µ

d2

dr2
+
`α(`α + 1)~2

2µr2
+ εα − E

)

RI
αn(r) = −

∑

β

∑

λ

CλI
αβv

λ
ναJα,νβJβ

(r)RI
βn(r).

Here, α = {`α, να, Jα, εα} denotes the sets of quantum numbers of each channel, CλI
αβ

are coefficients depending on Clebsch-Gordan-coefficients and 3j−Wigner-symbols and
vλ

ναJα,νβJβ
(r) are reduced matrix elements of the coupling potentials Qλ(r, ξ).

We have constructed a possible solution of the inverse problem for coupled channels at
fixed energy based on the Born approximation. For elastic scattering this method was
developed by Ramm. The solution of the coupled differential equations from above

(

d2

dr2
− `α(`α + 1)~2

2µr2
+ k2

α

)

RI
αn(r) =

∑

U I
αβ(r)RI

βn(r). (9)
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with U I
αβ(r) =

(

2µ
~2

)

V I
αβ(r), k2

α = (E − εα)
(

2µ
~2

)

, can be transformed to

RI
αn(r)/r = R0I

αn(r)/r

−i
a
∫

0

r′
2
dr′kαj`α

(kαr<)(j`α
(kαr>) + in`α

(kαr>))
∑

β

U I
αβ(r′)RI

βn(r′)/r′,

where R0I
αn(r) are regular solutions of

(

d2

dr2
− `α(`α + 1)

r2
+ k2

α

)

R0I
αn(r) = 0.

In the above equation (9) we assumed that the potential matrix vanishes for r > a .
Then the above wave functions can be written for r > a:

RI
αn(r)/r =

√

kαknδ
I
αnj`α

(kαr) − iII
αn(j`α

(kαr) + in`α
(kαr)),

II
αn =

a
∫

0

r′
2
dr′kαj`α

(kαr
′)
∑

β

U I
αβ(r′)RI

βn(r′)/r′. (10)

Comparison with the asymptotic wave function

RI
αβ(r > a)/r =

√

kαkβ

2

(

(SI
αβ + δI

αβ)j`α
(kαr) + i(SI

αβ − δI
αβ)n`α

(kαr)
)

,

yields

SI
αβ = δI

αβ −
2iII

αβ
√

kαkβ

.

Up to here the formulas are exact expressions. Now we applied the first Born approxima-
tion by inserting the free solution R0I

βn(r)/r =
√

kβknδ
I
βnj`β

(kβr) instead of RI
βn(r)/r

into the interaction matrix (10) and obtained:

II
αβ

√

kαkβ

−→ ĨI
αβ =

√

kαkβ

a
∫

0

r′
2
dr′j`α

(kαr
′)U I

αβ(r′)j`β
(kβr

′).

The last relation leads to the basic equation for the inversion procedure:

SI
αβ = δI

αβ − 2iĨI
αβ.

In order to get the potential matrix U I
αβ(r), one has to resolve the moments bλαβ of the

transition matrix:

a
∫

0

r′
2
dr′j`α

(kαr
′)j`β

(kβr
′)〈χναJα

||Qλ(r
′, ξ)||χνβJβ

〉 = bλαβ,
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where the bλαβ are given as a function of the S-matrix

bλαβ =
i~2

√
4π

4µ
√

kαkβ

i`α−`β(−1)Jα+λ

√

2λ+ 1

(2`α + 1)(2`β + 1)

(

`α λ `β
0 0 0

)−1

×
∑

I

(−1)I(2I + 1)

{

Jβ `β I
`α Jα λ

}

(SI
αβ − δI

αβ).

The potential matrix can be obtained with the method of Backus and Gilbert. With
bλαβ = bλi`α,j`β

we introduced the ansatz

〈i||Qλ(r, ξ)||j〉Imax
=

Imax
∑

{`α,`β}=0

hλ
i`α,j`β

(r)bλi`α,j`β

=

Imax
∑

{`α,`β}=0

hλ
i`α,j`β

(r)

a
∫

0

r′
2
dr′j`α

(kir
′)j`β

(kjr
′)〈i||Qλ(r

′, ξ)||j〉.

This is fulfilled for Imax → ∞ if

Aλ,Imax

i,j (r, r′) =

Imax
∑

{`α,`β}=0

hλ
i`α,j`β

(r)j`α
(kir

′)j`β
(kjr

′)r′
2 → δ(r − r′).

From this equation we constructed linear inhomogeneous equations for the unknown func-
tions hλ

i`α,j`β
(r) and then calculated the potential matrix.

Examples for testing this method were worked out by Jesgarz. Two intrinsic states were
assumed with the same energies ε1 = ε2 = 0 and angular momenta J1 = J2 = 0. It
follows k1 = k2 = k. Coupling potentials had λ = 0 and ~

2/µ = 40 MeV fm2. For a first
set of this inversion method we chose the coupling potential matrix in the form of a box
potential

V (r) =

(

100 − 50i 10 − i
10 − i 50

)

MeV if r ≤ 1 fm. (11)

Further we took k = 5 fm−1 and Imax = 8. With these parameters and with V = 100
MeV and ka = 5 the condition of the first Born approximation yields µV a2/(~2ka) = 0.5
which is on the border of the validity of the first Born approximation. As Fig. 11 shows,
the inversion method also works for this special box coupling potential sufficiently well,
reproducing the steps in the potential matrix V at r = 1 fm.

3.6 Stability of static solitonic excitations of two-component
Bose-Einstein condensates in finite range of interspecies scattering length

Over the past few years an increasing interest can be observed in the case of atomic
Bose-Einstein condensates (BECs). Mostly one-component BECs have been studied so
far for the elements 1H, 7Li, 23Na, 41K, 85,87Rb, and 133Cs. The two-component systems
Na-Rb and K-Rb have been considered theoretically and the mixture Cs-Li has been
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Figure 11: Inverted potential matrix calculated from the S-matrix obtained with V given
in Eq. (11). The excitation energy is set to zero. The further parameters are k = 5
fm−1, a = 1.4 fm and Imax = 8.

investigated experimentally, without reaching the BEC phase. In this project we give a
simple treatment of the stability of a condensate mixture consisting of two atomic species
(D. Schumayer, B. Apagyi, Phys. Rev. A 69 (2004) 043620).
For treating two interacting dilute Bose condensates we started with the zero temperature
mean field theory neglecting collisions between the condensed atoms and the thermal
cloud. The macroscopic dynamics in such a physical condensate is described by two
coupled nonlinear Schrödinger equations (NLSs). These equations are also known as
Gross-Pitaevskii (GP) equations. Restricting ourselves to (1 + 1) dimensions the coupled
GP equations can be written as follows (i, j = 1, 2)

i~
∂ψi

∂t
=

[

− ~
2

2mi

∂2

∂x2
+

2
∑

j=1

Ωij|ψj|2 + Vi

]

ψi, (12)

where mi denotes the individual mass of the ith atomic species, Ωij = 2π~
2aij/Aµij with

aij being the 3-dimensional scattering length between atoms of species i, j, respectively,
A the general transverse crossing area of the cigar-shape BEC, µij = mimj/(mi + mj)
the reduced mass, and Vi, (i = 1, 2) in Eq (12) are the external trapping potentials. The
normalization of the wave functions is given by Ni =

∫∞

−∞
|ψi|2dx, for i = 1 and 2 with

Ni denoting the number of the individual atoms in the ith component of the BEC.
The stationary solutions of the coupled GP equations (12) are taken in the form ψi(x, t) =
Φi(x) exp(−iEit/~) where Ei is the single-particle energy of the ith component. With
this wave function and neglecting the kinetic terms in (12) we derived approximate density
profiles and a semi-infinite range for the scattering length aij between two different atoms.
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From the GP equations (12) we obtained the so called Thomas-Fermi approximation

|Φ1(x)|2 =
Ω22(E1 − V1(x)) − Ω12(E2 − V2(x))

∆
,

|Φ2(x)|2 =
Ω22(E2 − V2(x)) − Ω21(E1 − V1(x))

∆

with ∆ = Ω11Ω22 −Ω12Ω21. With a harmonic external potential Vi(x) = 1
2
miω

2
i x

2 (i =
1, 2) one can write (i = 1, 2)

|Φi(x)|2 = Ai(x
2
i − x2)/∆ if |x| ≤ xi, i = 1, 2,

|Φi(x)|2 = 0 if |x| > xi, i = 1, 2.

The constants are Ai = (Ωjjmiω
2
i − Ωijmjω

2
j )/2 and xi = ±(3∆Ni/4Ai)

1/3 obtained
from the normalization condition

∫ xi

−xi
|Φi(x)|2dx = Ni (i = 1, 2).

The excited static solutions have the form (i = 1, 2)

ψ̃i(x, t) = Φi(x)φi(x) exp(−iẼit/~)

with φi(x) being an excess or defect of the ith component of the background density.
Inserting this ansatz into the GP equations (12) and assuming that the excitation mecha-
nism is restricted to a small interval x ∈ (−Li, Li) around x = 0, one obtains two coupled
equations for the perturbing functions

Ẽ1φ1 = − ~
2

2m1

∂2φ1

∂x2
+ Ω̃11|φ1|2φ1 + Ω̃12|φ2|2φ1 (13a)

Ẽ2φ2 = − ~
2

2m2

∂2φ2

∂x2
+ Ω̃21|φ1|2φ2 + Ω̃22|φ2|2φ2 (13b)

with Ω̃ij = ΩijAjx
2
j/∆ (i, j = 1, 2). Very small potential terms have been neglected.

These equations determine the perturbing functions φi(x) within the range |x| ≤ Li < xi

. Since static one-soliton solution of the B or the D type can be produced in BECs we
tried to use static uncoupled soliton solutions

φB1(x) = q1sech(k1x)

φD2(x) = q2 tanh (k2x)

with complex amplitudes qi and range parameters ki ∼ L−1
i for the description of the

excitation of the two-component BECs. In accordance with the soliton characters we
impose the appropriate boundary conditions φB1(x → ±∞) = 0, and φD2(x → ±∞) =
±q2.
The insertion of the above solitonic ansatz into equations (13) gives k1 = k2 ≡ k for the
range parameters and the relations

|q1|2 =
~

2k2

∆

(

Ω̃12

m2

− Ω̃22

m1

)

,
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|q2|2 =
~

2k2

∆

(

Ω̃11

m2

− Ω̃21

m1

)

for the modulus of the amplitudes.
The requirement that the modulus of the two amplitudes q1 and q2 is positive and real
yields the stability conditions (Aij = aij(1 +mi/mj))

fB1(a12) =
A12 − A22

det(A)
≥ 0, (14a)

fD2(a12) =
A11 − A21

det(A)
≥ 0 (14b)

for the existence of B and D solitonic excitation within the two component BEC. Although
the above conditions are independent of the particle numbers Ni, one has a constraint
by the particle number conservation because the normalization of the B and D solitonic
excitation reads as

N1 = 2|q1|2
A1

∆
n(kx1),

N2 = 2|q2|2
A2

∆

(

2

3
(kx2)

2 − n(kx2)

)

,

with n(w) = −w2 + 2w ln[1 + exp(2w)] + dilog[1 + exp(2w)] + π2

12
.

Assuming now that the system parameters m1, m2, a11 and a22 are given, and disregard-
ing the particle numbers Ni, one can determine the broadest range of the interspecies
scattering length a12 for which the existence of solitons in the two-component BEC can be
expected. If the actual value of a12 is determined then one can find the particle number
ratio N2/N1 or the size parameter k in order to get information about the two-component
system which may show static solitonic features.
In Fig.12 we show the density profile |Φi|2 of the Thomas-Fermi approximation for a
two-component BEC, namely for the mixture 7Li - 87Rb, with parameters a11 = −1.4 nm
(7Li), a22 = 5.5 nm (87Rb) and the chosen interspecies scattering length a12 = 4.5 nm.

3.7 Assessment of interspecies scattering lengths a12 from stability
of two-component Bose-Einstein condensates

Tables 1 and 2 give, separated from each other by semicolons, the limiting point values
of the intervals of the interspecies scattering length a12 satisfying the stability conditions
encoded into inequalities (14a-b). These conditions express the possibility of developing
solitonic excitations of static BD or DB type from the ground state of the two-component
BECs, irrespective of the particle numbers N1 and N2 of the mixture. The data have
been calculated, respectively, with triplet and singlet intraspecies scattering lengths aii

(i = 1, 2) listed in the columns headed by the labels at and as. The exception is the 133Cs
atom where only the average scattering length (aii = +

√

σexp/8π) has been available
(therefore the parenthesis).
In general we observe in tables 1 and 2 that one of the limiting points of the intervals
of the corresponding DB and BD cases coincides; a fact easily derivable by using the
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Figure 12: The density profile |Φi|2 of the Thomas-Fermi approximation for a two-
component BEC, namely for the mixture 7Li - 87Rb, with parameters a11 = −1.4 nm
(7Li), a22 = 5.5 nm (87Rb) and a12 = 4.5 nm.

relation 0 = fB1(a12) = fD2(a12). The diagonal elements of tables 1 and 2 represent
one-component BECs which is out of scope of the present interest so that the data are
missing there. Furthermore, the rows corresponding to 7Li, 39K, and 85Rb of table 1 do not
contain any results as well, if their partner owns a positive triplet intraspecies scattering
length. The lack of information means here that we do not find any region of triplet
interspecies scattering length a12 which gives rise to a stable DB type excitation. On the
other hand all items of the column headed by 7Li, 39K, and 85Rb are filled by data. This
means that there are definite ranges of triplet a12 which support BECs with excitations
of BD type where the 7Li, 39K, and 85Rb atoms play the role of the B component (owing
to their attractive interaction character). The above argumentation can be confirmed by
using stability conditions (14a-b) with a11 < 0 and a22 > 0.
In the case when both a11 and a22 are positive we observe the existence of BECs with
both DB or BD formations within a finite interval of positive interspecies scattering length
a12. This can be understood physically in the following way. In the context of the mean
field theory, an effective potential is created by the i-th atoms acting repulsively among
each other (positive scattering lengths) and thus forming the cavity of the D component.
Inside this cavity there is a possibility for the j-th atoms to form a bunch representing
the B component despite their inherent repulsive character.
The values of a12 given in tables 1 and 2 can be used for orientation and in design of two-
component BECs. One starts from known intraspecies scattering lengths aii (i = 1, 2)
which are represented by the data denoted by at or as in the tables. Then one performs
the range determination by using inequalities (14a-b). Now one is provided with guessed
values of interspecies scattering length a12 which can maintain stable two-component
BEC configuration. If, from some other sources, we are assured that the actual physical
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values of a12 falls outside the range calculated then one may try either to move the aij

values into the proper direction by utilizing the Feshbach-resonance procedure or to carry
out BB or DD stability analyses to learn what type (if any) of static solitonic excitations
of the components are possible (suggesting, at the same time, stability of the ground
state configurations as well).

3.8 Evolution solution (simulation) of the nonlinear Schrödinger equation
Our aim is to solve the evolution problem of the Gross-Pitaevskii (GP) equation

iut = −HV uxx + C |u|2u+ V u, u = u(x, t), V = V (x) (15)

with given initial condition u0(x) = u(x, 0). In the case of special values of the constants
HV and C, and for zero potential V = 0 there are some exact solutions to the remaning
equation known also as the nonlinear Schrödinger (nls) equation.

iut = −HV uxx + C |u|2u, u = u(x, t). (15a)

Colliding two-soliton solution
Let us consider the following nls equation

iut = uxx + 2|u|2u (16)

which means that we use HV = −1, C = +2 and V = 0 in (15).
Equation (16) admits the following (colliding) two-soliton solution:

u(x, t) =
e−i(2x−20−3t)

cosh(x− 10 − 4t)
+

e+i(2x+20−3t)

cosh(x + 10 + 4t)
(17)

Bright soliton solution
The most widely known soliton solution of the nls equation of the form

iut = −uxx − |u|2u (HV = 1, C = −1, V = 0) (18)

is the bright soliton. Its general form is the following:

u(x, t; a, c) = a ei( c
2
(x−ct)+nt)/ cosh(a(x− ct)/

√
2) (19)

with the constraint that a2 = 2(n−
(

c
2

)2
) > 0.

If c = 1, n > 1
4
. Let n = 5

4
. Then a2 = 2, a =

√
2. The bright soliton solution is then

u(x, t;
√

2, 1) =
√

2ei( 1

2
(x−t)+ 5

4
t)/ cosh(x− t). (20)

The initial condition in this case is

u(x, 0;
√

2, 1) =
√

2eix/2/ cosh(x) (21a)

and the norm is (independent of t):
∫

|u(x, t;
√

2, 1)|2dx = 4. (21b)
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In case of c = 2 we have the bright soliton

u(x, t;±2, 2) = ±2ei((x−2t)+3t)/ cosh(±
√

2(x− 2t)), (22)

and the initial condition

u(x, 0;±2, 2) = ±2eix/ cosh(±
√

2x). (22a)

Dark soliton solution
The nls equation

iut = −uxx + |u|2u (HV = 1, C = +1, V = 0) (23)

supports dark soliton solution of the form

u(x, t;m, c) = rei(Θ−mt), (23a)

with real amplitude r = r(x − ct), real phase Θ = Θ(x − ct), and real parameters
c = const, m = const > c2/2 > 0 satisfying the relations

r2 = m− 2κ2/ cosh2(κ(x− ct))

and
1/ tan(Θ) = −2κ tanh(κ(x− ct)).

In the course of testing the simulation program we shall use the dark soliton solution with
parameters m = 1, c = 1.
Ma solitary wave solution
Equation

iut = −uxx − |u|2u (HV = 1, C = −1, V = 0) (24)

also has the Ma solitary wave solution of the form

u(x, t; a,m) = aeia2t[1 + 2m(m cos Θ + in sin Θ)/f(x, t)] (25)

with real parameters a and m and the following relations and definitions:

n2 = 1 +m2, Θ = 2mna2t, f(x, t) = n cosh(ma
√

2x) + cos Θ.

In the course of testing the simulation program we shall use the Ma solitary wave solution
with parameters a = 1, m = 1/2.
Rational-cum-oscillatory solution
Equation

iut = −uxx − |u|2u (HV = 1, C = −1, V = 0) (26)

also has the rational-cum-oscillatory solution of the form

u(x, t) = eit

[

1 − 4(1 + 2it)

1 + 2x2 + 4t2

]

(27)

Simulation procedure
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To solve the time evolution problem of the Schrödinger equation

iut(x, t) = Hu(x, t), u(x, t) = e−iHtu(x, t) (28)

one discretises eq. (28) in time, tn = nτ (n = 0, 1, .., NT ), and space, xj = jh
(j = 1, 2, ..., N), and denotes the wave function by un

j ≡ u(xj, tn).
One makes use of the basic relation that the backward and forward time evolutions at
tn+1/2 result in the same value of the wave function at every point xj, that is

u
n+1/2
j = (1 +

1

2
iHτ)un+1

j = (1 − 1

2
iHτ)un

j = u
n+1/2
j (29)

or, using instead of 1/2 the symbol σ,

un+σ
j = (1 + σiHτ)un+1

j = (1 − σiHτ)un
j = un+σ

j , (29a)

We obtain the backward evolution at σ = 0, the forward evolution at σ = 1. The
Cranck-Nicholson scheme corresponds to σ = 1/2.
By re-ordering equation (29a) one gets the basic formula:

iun+1
j − τHσun+1

j = iun
j + τ(1 − σ)Hun

j (30)

with the Hamiltonian acting at point xj on the wave funcion uj as

Huj = −HV
h2

(uj+1 − 2uj + uj−1) + Vjuj

with Vj = V (xj) + C|uj|2. By using this form, eq.(30) can be written into a form

T (n)un+1 = F n (31)

where T (n) denots an NxN triangular matrix with elements T
(n)
j,j = B

(n)
j = ih2 −

τσ(2HV + h2Vj), T
(n)
j+1,j = T

(n)
j,j+1 = A = τσHV and F n stands for an 1xN vector

whose elements are defined by F n
j = Cn

j u
n
j −D(un

j+1 + un
j−1) with C

(n)
j = ih2 + τ(1 −

σ)(2HV + h2Vj) and D = τ(1 − σ)HV .
We use Neumann boundary condition ux = 0 at the boundaries. At the boundary the
formula (30) provides the relation

un+1
j =

i+ τ(1 − σ)Vj

i− τ(1 − σ)Vj

un
j , i = 1, N (32)

Outraying
By starting with y(x, 0) which does not correspond to an exact solution the ’rest’ is is
outraying and only the stable soliton configuration remains.
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Figure 13: Coliding solitons - exact case (see eq.(17)).
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Figure 14: Brigth soliton - exact case (see eq.(19)).
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bright -simulation
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Figure 15: Brigth soliton - simulation (see eq.(31)).

rational soliton - exact
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Figure 16: Brigth soliton - exact case (see eq.(22)).
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rational soliton - simulation
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Figure 17: Brigth soliton - simulation (see eq.(31)).

dark - exact
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Figure 18: Dark soliton - exact case (see eq.(23a)).
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dark - simulation
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Figure 19: Dark soliton - simulation (see eq.(31)).

Ma soliton - exact
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Figure 20: Ma solitary wave - exact case (see eq.(25)).
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Ma soliton, y(1-10)=y(n-10) Neumann b.c.
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Figure 21: Ma solitary wave - simulation. Neumann b.c. used at j=1-10 and N-10 - N.
(see eq.(32)).

Ma soliton, y(1)=y(n) Neumann b.c.
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Figure 22: Ma solitary wave - simulation. Neumann b.c. used at j=1 and N. (see eq.(32)).
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outraying - bright remnant
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Figure 23: By starting with y(x, 0) which does not correspond to an exact solution the
’rest’ is is outraying and only the stable soliton configuration remains. Here one soliton.

outraying - 2-bright remnants
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Figure 24: By starting with y(x, 0) which does not correspond to an exact solution the
’rest’ is is outraying and only the stable soliton configuration remains. Here two solitons.
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Table 1: Intervals of triplet interspecies scattering lengths a12 assessed by static solitonic excitations of two component BECs
composed of alkalis indicated. The column at gives the triplet intraspecies scattering length aii taken from the references. All
values are in unit of nm.

Bright-component

Element at
1H 7Li 23Na 39K 41K 83Rb 85Rb 87Rb 133Cs 135Cs

1H 0.1 -2.4;0.0 0.0;0.2 -1.8;0.0 0.0;0.2 0.0;0.1 -37.6;0.0 0.0;0.2 0.0;0.1 0.0;0.1

7Li −1.4 –;– –;– -1.5;-0.8 –;– –;– -35.1;-2.7 –;– –;– –;–

23Na 4.0 0.2;7.7 -0.6;6.1 -1.1;3.0 2.8;3.5 1.7;3.4 -30;1.7 1.7;3.8 1.2;2.2 1.2;3.8

39
K −0.9 -0.4;-0.1 –;– –;– –;– –;– -26;-3.8 –;– –;– –;–

41
K 3.4 0.1;6.6 -0.4;5.8 3.5;4.4 -0.9;3.5 2.3;3.6 -25.4;2.2 2.2;4.0 1.6;2.4 1.6;4.2

83Rb 4.2 0.1;8.3 -0.2;7.7 3.4;6.6 -0.6;5.7 3.6;5.6 -19.2;4.1 4.1;4.8 3.1;3.2 3.2;5.3

85Rb −19.0 –;– -2.7;-0.2 –;– -3.8;-0.6 –;– –;– –;– –;– –;–

87
Rb 5.5 0.2;10.9 -0.2;10.2 3.8;8.7 -0.6;7.6 4.1;7.5 4.8;5.6 -18.8;5.6 3.6;4.4 4.3;6.1

133
Cs (2.4) 0.0;4.8 -0.1;4.6 2.2;4.1 -0.4;3.7 2.4;3.7 3.0;3.1 -14.8;2.9 2.9;3.6 2.4;4.2D

a
r
k
-c

o
m

p
o
n
e
n
t

135Cs 7.2 0.1;14.3 -0.1;13.7 3.8;12.3 -0.4;11.2 4.2;11.1 5.3;8.9 -14.7;8.9 6.1;8.8 4.2;7.3
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Table 2: Intervals of singlet interspecies scattering lengths a12 assessed by static solitonic excitations of two component BECs
composed of alkali pairs indicated. The column as gives the singlet scattering length aii of atoms taken from the references. (For
1H the triplet value has been used). All values are in unit of nm.

Bright-component

Element as
1H 7Li 23Na 39K 41K 83Rb 85Rb 87Rb 133Cs 135Cs

1H (0.1) -0.0;0.2 0.0;0.2 0.0;0.2 0.0;0.2 0.0;0.1 0.0;0.6 0.0;0.1 0.0;0.1 0.0;0.2

7Li 1.7 0.2;3.0 0.8;1.8 0.5;2.5 0.5;1.6 0.3;1.3 0.3;7.7 0.3;1.5 0.2;0.9 0.2;2.9

23Na 2.7 0.2;5.3 1.8;4.2 2.0;4.3 1.9;3.3 1.2;2.5 1.2;15.1 1.1;2.9 0.8;1.8 0.8;6.0

39
K 7.3 0.2;14.2 2.5;12.4 4.3;9.2 5.7;7.0 4.6;4.7 4.6;28.0 4.5;5.4 3.3;3.5 3.3;11.5

41
K 4.4 0.2;8.6 1.2;5.4 3.3;5.7 4.6;5.7 3.0;3.7 2.9;22.1 2.9;4.3 2.1;2.8 2.0;9.0

83Rb 3.4 0.1;6.8 1.3;6.3 2.5;5.4 4.6;4.7 3.7;4.6 3.4;20.7 3.3;4.0 2.6;2.8 2.6;9.2

85Rb 124.8 0.6;246 7.7;230 15.1;196 28.0;171 22.1;167 20.7;126 24.2;123 16.9;97 55.5;96

87
Rb 4.7 0.1;9.2 1.5;8.7 2.9;7.4 5.4;6.5 4.3;6.3 4.0;4.8 4.7;24.2 3.3;3.8 3.7;10.8

133
Cs (2.4) 0.1;4.8 0.9;4.6 1.8;4.0 3.5;3.7 2.8;3.7 2.8;3.0 3.0;16.9 2.9;3.3 2.7;7.9

D
a
r
k
-c

o
m

p
o
n
e
n
t

135Cs 26.0 0.2;51.6 2.9;49.5 6.0;44.4 11.5;40.3 12.1;39.9 9.1;32.3 32.0;55.5 10.8;31.6 7.9;26.2
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